3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

add normalizer of monomial coefficients

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-08-10 10:50:03 -07:00
parent c2b26300fb
commit d94f1b3fd6
3 changed files with 202 additions and 0 deletions

View file

@ -42,6 +42,10 @@ Notes:
#include "arith_decl_plugin.h"
#include "expr_replacer.h"
#include "model_smt2_pp.h"
#include "poly_rewriter.h"
#include "poly_rewriter_def.h"
#include "arith_rewriter.h"
namespace pdr {
@ -1278,6 +1282,151 @@ namespace pdr {
return test.is_dl();
}
class arith_normalizer : public poly_rewriter<arith_rewriter_core> {
ast_manager& m;
arith_util m_util;
enum op_kind { LE, GE, EQ };
public:
arith_normalizer(ast_manager& m, params_ref const& p = params_ref()): poly_rewriter<arith_rewriter_core>(m, p), m(m), m_util(m) {}
br_status mk_app_core(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result) {
br_status st = BR_FAILED;
if (m.is_eq(f)) {
SASSERT(num_args == 2); return mk_eq_core(args[0], args[1], result);
}
if (f->get_family_id() != get_fid()) {
return st;
}
switch (f->get_decl_kind()) {
case OP_NUM: st = BR_FAILED; break;
case OP_IRRATIONAL_ALGEBRAIC_NUM: st = BR_FAILED; break;
case OP_LE: SASSERT(num_args == 2); st = mk_le_core(args[0], args[1], result); break;
case OP_GE: SASSERT(num_args == 2); st = mk_ge_core(args[0], args[1], result); break;
case OP_LT: SASSERT(num_args == 2); st = mk_lt_core(args[0], args[1], result); break;
case OP_GT: SASSERT(num_args == 2); st = mk_gt_core(args[0], args[1], result); break;
default: st = BR_FAILED; break;
}
return st;
}
private:
br_status mk_eq_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, EQ, result);
}
br_status mk_le_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, LE, result);
}
br_status mk_ge_core(expr* arg1, expr* arg2, expr_ref& result) {
return mk_le_ge_eq_core(arg1, arg2, GE, result);
}
br_status mk_lt_core(expr* arg1, expr* arg2, expr_ref& result) {
result = m.mk_not(m_util.mk_ge(arg1, arg2));
return BR_REWRITE2;
}
br_status mk_gt_core(expr* arg1, expr* arg2, expr_ref& result) {
result = m.mk_not(m_util.mk_le(arg1, arg2));
return BR_REWRITE2;
}
br_status mk_le_ge_eq_core(expr* arg1, expr* arg2, op_kind kind, expr_ref& result) {
if (m_util.is_real(arg1)) {
numeral g(0);
get_coeffs(arg1, g);
get_coeffs(arg2, g);
if (!g.is_one() && !g.is_zero()) {
SASSERT(g.is_pos());
expr_ref new_arg1 = rdiv_polynomial(arg1, g);
expr_ref new_arg2 = rdiv_polynomial(arg2, g);
switch(kind) {
case LE: result = m_util.mk_le(new_arg1, new_arg2); return BR_DONE;
case GE: result = m_util.mk_ge(new_arg1, new_arg2); return BR_DONE;
case EQ: result = m_util.mk_eq(new_arg1, new_arg2); return BR_DONE;
}
}
}
return BR_FAILED;
}
void update_coeff(numeral const& r, numeral& g) {
if (g.is_zero() || abs(r) < g) {
g = abs(r);
}
}
void get_coeffs(expr* e, numeral& g) {
rational r;
unsigned sz;
expr* const* args = get_monomials(e, sz);
for (unsigned i = 0; i < sz; ++i) {
expr* arg = args[i];
if (!m_util.is_numeral(arg, r)) {
get_power_product(arg, r);
}
update_coeff(r, g);
}
}
expr_ref rdiv_polynomial(expr* e, numeral const& g) {
rational r;
SASSERT(g.is_pos());
SASSERT(!g.is_one());
expr_ref_vector monomes(m);
unsigned sz;
expr* const* args = get_monomials(e, sz);
for (unsigned i = 0; i < sz; ++i) {
expr* arg = args[i];
if (m_util.is_numeral(arg, r)) {
monomes.push_back(m_util.mk_numeral(r/g, false));
}
else {
expr* p = get_power_product(arg, r);
r /= g;
if (r.is_one()) {
monomes.push_back(p);
}
else {
monomes.push_back(m_util.mk_mul(m_util.mk_numeral(r, false), p));
}
}
}
expr_ref result(m);
mk_add(monomes.size(), monomes.c_ptr(), result);
return result;
}
};
struct arith_normalizer_cfg: public default_rewriter_cfg {
arith_normalizer m_r;
bool rewrite_patterns() const { return false; }
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
return m_r.mk_app_core(f, num, args, result);
}
arith_normalizer_cfg(ast_manager & m, params_ref const & p):m_r(m,p) {}
};
class arith_normalizer_star : public rewriter_tpl<arith_normalizer_cfg> {
arith_normalizer_cfg m_cfg;
public:
arith_normalizer_star(ast_manager & m, params_ref const & p):
rewriter_tpl<arith_normalizer_cfg>(m, false, m_cfg),
m_cfg(m, p) {}
};
void normalize_arithmetic(expr_ref& t) {
ast_manager& m = t.get_manager();
datalog::scoped_no_proof _sp(m);
params_ref p;
arith_normalizer_star rw(m, p);
expr_ref tmp(m);
rw(t, tmp);
t = tmp;
}
}
template class rewriter_tpl<pdr::ite_hoister_cfg>;