3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-27 05:26:01 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-09-02 14:43:49 -07:00
parent e4b7b7bdf6
commit d83d0a83d6
14 changed files with 274 additions and 59 deletions

View file

@ -3,6 +3,7 @@ z3_add_component(sat_smt
atom2bool_var.cpp
ba_internalize.cpp
ba_solver.cpp
bv_internalize.cpp
xor_solver.cpp
euf_ackerman.cpp
euf_internalize.cpp

View file

@ -360,7 +360,7 @@ namespace sat {
}
if (p.k() == 1 && p.lit() == null_literal) {
literal_vector lits(p.literals());
s().mk_clause(lits.size(), lits.c_ptr(), status::ba(p.learned()));
s().mk_clause(lits.size(), lits.c_ptr(), status::th(p.learned(), get_id()));
IF_VERBOSE(100, display(verbose_stream() << "add clause: " << lits << "\n", p, true););
remove_constraint(p, "implies clause");
}
@ -412,7 +412,7 @@ namespace sat {
if (k == 1 && p.lit() == null_literal) {
literal_vector lits(sz, p.literals().c_ptr());
s().mk_clause(sz, lits.c_ptr(), status::ba(p.learned()));
s().mk_clause(sz, lits.c_ptr(), status::th(p.learned(), get_id()));
remove_constraint(p, "is clause");
return;
}
@ -795,7 +795,7 @@ namespace sat {
else if (k == 1 && p.lit() == null_literal) {
literal_vector lits(sz, p.literals().c_ptr());
s().mk_clause(sz, lits.c_ptr(), status::ba(p.learned()));
s().mk_clause(sz, lits.c_ptr(), status::th(p.learned(), get_id()));
remove_constraint(p, "recompiled to clause");
return;
}
@ -1598,7 +1598,7 @@ namespace sat {
TRACE("ba", tout << m_lemma << "\n";);
if (get_config().m_drat && m_solver) {
s().m_drat.add(m_lemma, sat::status::ba(true));
s().m_drat.add(m_lemma, sat::status::th(true, get_id()));
}
s().m_lemma.reset();
@ -1750,7 +1750,7 @@ namespace sat {
ba_solver::constraint* ba_solver::add_at_least(literal lit, literal_vector const& lits, unsigned k, bool learned) {
if (k == 1 && lit == null_literal) {
literal_vector _lits(lits);
s().mk_clause(_lits.size(), _lits.c_ptr(), status::ba(learned));
s().mk_clause(_lits.size(), _lits.c_ptr(), status::th(learned, get_id()));
return nullptr;
}
if (!learned && clausify(lit, lits.size(), lits.c_ptr(), k)) {
@ -2140,7 +2140,7 @@ namespace sat {
for (literal lit : r)
lits.push_back(~lit);
lits.push_back(l);
s().m_drat.add(lits, sat::status::ba(true));
s().m_drat.add(lits, sat::status::th(true, get_id()));
}
}
@ -2899,7 +2899,7 @@ namespace sat {
if (k == 1 && c.lit() == null_literal) {
literal_vector lits(sz, c.literals().c_ptr());
s().mk_clause(sz, lits.c_ptr(), sat::status::ba(c.learned()));
s().mk_clause(sz, lits.c_ptr(), sat::status::th(c.learned(), get_id()));
remove_constraint(c, "recompiled to clause");
return;
}
@ -2907,27 +2907,27 @@ namespace sat {
if (sz == 0) {
if (c.lit() == null_literal) {
if (k > 0) {
s().mk_clause(0, nullptr, status::ba_asserted());
s().mk_clause(0, nullptr, status::th(false, get_id()));
}
}
else if (k > 0) {
literal lit = ~c.lit();
s().mk_clause(1, &lit, status::ba(c.learned()));
s().mk_clause(1, &lit, status::th(c.learned(), get_id()));
}
else {
literal lit = c.lit();
s().mk_clause(1, &lit, status::ba(c.learned()));
s().mk_clause(1, &lit, status::th(c.learned(), get_id()));
}
remove_constraint(c, "recompiled to clause");
return;
}
if (all_units && sz < k) {
if (c.lit() == null_literal) {
s().mk_clause(0, nullptr, status::ba(c.learned()));
s().mk_clause(0, nullptr, status::th(c.learned(), get_id()));
}
else {
literal lit = ~c.lit();
s().mk_clause(1, &lit, status::ba(c.learned()));
s().mk_clause(1, &lit, status::th(c.learned(), get_id()));
}
remove_constraint(c, "recompiled to clause");
return;

View file

@ -0,0 +1,75 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
bv_internalize.cpp
Abstract:
Internalize utilities for bit-vector solver plugin.
Author:
Nikolaj Bjorner (nbjorner) 2020-08-30
--*/
#include "sat/smt/bv_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
#include "tactic/tactic_exception.h"
namespace bv {
euf::theory_var solver::mk_var(euf::enode* n) {
theory_var r = euf::th_euf_solver::mk_var(n);
m_find.mk_var();
m_bits.push_back(sat::literal_vector());
m_wpos.push_back(0);
m_zero_one_bits.push_back(zero_one_bits());
ctx.attach_th_var(n, this, r);
return r;
}
sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) {
flet<bool> _is_learned(m_is_redundant, learned);
sat::scoped_stack _sc(m_stack);
unsigned sz = m_stack.size();
visit(e);
while (m_stack.size() > sz) {
loop:
if (!m.inc())
throw tactic_exception(m.limit().get_cancel_msg());
sat::eframe & fr = m_stack.back();
expr* e = fr.m_e;
if (visited(e)) {
m_stack.pop_back();
continue;
}
unsigned num = is_app(e) ? to_app(e)->get_num_args() : 0;
while (fr.m_idx < num) {
expr* arg = to_app(e)->get_arg(fr.m_idx);
fr.m_idx++;
visit(arg);
if (!visited(arg))
goto loop;
}
visit(e);
SASSERT(visited(e));
m_stack.pop_back();
}
SASSERT(visited(e));
return sat::null_literal;
}
bool solver::visit(expr* e) {
return false;
}
bool solver::visited(expr* e) {
return false;
}
}

147
src/sat/smt/bv_solver.h Normal file
View file

@ -0,0 +1,147 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
bv_solver.h
Abstract:
Theory plugin for bit-vectors
Author:
Nikolaj Bjorner (nbjorner) 2020-08-30
--*/
#pragma once
#include "sat/smt/sat_th.h"
namespace bv {
class solver : public euf::th_euf_solver {
typedef rational numeral;
typedef euf::theory_var theory_var;
typedef euf::theory_id theory_id;
typedef sat::literal literal;
typedef sat::bool_var bool_var;
typedef sat::literal_vector literal_vector;
typedef svector<euf::theory_var> vars;
typedef std::pair<numeral, unsigned> value_sort_pair;
typedef pair_hash<obj_hash<numeral>, unsigned_hash> value_sort_pair_hash;
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
typedef union_find<solver> th_union_find;
/**
\brief Structure used to store the position of a bitvector variable that
contains the true_literal/false_literal.
Remark: the implementation assumes that bitvector variables containing
complementary bits are never merged. I assert a disequality (not (= x y))
whenever x and y contain complementary bits. However, this is too expensive
when the bit is the true_literal or false_literal. The number of disequalities
is too big. To avoid this problem, each equivalence class has a set
of its true_literal and false_literal bits in the form of svector<zero_one_bit>.
Before merging two classes we just check if the merge is valid by traversing these
vectors.
*/
struct zero_one_bit {
theory_var m_owner; //!< variable that owns the bit: useful for backtracking
unsigned m_idx:31;
unsigned m_is_true:1;
zero_one_bit(theory_var v = euf::null_theory_var, unsigned idx = UINT_MAX, bool is_true = false):
m_owner(v), m_idx(idx), m_is_true(is_true) {}
};
typedef svector<zero_one_bit> zero_one_bits;
class atom {
public:
virtual ~atom() {}
virtual bool is_bit() const = 0;
};
struct var_pos_occ {
theory_var m_var;
unsigned m_idx;
var_pos_occ * m_next;
var_pos_occ(theory_var v = euf::null_theory_var, unsigned idx = 0, var_pos_occ * next = nullptr):m_var(v), m_idx(idx), m_next(next) {}
};
struct bit_atom : public atom {
var_pos_occ * m_occs;
bit_atom():m_occs(nullptr) {}
~bit_atom() override {}
bool is_bit() const override { return true; }
};
struct le_atom : public atom {
literal m_var;
literal m_def;
le_atom(literal v, literal d):m_var(v), m_def(d) {}
~le_atom() override {}
bool is_bit() const override { return false; }
};
euf::solver& ctx;
bv_util m_util;
arith_util m_autil;
// bit_blaster m_bb;
th_union_find m_find;
vector<literal_vector> m_bits; // per var, the bits of a given variable.
ptr_vector<expr> m_bits_expr;
svector<unsigned> m_wpos; // per var, watch position for fixed variable detection.
vector<zero_one_bits> m_zero_one_bits; // per var, see comment in the struct zero_one_bit
// bool_var2atom m_bool_var2atom;
sat::solver* m_solver;
svector<sat::eframe> m_stack;
bool m_is_redundant{ false };
bool visit(expr* e);
bool visited(expr* e);
public:
solver(euf::solver& ctx);
~solver() override {}
void set_solver(sat::solver* s) override { m_solver = s; }
void set_lookahead(sat::lookahead* s) override { }
void init_search() override {}
double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override;
bool is_external(bool_var v) override;
bool propagate(literal l, sat::ext_constraint_idx idx) override;
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r) override;
void asserted(literal l) override;
sat::check_result check() override;
void push() override;
void pop(unsigned n) override;
void pre_simplify() override;
void simplify() override;
void clauses_modifed() override;
lbool get_phase(bool_var v) override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override;
extension* copy(sat::solver* s) override;
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override {}
void gc() override {}
void pop_reinit() override;
bool validate() override;
void init_use_list(sat::ext_use_list& ul) override;
bool is_blocked(literal l, sat::ext_constraint_idx) override;
bool check_model(sat::model const& m) const override;
unsigned max_var(unsigned w) const override;
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override { return false; }
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override { return false; }
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
euf::theory_var mk_var(euf::enode* n) override;
};
}

View file

@ -194,7 +194,7 @@ namespace euf {
}
expr_ref eq(m.mk_eq(a, b), m);
lits.push_back(s.internalize(eq, false, false, true));
s.s().mk_clause(lits, sat::status::euf(true));
s.s().mk_clause(lits, sat::status::th(true, m.get_basic_family_id()));
}
void ackerman::add_eq(expr* a, expr* b, expr* c) {
@ -205,6 +205,6 @@ namespace euf {
lits[0] = s.internalize(eq1, true, false, true);
lits[1] = s.internalize(eq2, true, false, true);
lits[2] = s.internalize(eq3, false, false, true);
s.s().mk_clause(3, lits, sat::status::euf(true));
s.s().mk_clause(3, lits, sat::status::th(true, m.get_basic_family_id()));
}
}

View file

@ -103,8 +103,8 @@ namespace euf {
if (lit.sign()) {
sat::bool_var v = si.add_bool_var(n->get_owner());
sat::literal lit2 = literal(v, false);
s().mk_clause(~lit, lit2, sat::status::euf(false));
s().mk_clause(lit, ~lit2, sat::status::euf(false));
s().mk_clause(~lit, lit2, sat::status::th(false, m.get_basic_family_id()));
s().mk_clause(lit, ~lit2, sat::status::th(false, m.get_basic_family_id()));
lit = lit2;
}
sat::bool_var v = lit.var();
@ -132,7 +132,7 @@ namespace euf {
if (sz <= 1)
return;
sat::status st = sat::status::euf(m_is_redundant);
sat::status st = sat::status::th(m_is_redundant, m.get_basic_family_id());
static const unsigned distinct_max_args = 32;
if (sz <= distinct_max_args) {
sat::literal_vector lits;
@ -175,7 +175,7 @@ namespace euf {
SASSERT(m.is_distinct(e));
static const unsigned distinct_max_args = 32;
unsigned sz = e->get_num_args();
sat::status st = sat::status::euf(m_is_redundant);
sat::status st = sat::status::th(m_is_redundant, m.get_basic_family_id());
if (sz <= 1) {
s().mk_clause(0, nullptr, st);
return;
@ -209,7 +209,7 @@ namespace euf {
void solver::axiomatize_basic(enode* n) {
expr* e = n->get_owner();
sat::status st = sat::status::euf(m_is_redundant);
sat::status st = sat::status::th(m_is_redundant, m.get_basic_family_id());
if (m.is_ite(e)) {
app* a = to_app(e);
expr* c = a->get_arg(0);

View file

@ -49,7 +49,7 @@ namespace euf {
for (literal lit : r) lits.push_back(~lit);
if (l != sat::null_literal)
lits.push_back(l);
s().get_drat().add(lits, sat::status::euf(true));
s().get_drat().add(lits, sat::status::th(true, m.get_basic_family_id()));
}
}

View file

@ -27,6 +27,8 @@ namespace euf {
void solver::updt_params(params_ref const& p) {
m_config.updt_params(p);
m_drat = m_solver && m_solver->get_config().m_drat;
if (m_drat)
m_solver->get_drat().add_theory(m.get_basic_family_id(), symbol("euf"));
}
/**
@ -59,6 +61,8 @@ namespace euf {
pb_util pb(m);
if (pb.get_family_id() == fid) {
ext = alloc(sat::ba_solver, *this, fid);
if (m_drat)
m_solver->get_drat().add_theory(fid, symbol("ba"));
}
if (ext) {
ext->set_solver(m_solver);

View file

@ -219,6 +219,8 @@ namespace euf {
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
void attach_th_var(enode* n, th_solver* th, theory_var v) { m_egraph.add_th_var(n, v, th->get_id()); }
void update_model(model_ref& mdl);
func_decl_ref_vector const& unhandled_functions() { return m_unhandled_functions; }

View file

@ -84,7 +84,6 @@ namespace euf {
*/
virtual bool is_shared(theory_var v) const { return false; }
};
class th_euf_solver : public th_solver {