3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00

fix mixed integer/real bugs for maximization exposed by non-termination in slow.smt. partially fixes issue #56

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2015-06-23 12:05:19 +02:00
parent d32e4a9476
commit d9522cfd07
5 changed files with 130 additions and 175 deletions

View file

@ -27,10 +27,8 @@ Notes:
typedef obj_map<expr, expr *> expr2expr_map; typedef obj_map<expr, expr *> expr2expr_map;
void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clauses, ptr_vector<expr>& assumptions, scoped_ptr<expr2expr_map>& bool2dep, ref<filter_model_converter>& fmc) { void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clauses, ptr_vector<expr>& assumptions, expr2expr_map& bool2dep, ref<filter_model_converter>& fmc) {
scoped_ptr<expr2expr_map> dep2bool; expr2expr_map dep2bool;
dep2bool = alloc(expr2expr_map);
bool2dep = alloc(expr2expr_map);
ptr_vector<expr> deps; ptr_vector<expr> deps;
ast_manager& m = g->m(); ast_manager& m = g->m();
expr_ref_vector clause(m); expr_ref_vector clause(m);
@ -38,7 +36,7 @@ void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clause
for (unsigned i = 0; i < sz; i++) { for (unsigned i = 0; i < sz; i++) {
expr * f = g->form(i); expr * f = g->form(i);
expr_dependency * d = g->dep(i); expr_dependency * d = g->dep(i);
if (d == 0) { if (d == 0 || !g->unsat_core_enabled()) {
clauses.push_back(f); clauses.push_back(f);
} }
else { else {
@ -54,19 +52,19 @@ void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clause
expr * d = *it; expr * d = *it;
if (is_uninterp_const(d) && m.is_bool(d)) { if (is_uninterp_const(d) && m.is_bool(d)) {
// no need to create a fresh boolean variable for d // no need to create a fresh boolean variable for d
if (!bool2dep->contains(d)) { if (!bool2dep.contains(d)) {
assumptions.push_back(d); assumptions.push_back(d);
bool2dep->insert(d, d); bool2dep.insert(d, d);
} }
clause.push_back(m.mk_not(d)); clause.push_back(m.mk_not(d));
} }
else { else {
// must normalize assumption // must normalize assumption
expr * b = 0; expr * b = 0;
if (!dep2bool->find(d, b)) { if (!dep2bool.find(d, b)) {
b = m.mk_fresh_const(0, m.mk_bool_sort()); b = m.mk_fresh_const(0, m.mk_bool_sort());
dep2bool->insert(d, b); dep2bool.insert(d, b);
bool2dep->insert(b, d); bool2dep.insert(b, d);
assumptions.push_back(b); assumptions.push_back(b);
if (!fmc) { if (!fmc) {
fmc = alloc(filter_model_converter, m); fmc = alloc(filter_model_converter, m);
@ -78,7 +76,7 @@ void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clause
} }
SASSERT(clause.size() > 1); SASSERT(clause.size() > 1);
expr_ref cls(m); expr_ref cls(m);
cls = mk_or(m, clauses.size(), clauses.c_ptr()); cls = mk_or(m, clause.size(), clause.c_ptr());
clauses.push_back(cls); clauses.push_back(cls);
} }
} }
@ -208,7 +206,7 @@ public:
SASSERT(m_ctx != 0); SASSERT(m_ctx != 0);
expr_ref_vector clauses(m); expr_ref_vector clauses(m);
scoped_ptr<expr2expr_map> bool2dep; expr2expr_map bool2dep;
ptr_vector<expr> assumptions; ptr_vector<expr> assumptions;
ref<filter_model_converter> fmc; ref<filter_model_converter> fmc;
if (in->unsat_core_enabled()) { if (in->unsat_core_enabled()) {
@ -273,7 +271,7 @@ public:
for (unsigned i = 0; i < sz; i++) { for (unsigned i = 0; i < sz; i++) {
expr * b = m_ctx->get_unsat_core_expr(i); expr * b = m_ctx->get_unsat_core_expr(i);
SASSERT(is_uninterp_const(b) && m.is_bool(b)); SASSERT(is_uninterp_const(b) && m.is_bool(b));
expr * d = bool2dep->find(b); expr * d = bool2dep.find(b);
lcore = m.mk_join(lcore, m.mk_leaf(d)); lcore = m.mk_join(lcore, m.mk_leaf(d));
} }
} }

View file

@ -32,7 +32,7 @@ tactic * mk_smt_tactic(params_ref const & p = params_ref());
tactic * mk_smt_tactic_using(bool auto_config = true, params_ref const & p = params_ref()); tactic * mk_smt_tactic_using(bool auto_config = true, params_ref const & p = params_ref());
void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clauses, ptr_vector<expr>& assumptions, scoped_ptr<obj_map<expr, expr*> >& bool2dep, ref<filter_model_converter>& fmc); void extract_clauses_and_dependencies(goal_ref const& g, expr_ref_vector& clauses, ptr_vector<expr>& assumptions, obj_map<expr, expr*>& bool2dep, ref<filter_model_converter>& fmc);
/* /*
ADD_TACTIC("smt", "apply a SAT based SMT solver.", "mk_smt_tactic(p)") ADD_TACTIC("smt", "apply a SAT based SMT solver.", "mk_smt_tactic(p)")

View file

@ -879,7 +879,6 @@ namespace smt {
row m_tmp_row; row m_tmp_row;
void add_tmp_row(row & r1, numeral const & coeff, row const & r2); void add_tmp_row(row & r1, numeral const & coeff, row const & r2);
theory_var pick_var_to_leave(bool has_int, theory_var x_j, bool inc, numeral & a_ij, inf_numeral & gain, bool& skiped_row);
bool is_safe_to_leave(theory_var x, bool inc, bool& has_int, bool& is_shared); bool is_safe_to_leave(theory_var x, bool inc, bool& has_int, bool& is_shared);
template<bool invert> template<bool invert>
void add_tmp_row_entry(row & r, numeral const & coeff, theory_var v); void add_tmp_row_entry(row & r, numeral const & coeff, theory_var v);

View file

@ -989,83 +989,6 @@ namespace smt {
} }
/**
\brief Select tightest variable x_i to pivot with x_j. The goal
is to select a x_i such that the value of x_j is increased
(decreased) if inc = true (inc = false), and the tableau
remains feasible. Store the gain in x_j of the pivoting
operation in 'gain'. Note the gain can be too much. That is,
it may make x_i infeasible. In this case, instead of pivoting
we move x_j to its upper bound (lower bound) when inc = true (inc = false).
If no x_i imposes a restriction on x_j, then return null_theory_var.
That is, x_j is free to move to its upper bound (lower bound).
Get the equations for x_j:
x_i1 = coeff_1 * x_j + rest_1
...
x_in = coeff_n * x_j + rest_n
gain_k := (upper_bound(x_ik) - value(x_ik))/coeff_k
*/
template<typename Ext>
theory_var theory_arith<Ext>::pick_var_to_leave(
bool has_int, theory_var x_j, bool inc,
numeral & a_ij, inf_numeral & gain, bool& skipped_row) {
TRACE("opt", tout << "selecting variable to replace v" << x_j << ", inc: " << inc << "\n";);
theory_var x_i = null_theory_var;
inf_numeral curr_gain;
column & c = m_columns[x_j];
typename svector<col_entry>::iterator it = c.begin_entries();
typename svector<col_entry>::iterator end = c.end_entries();
for (; it != end; ++it) {
if (!it->is_dead()) {
row & r = m_rows[it->m_row_id];
theory_var s = r.get_base_var();
if (s != null_theory_var && !is_quasi_base(s)) {
numeral const & coeff = r[it->m_row_idx].m_coeff;
bool inc_s = coeff.is_neg() ? inc : !inc;
bound * b = get_bound(s, inc_s);
if (b) {
curr_gain = get_value(s);
curr_gain -= b->get_value();
curr_gain /= coeff;
if (curr_gain.is_neg())
curr_gain.neg();
if (x_i == null_theory_var || (curr_gain < gain) || (gain.is_zero() && curr_gain.is_zero() && s < x_i)) {
if (is_int(s) && !curr_gain.is_int()) {
skipped_row = true;
continue;
}
if (is_int(x_j) && !curr_gain.is_int()) {
skipped_row = true;
continue;
}
if (!curr_gain.is_int() && has_int) {
skipped_row = true;
continue;
}
x_i = s;
a_ij = coeff;
gain = curr_gain;
TRACE("opt",
tout << "x_i: v" << x_i << ", gain: " << gain << "\n";
tout << "value(s): (" << get_value(s) << " - " << b->get_value() << ")/" << coeff << "\n";
display_row(tout, r, true);
);
}
}
}
TRACE("opt", tout << "x_i: v" << x_i << ", gain: " << gain << "\n";);
}
}
TRACE("opt", tout << "x_i v" << x_i << "\n";);
return x_i;
}
template<typename Ext> template<typename Ext>
bool theory_arith<Ext>::get_theory_vars(expr * n, uint_set & vars) { bool theory_arith<Ext>::get_theory_vars(expr * n, uint_set & vars) {
rational r; rational r;
@ -1388,6 +1311,9 @@ namespace smt {
bool& has_shared, // determine if pivot involves shared variable bool& has_shared, // determine if pivot involves shared variable
theory_var& x_i) { // base variable to pivot with x_j theory_var& x_i) { // base variable to pivot with x_j
if (is_int(x_j) && !get_value(x_j).is_int()) {
return false;
}
x_i = null_theory_var; x_i = null_theory_var;
context& ctx = get_context(); context& ctx = get_context();
column & c = m_columns[x_j]; column & c = m_columns[x_j];
@ -1447,8 +1373,7 @@ namespace smt {
template<typename Ext> template<typename Ext>
void theory_arith<Ext>::normalize_gain(numeral const& divisor, inf_numeral & max_gain) const { void theory_arith<Ext>::normalize_gain(numeral const& divisor, inf_numeral & max_gain) const {
SASSERT(divisor.is_int()); SASSERT(divisor.is_int());
SASSERT(divisor.is_pos()); if (!divisor.is_minus_one() && !divisor.is_one() && !max_gain.is_minus_one()) {
if (!divisor.is_one() && !max_gain.is_minus_one()) {
max_gain = floor(max_gain/divisor)*divisor; max_gain = floor(max_gain/divisor)*divisor;
} }
} }
@ -1473,14 +1398,15 @@ namespace smt {
if (is_int(x)) { if (is_int(x)) {
min_gain = inf_numeral::one(); min_gain = inf_numeral::one();
} }
TRACE("opt",
tout << "v" << x << " := " << get_value(x) << " "
<< "min gain: " << min_gain << " "
<< "max gain: " << max_gain << "\n";);
SASSERT(max_gain.is_minus_one() || !max_gain.is_neg()); SASSERT(max_gain.is_minus_one() || !max_gain.is_neg());
SASSERT(min_gain.is_minus_one() || min_gain.is_one()); SASSERT(min_gain.is_minus_one() || min_gain.is_one());
SASSERT(!is_int(x) || max_gain.is_int()); SASSERT(!is_int(x) || max_gain.is_int());
SASSERT(is_int(x) == min_gain.is_one()); SASSERT(is_int(x) == min_gain.is_one());
TRACE("opt",
tout << "v" << x << " "
<< "min gain: " << min_gain << " "
<< "max gain: " << max_gain << "\n";);
} }
@ -1512,14 +1438,18 @@ namespace smt {
if (is_int(x_i)) den_aij = denominator(a_ij); if (is_int(x_i)) den_aij = denominator(a_ij);
SASSERT(den_aij.is_pos() && den_aij.is_int()); SASSERT(den_aij.is_pos() && den_aij.is_int());
if (is_int(x_i) && !den_aij.is_one()) { if (is_int(x_i) && !den_aij.is_one() && min_gain.is_pos()) {
SASSERT(min_gain.is_pos());
min_gain = inf_numeral(lcm(min_gain.get_rational(), den_aij)); min_gain = inf_numeral(lcm(min_gain.get_rational(), den_aij));
normalize_gain(min_gain.get_rational(), max_gain); normalize_gain(min_gain.get_rational(), max_gain);
} }
if (!max_inc.is_minus_one()) { if (!max_inc.is_minus_one()) {
if (is_int(x_i)) { if (is_int(x_i)) {
TRACE("opt",
tout << "v" << x_i << " a_ij " << a_ij << " "
<< "min gain: " << min_gain << " "
<< "max gain: " << max_gain << "\n";);
max_inc = floor(max_inc); max_inc = floor(max_inc);
normalize_gain(min_gain.get_rational(), max_inc); normalize_gain(min_gain.get_rational(), max_inc);
} }
@ -1539,9 +1469,9 @@ namespace smt {
<< (is_tighter?"true":"false") << "\n";); << (is_tighter?"true":"false") << "\n";);
SASSERT(max_gain.is_minus_one() || !max_gain.is_neg()); SASSERT(max_gain.is_minus_one() || !max_gain.is_neg());
SASSERT(min_gain.is_minus_one() || !min_gain.is_neg()); SASSERT(min_gain.is_minus_one() || !min_gain.is_neg());
SASSERT(!is_int(x_i) || min_gain.is_pos()); //SASSERT(!is_int(x_i) || min_gain.is_pos());
SASSERT(!is_int(x_i) || min_gain.is_int()); //SASSERT(!is_int(x_i) || min_gain.is_int());
SASSERT(!is_int(x_i) || max_gain.is_int()); //SASSERT(!is_int(x_i) || max_gain.is_int());
return is_tighter; return is_tighter;
} }
@ -1759,6 +1689,10 @@ namespace smt {
unsigned& best_efforts, // is bound move a best effort? unsigned& best_efforts, // is bound move a best effort?
bool& has_shared) { // does move include shared variables? bool& has_shared) { // does move include shared variables?
inf_numeral min_gain, max_gain; inf_numeral min_gain, max_gain;
if (is_int(x_i) && !get_value(x_i).is_int()) {
++best_efforts;
return false;
}
init_gains(x_i, inc, min_gain, max_gain); init_gains(x_i, inc, min_gain, max_gain);
column & c = m_columns[x_i]; column & c = m_columns[x_i];
typename svector<col_entry>::iterator it = c.begin_entries(); typename svector<col_entry>::iterator it = c.begin_entries();

View file

@ -58,6 +58,7 @@ Revision History:
#include "solver.h" #include "solver.h"
#include "model_smt2_pp.h" #include "model_smt2_pp.h"
#include "expr_safe_replace.h" #include "expr_safe_replace.h"
#include "ast_util.h"
class nl_purify_tactic : public tactic { class nl_purify_tactic : public tactic {
@ -81,6 +82,10 @@ class nl_purify_tactic : public tactic {
app_ref_vector m_new_reals; // interface real variables app_ref_vector m_new_reals; // interface real variables
app_ref_vector m_new_preds; // abstraction predicates for smt_solver (hide real constraints) app_ref_vector m_new_preds; // abstraction predicates for smt_solver (hide real constraints)
expr_ref_vector m_asms; // assumptions to pass to SMT solver expr_ref_vector m_asms; // assumptions to pass to SMT solver
ptr_vector<expr> m_ctx_asms; // assumptions passed by context
obj_hashtable<expr> m_ctx_asms_set; // assumptions passed by context
obj_hashtable<expr> m_used_asms;
obj_map<expr, expr*> m_bool2dep;
obj_pair_map<expr,expr,expr*> m_eq_pairs; // map pairs of interface variables to auxiliary predicates obj_pair_map<expr,expr,expr*> m_eq_pairs; // map pairs of interface variables to auxiliary predicates
obj_map<expr,expr*> m_interface_cache; // map of compound real expression to interface variable. obj_map<expr,expr*> m_interface_cache; // map of compound real expression to interface variable.
obj_map<expr, polarity_t> m_polarities; // polarities of sub-expressions obj_map<expr, polarity_t> m_polarities; // polarities of sub-expressions
@ -98,6 +103,7 @@ public:
obj_map<expr, polarity_t>& m_polarities; obj_map<expr, polarity_t>& m_polarities;
obj_map<expr,expr*>& m_interface_cache; obj_map<expr,expr*>& m_interface_cache;
expr_ref_vector m_args; expr_ref_vector m_args;
proof_ref_vector m_proofs;
mode_t m_mode; mode_t m_mode;
rw_cfg(nl_purify_tactic & o): rw_cfg(nl_purify_tactic & o):
@ -108,6 +114,7 @@ public:
m_polarities(o.m_polarities), m_polarities(o.m_polarities),
m_interface_cache(o.m_interface_cache), m_interface_cache(o.m_interface_cache),
m_args(m), m_args(m),
m_proofs(m),
m_mode(mode_interface_var) { m_mode(mode_interface_var) {
} }
@ -115,8 +122,8 @@ public:
arith_util & u() { return m_owner.m_util; } arith_util & u() { return m_owner.m_util; }
expr * mk_interface_var(expr* arg) { expr * mk_interface_var(expr* arg, proof_ref& arg_pr) {
expr* r; expr* r;
if (m_interface_cache.find(arg, r)) { if (m_interface_cache.find(arg, r)) {
return r; return r;
} }
@ -136,6 +143,9 @@ public:
else { else {
m_owner.m_solver->assert_expr(eq); m_owner.m_solver->assert_expr(eq);
} }
if (m_owner.m_produce_proofs) {
arg_pr = m.mk_oeq(arg, r);
}
return r; return r;
} }
@ -225,24 +235,29 @@ public:
} }
} }
m_args.reset(); m_args.reset();
m_proofs.reset();
for (unsigned i = 0; i < num; ++i) { for (unsigned i = 0; i < num; ++i) {
expr* arg = args[i]; expr* arg = args[i];
proof_ref arg_pr(m);
if (is_arith && !is_arith_op(arg)) { if (is_arith && !is_arith_op(arg)) {
has_interface = true; has_interface = true;
m_args.push_back(mk_interface_var(arg)); m_args.push_back(mk_interface_var(arg, arg_pr));
} }
else if (!is_arith && u().is_real(arg)) { else if (!is_arith && u().is_real(arg)) {
has_interface = true; has_interface = true;
m_args.push_back(mk_interface_var(arg)); m_args.push_back(mk_interface_var(arg, arg_pr));
} }
else { else {
m_args.push_back(arg); m_args.push_back(arg);
} }
if (arg_pr) {
m_proofs.push_back(arg_pr);
}
} }
if (has_interface) { if (has_interface) {
result = m.mk_app(f, num, m_args.c_ptr()); result = m.mk_app(f, num, m_args.c_ptr());
if (m_owner.m_produce_proofs) { if (m_owner.m_produce_proofs) {
pr = m.mk_oeq(m.mk_app(f, num, args), result); // push proof object to mk_interface_var? pr = m.mk_oeq_congruence(m.mk_app(f, num, args), to_app(result), m_proofs.size(), m_proofs.c_ptr());
} }
TRACE("nlsat_smt", tout << result << "\n";); TRACE("nlsat_smt", tout << result << "\n";);
return BR_DONE; return BR_DONE;
@ -281,7 +296,7 @@ private:
void display_result(std::ostream& out, goal_ref_buffer const& result) { void display_result(std::ostream& out, goal_ref_buffer const& result) {
for (unsigned i = 0; i < result.size(); ++i) { for (unsigned i = 0; i < result.size(); ++i) {
result[i]->display(out << "goal\n"); result[i]->display_with_dependencies(out << "goal\n");
} }
} }
@ -301,8 +316,11 @@ private:
} }
} }
void solve(goal_ref_buffer& result, void solve(
model_converter_ref& mc) { goal_ref const& g,
goal_ref_buffer& result,
expr_dependency_ref& core,
model_converter_ref& mc) {
while (true) { while (true) {
check_point(); check_point();
@ -316,6 +334,7 @@ private:
(*m_nl_tac)(tmp_nl, result, nl_mc, nl_pc, nl_core); (*m_nl_tac)(tmp_nl, result, nl_mc, nl_pc, nl_core);
if (is_decided_unsat(result)) { if (is_decided_unsat(result)) {
core2result(core, g, result);
TRACE("nlsat_smt", tout << "unsat\n";); TRACE("nlsat_smt", tout << "unsat\n";);
break; break;
} }
@ -328,7 +347,7 @@ private:
// assert equalities between equal interface real variables. // assert equalities between equal interface real variables.
model_ref mdl_nl, mdl_smt; model_ref mdl_nl, mdl_smt;
if (mdl_nl.get()) { if (nl_mc.get()) {
model_converter2model(m, nl_mc.get(), mdl_nl); model_converter2model(m, nl_mc.get(), mdl_nl);
update_eq_values(mdl_nl); update_eq_values(mdl_nl);
enforce_equalities(mdl_nl, m_nl_g); enforce_equalities(mdl_nl, m_nl_g);
@ -343,21 +362,28 @@ private:
lbool r = m_solver->check_sat(m_asms.size(), m_asms.c_ptr()); lbool r = m_solver->check_sat(m_asms.size(), m_asms.c_ptr());
if (r == l_false) { if (r == l_false) {
// extract the core from the result // extract the core from the result
ptr_vector<expr> core; ptr_vector<expr> ecore, asms;
m_solver->get_unsat_core(core);
if (core.empty()) {
goal_ref g = alloc(goal, m);
g->assert_expr(m.mk_false());
result.push_back(g.get());
break;
}
expr_ref_vector clause(m); expr_ref_vector clause(m);
expr_ref fml(m); expr_ref fml(m);
expr* e; get_unsat_core(ecore, asms);
for (unsigned i = 0; i < core.size(); ++i) {
clause.push_back(m.is_not(core[i], e)?e:m.mk_not(core[i])); //
// assumptions should also be used for the nlsat tactic,
// but since it does not support assumptions at this time
// we overapproximate the necessary core and accumulate
// all assumptions that are ever used.
//
for (unsigned i = 0; i < asms.size(); ++i) {
m_used_asms.insert(asms[i]);
} }
fml = m.mk_or(clause.size(), clause.c_ptr()); if (ecore.empty()) {
core2result(core, g, result);
break;
}
for (unsigned i = 0; i < ecore.size(); ++i) {
clause.push_back(mk_not(m, ecore[i]));
}
fml = mk_or(m, clause.size(), clause.c_ptr());
m_nl_g->assert_expr(fml); m_nl_g->assert_expr(fml);
continue; continue;
} }
@ -386,9 +412,35 @@ private:
TRACE("nlsat_smt", display_result(tout, result);); TRACE("nlsat_smt", display_result(tout, result););
} }
void get_unsat_core(ptr_vector<expr>& core, ptr_vector<expr>& asms) {
m_solver->get_unsat_core(core);
for (unsigned i = 0; i < core.size(); ++i) {
if (m_ctx_asms_set.contains(core[i])) {
asms.push_back(core[i]);
core[i] = core.back();
core.pop_back();
--i;
}
}
}
void core2result(expr_dependency_ref & lcore, goal_ref const& g, goal_ref_buffer& result) {
result.reset();
proof * pr = 0;
lcore = 0;
g->reset();
obj_hashtable<expr>::iterator it = m_used_asms.begin(), end = m_used_asms.end();
for (; it != end; ++it) {
lcore = m.mk_join(lcore, m.mk_leaf(m_bool2dep.find(*it)));
}
g->assert_expr(m.mk_false(), pr, lcore);
TRACE("nlsat_smt", g->display_with_dependencies(tout););
result.push_back(g.get());
}
void setup_assumptions(model_ref& mdl) { void setup_assumptions(model_ref& mdl) {
m_asms.reset(); m_asms.reset();
m_asms.append(m_ctx_asms.size(), m_ctx_asms.c_ptr());
app_ref_vector const& fresh_preds = m_new_preds; app_ref_vector const& fresh_preds = m_new_preds;
expr_ref tmp(m); expr_ref tmp(m);
for (unsigned i = 0; i < fresh_preds.size(); ++i) { for (unsigned i = 0; i < fresh_preds.size(); ++i) {
@ -419,10 +471,7 @@ private:
} }
} }
TRACE("nlsat_smt", TRACE("nlsat_smt",
tout << "assumptions:\n"; tout << "assumptions:\n" << m_asms << "\n";);
for (unsigned i = 0; i < m_asms.size(); ++i) {
tout << mk_pp(m_asms[i].get(), m) << "\n";
});
} }
bool enforce_equalities(model_ref& mdl, goal_ref const& nl_g) { bool enforce_equalities(model_ref& mdl, goal_ref const& nl_g) {
@ -602,7 +651,7 @@ private:
expr * curr = g->form(i); expr * curr = g->form(i);
if (is_pure_arithmetic(is_pure, curr)) { if (is_pure_arithmetic(is_pure, curr)) {
m_nl_g->assert_expr(curr, g->pr(i), g->dep(i)); m_nl_g->assert_expr(curr, g->pr(i), g->dep(i));
g->update(i, m.mk_true()); g->update(i, m.mk_true(), g->pr(i), g->dep(i));
} }
} }
} }
@ -702,6 +751,10 @@ public:
m_new_preds.reset(); m_new_preds.reset();
m_eq_pairs.reset(); m_eq_pairs.reset();
m_polarities.reset(); m_polarities.reset();
m_ctx_asms.reset();
m_ctx_asms_set.reset();
m_used_asms.reset();
m_bool2dep.reset();
} }
virtual void operator()(goal_ref const & g, virtual void operator()(goal_ref const & g,
@ -717,8 +770,9 @@ public:
mc = 0; pc = 0; core = 0; mc = 0; pc = 0; core = 0;
fail_if_proof_generation("qfufnra-purify", g); fail_if_proof_generation("qfufnra-purify", g);
fail_if_unsat_core_generation("qfufnra-purify", g); // fail_if_unsat_core_generation("qfufnra-purify", g);
rw r(*this); rw r(*this);
expr_ref_vector clauses(m);
m_nl_g = alloc(goal, m, true, false); m_nl_g = alloc(goal, m, true, false);
m_fmc = alloc(filter_model_converter, m); m_fmc = alloc(filter_model_converter, m);
@ -728,17 +782,27 @@ public:
// creating a place-holder predicate inside the // creating a place-holder predicate inside the
// original goal and extracing pure nlsat clauses. // original goal and extracing pure nlsat clauses.
r.set_interface_var_mode(); r.set_interface_var_mode();
rewrite_goal(r, g); rewrite_goal(r, g);
remove_pure_arith(g); if (!g->unsat_core_enabled()) {
remove_pure_arith(g);
}
get_polarities(*g.get()); get_polarities(*g.get());
r.set_bool_mode(); r.set_bool_mode();
rewrite_goal(r, g); rewrite_goal(r, g);
for (unsigned i = 0; i < g->size(); ++i) { extract_clauses_and_dependencies(g, clauses, m_ctx_asms, m_bool2dep, m_fmc);
m_solver->assert_expr(g->form(i));
TRACE("nlsat_smt", tout << clauses << "\n";);
for (unsigned i = 0; i < m_ctx_asms.size(); ++i) {
m_ctx_asms_set.insert(m_ctx_asms[i]);
}
for (unsigned i = 0; i < clauses.size(); ++i) {
m_solver->assert_expr(clauses[i].get());
} }
g->inc_depth(); g->inc_depth();
solve(result, mc); solve(g, result, core, mc);
} }
}; };
@ -746,43 +810,3 @@ public:
tactic * mk_nl_purify_tactic(ast_manager& m, params_ref const& p) { tactic * mk_nl_purify_tactic(ast_manager& m, params_ref const& p) {
return alloc(nl_purify_tactic, m, p); return alloc(nl_purify_tactic, m, p);
} }
#if 0
void mark_interface_vars(goal_ref const& g) {
expr_mark visited;
ptr_vector<expr> todo;
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
todo.push_back(g->form(i));
}
while (!todo.empty()) {
expr* e = todo.back();
todo.pop_back();
if (visited.is_marked(e)) {
continue;
}
visited.mark(e);
if (is_quantifier(e)) {
todo.push_back(to_quantifier(e)->get_expr());
continue;
}
if (is_var(e)) {
continue;
}
app* ap = to_app(e);
sz = ap->get_num_args();
bool is_arith = is_arith_op(e);
for (unsigned i = 0; i < sz; ++i) {
expr* arg = ap->get_arg(i);
todo.push_back(arg);
if (is_arith && !is_arith_op(arg)) {
m_interface_vars.mark(arg);
}
else if (!is_arith && is_arith_op(arg) && ap->get_family_id() != m.get_basic_family_id()) {
m_interface_vars.mark(arg);
}
}
}
}
#endif