3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

create a lemma for basic proportional case

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-08-27 15:43:09 +08:00
parent 633265cc6a
commit d935bdb6c4

View file

@ -282,7 +282,7 @@ struct solver::imp {
return out;
}
std::ostream& print_explanation(std::ostream& out) {
std::ostream& print_explanation(std::ostream& out) const {
for (auto &p : *m_expl) {
m_lar_solver.print_constraint(p.second, out) << "\n";
}
@ -305,14 +305,7 @@ struct solver::imp {
lp::lar_term t;
t.add_monomial(rational(1), a.var());
t.add_monomial(rational(- sign), b.var());
TRACE("niil_solver",
m_lar_solver.print_term(t, tout);
tout << "\ncreated lemma: ";
print_monomial(a, tout);
tout << "\n";
print_monomial(b, tout);
);
TRACE("niil_solver", print_explanation_and_lemma(tout););
ineq in(lp::lconstraint_kind::NE, t);
m_lemma->push_back(in);
}
@ -482,23 +475,28 @@ struct solver::imp {
t.m_v = -rs;
ineq in(kind, t);
m_lemma->push_back(in);
TRACE("niil_solver",
tout << "used constraints:\n";
print_explanation(tout);
tout << "derived constraint ";
m_lar_solver.print_term(t, tout);
tout << " " << lp::lconstraint_kind_string(kind) << " 0\n";
tout << "the monomial is : ";
print_monomial(m_monomials[i_mon], tout) << "\n";
lpvar mon_var = m_monomials[i_mon].var();
tout << "the monomial value in the model is: " << m_lar_solver.get_column_name(mon_var) << " = " << m_lar_solver.get_column_value_rational(mon_var);
);
TRACE("niil_solver", print_explanation_and_lemma(tout););
return true;
}
std::ostream & print_ineq(ineq & in, std::ostream & out) const {
m_lar_solver.print_term(in.m_term, out);
out << " " << lp::lconstraint_kind_string(in.m_cmp) << " 0";
return out;
}
std::ostream & print_lemma(lemma& l, std::ostream & out) const {
for (auto & in: l) {
out << "("; print_ineq(in, out) << ")";
}
return out;
}
std::ostream & print_explanation_and_lemma(std::ostream & out) const {
out << "explanation:\n"; print_explanation(out) << "\nlemma\n:" ; print_lemma(*m_lemma, out) << "\n";
return out;
}
/**
* \brief <return true if j is fixed to 1 or -1, and put the value into "sign">
*/
@ -656,20 +654,12 @@ tout << "the monomial is : ";
for (unsigned k : mask) {
add_explanation_of_one(ones_of_monomial[k]);
}
TRACE("niil_solver",
for (auto &p : *m_expl)
m_lar_solver.print_constraint(p.second, tout); tout << "\n";
);
lp::lar_term t;
t.add_monomial(rational(1), m.var());
t.add_monomial(rational(- sign), j);
TRACE("niil_solver",
m_lar_solver.print_term(t, tout);
tout << "\n";
);
ineq in(lp::lconstraint_kind::EQ, t);
m_lemma->push_back(in);
TRACE("niil_solver", print_explanation_and_lemma(tout););
}
// vars here are minimal vars for m.vs
@ -720,11 +710,13 @@ tout << "the monomial is : ";
}
bool large_lemma_for_proportion_case(const mon_eq& m, const svector<unsigned> & mask,
const svector<unsigned> & large, unsigned j) {
const rational j_val = lp::abs(m_lar_solver.get_column_value_rational(j));
TRACE("niil_solver", );
const rational j_val = m_lar_solver.get_column_value_rational(j);
const rational m_val = lp::abs(m_lar_solver.get_column_value_rational(m.m_v));
// since the masked factor is greater than or equal to one
// j_val has to be less than or equal to m_val
if (j_val <= m_val)
int sign = j_val < - m_val? -1: (j_val > m_val)? 1: 0;
if (sign == 0) // abs(j_val) <= m_val which is not a conflict
return false;
expl_set expl;
add_explanation_of_reducing_to_mininal_monomial(m, expl);
@ -734,17 +726,33 @@ tout << "the monomial is : ";
}
m_expl->clear();
m_expl->add(expl);
return false;
if (sign == -1) {
lp::lar_term t; // j >= -m_val or j + m.m_v >= 0
t.add_monomial(rational(1), j);
t.add_monomial(rational(1), m.m_v);
t.m_v = rational(0);
ineq in(lp::lconstraint_kind::GE, t);
m_lemma->push_back(in);
return true;
}
SASSERT(sign == 1);
lp::lar_term t; // j <= m_val or j - m.m_v <= 0
t.add_monomial(rational(1), j);
t.add_monomial(rational(-1), m.m_v);
t.m_v = rational(0);
ineq in(lp::lconstraint_kind::LE, t);
m_lemma->push_back(in);
return true;
}
bool large_basic_lemma_for_mon_proportionality(unsigned i_mon, const svector<unsigned>& large) {
svector<unsigned> mask(large.size(), (unsigned) 0);
svector<unsigned> mask(large.size(), (unsigned) 0); // init mask by zeroes
const auto & m = m_monomials[i_mon];
int sign;
auto vars = reduce_monomial_to_minimal(m.m_vs, sign);
auto v = lp::abs(m_lar_solver.get_column_value_rational(m.m_v));
// We crossing out the "large" variables representing the mask from vars
// We cross out from vars the "large" variables represented by the mask
do {
for (unsigned k = 0; k < mask.size(); k++) {
if (mask[k] == 0) {
@ -754,10 +762,11 @@ tout << "the monomial is : ";
std::sort(vars.begin(), vars.end());
// now the value of vars has to be v*sign
lpvar j;
if (!find_compimenting_monomial(vars, j))
return false;
if (large_lemma_for_proportion_case(m, mask, large, j))
if (find_compimenting_monomial(vars, j) &&
large_lemma_for_proportion_case(m, mask, large, j)) {
TRACE("niil_solver", print_explanation_and_lemma(tout););
return true;
}
} else {
SASSERT(mask[k] == 1);
mask[k] = 0;
@ -765,6 +774,7 @@ tout << "the monomial is : ";
}
}
} while(true);
TRACE("niil_solver", tout << "return false";);
return false; // we exhausted the mask and did not find the compliment monomial
}
@ -807,7 +817,9 @@ tout << "the monomial is : ";
bool generate_basic_lemma(svector<unsigned> & to_refine) {
for (unsigned i : to_refine)
if (generate_basic_lemma_for_mon(i)) {
TRACE("niil_solver", tout << "a lemma generated for monomial " << i << std::endl;);
TRACE("niil_solver", tout << "a lemma generated for monomial " << i << std::endl;
tout << "lemma.size() = " << m_lemma->size() << "\n";
print_explanation_and_lemma(tout); );
return true;
}
return false;
@ -864,6 +876,8 @@ tout << "the monomial is : ";
void init_search() {
map_vars_to_monomials_and_constraints();
init_vars_equivalence();
m_expl->clear();
m_lemma->clear();
}
lbool check(lp::explanation & exp, lemma& l) {