3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00

refactor weighted theory solver into own file

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-03-29 16:54:12 -07:00
parent 8d23b2b813
commit d67f1f36c4
5 changed files with 511 additions and 490 deletions

338
src/smt/theory_wmaxsat.cpp Normal file
View file

@ -0,0 +1,338 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_wmaxsat.h
Abstract:
Weighted Max-SAT theory plugin.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-05
Notes:
--*/
#include <typeinfo>
#include "smt_context.h"
#include "ast_pp.h"
#include "theory_wmaxsat.h"
namespace smt {
theory_wmaxsat::theory_wmaxsat(ast_manager& m, ref<filter_model_converter>& mc):
theory(m.mk_family_id("weighted_maxsat")),
m_mc(mc),
m_vars(m),
m_fmls(m),
m_min_cost_atom(m),
m_min_cost_atoms(m),
m_zweights(m_mpz),
m_old_values(m_mpz),
m_zcost(m_mpz),
m_zmin_cost(m_mpz),
m_found_optimal(false),
m_propagate(false),
m_normalize(false)
{}
theory_wmaxsat::~theory_wmaxsat() {
m_old_values.reset();
}
/**
\brief return the complement of variables that are currently assigned.
*/
void theory_wmaxsat::get_assignment(svector<bool>& result) {
result.reset();
if (!m_found_optimal) {
for (unsigned i = 0; i < m_vars.size(); ++i) {
result.push_back(false);
}
}
else {
std::sort(m_cost_save.begin(), m_cost_save.end());
for (unsigned i = 0, j = 0; i < m_vars.size(); ++i) {
if (j < m_cost_save.size() && m_cost_save[j] == i) {
result.push_back(false);
++j;
}
else {
result.push_back(true);
}
}
}
TRACE("opt",
tout << "cost save: ";
for (unsigned i = 0; i < m_cost_save.size(); ++i) {
tout << m_cost_save[i] << " ";
}
tout << "\nvars: ";
for (unsigned i = 0; i < m_vars.size(); ++i) {
tout << mk_pp(m_vars[i].get(), get_manager()) << " ";
}
tout << "\nassignment: ";
for (unsigned i = 0; i < result.size(); ++i) {
tout << result[i] << " ";
}
tout << "\n";);
}
void theory_wmaxsat::init_search_eh() {
m_propagate = true;
}
bool_var theory_wmaxsat::assert_weighted(expr* fml, rational const& w) {
context & ctx = get_context();
ast_manager& m = get_manager();
app_ref var(m), wfml(m);
var = m.mk_fresh_const("w", m.mk_bool_sort());
m_mc->insert(var->get_decl());
wfml = m.mk_or(var, fml);
ctx.assert_expr(wfml);
m_rweights.push_back(w);
m_vars.push_back(var);
m_fmls.push_back(fml);
m_assigned.push_back(false);
m_rmin_cost += w;
m_normalize = true;
return register_var(var, true);
}
bool_var theory_wmaxsat::register_var(app* var, bool attach) {
context & ctx = get_context();
ast_manager& m = get_manager();
bool_var bv;
SASSERT(!ctx.e_internalized(var));
enode* x = ctx.mk_enode(var, false, true, true);
if (ctx.b_internalized(var)) {
bv = ctx.get_bool_var(var);
}
else {
bv = ctx.mk_bool_var(var);
}
ctx.set_enode_flag(bv, true);
if (attach) {
ctx.set_var_theory(bv, get_id());
theory_var v = mk_var(x);
ctx.attach_th_var(x, this, v);
m_bool2var.insert(bv, v);
SASSERT(v == m_var2bool.size());
m_var2bool.push_back(bv);
SASSERT(ctx.bool_var2enode(bv));
}
return bv;
}
rational const& theory_wmaxsat::get_min_cost() {
unsynch_mpq_manager mgr;
scoped_mpq q(mgr);
mgr.set(q, m_zmin_cost, m_den.to_mpq().numerator());
m_rmin_cost = rational(q);
return m_rmin_cost;
}
expr* theory_wmaxsat::set_min_cost(rational const& c) {
m_normalize = true;
ast_manager& m = get_manager();
std::ostringstream strm;
strm << "cost <= " << c;
m_rmin_cost = c;
m_min_cost_atom = m.mk_fresh_const(strm.str().c_str(), m.mk_bool_sort());
m_min_cost_atoms.push_back(m_min_cost_atom);
m_mc->insert(m_min_cost_atom->get_decl());
m_min_cost_bv = register_var(m_min_cost_atom, false);
return m_min_cost_atom;
}
void theory_wmaxsat::assign_eh(bool_var v, bool is_true) {
TRACE("opt", tout << "Assign " << mk_pp(m_vars[m_bool2var[v]].get(), get_manager()) << " " << is_true << "\n";);
if (is_true) {
if (m_normalize) normalize();
context& ctx = get_context();
theory_var tv = m_bool2var[v];
if (m_assigned[tv]) return;
scoped_mpz w(m_mpz);
w = m_zweights[tv];
ctx.push_trail(numeral_trail(m_zcost, m_old_values));
ctx.push_trail(push_back_vector<context, svector<theory_var> >(m_costs));
ctx.push_trail(value_trail<context, bool>(m_assigned[tv]));
m_zcost += w;
m_costs.push_back(tv);
m_assigned[tv] = true;
if (m_zcost > m_zmin_cost) {
block();
}
}
}
final_check_status theory_wmaxsat::final_check_eh() {
if (m_normalize) normalize();
return FC_DONE;
}
void theory_wmaxsat::reset_eh() {
theory::reset_eh();
m_vars.reset();
m_fmls.reset();
m_rweights.reset();
m_costs.reset();
m_rmin_cost.reset();
m_rcost.reset();
m_zweights.reset();
m_zcost.reset();
m_zmin_cost.reset();
m_cost_save.reset();
m_bool2var.reset();
m_var2bool.reset();
m_min_cost_atom = 0;
m_min_cost_atoms.reset();
m_propagate = false;
m_found_optimal = false;
m_assigned.reset();
}
void theory_wmaxsat::propagate() {
context& ctx = get_context();
for (unsigned i = 0; m_propagate && i < m_vars.size(); ++i) {
bool_var bv = m_var2bool[i];
lbool asgn = ctx.get_assignment(bv);
if (asgn == l_true) {
assign_eh(bv, true);
}
}
m_propagate = false;
}
bool theory_wmaxsat::is_optimal() const {
return !m_found_optimal || m_zcost < m_zmin_cost;
}
expr_ref theory_wmaxsat::mk_block() {
++m_stats.m_num_blocks;
ast_manager& m = get_manager();
expr_ref_vector disj(m);
compare_cost compare_cost(*this);
svector<theory_var> costs(m_costs);
std::sort(costs.begin(), costs.end(), compare_cost);
scoped_mpz weight(m_mpz);
m_mpz.reset(weight);
for (unsigned i = 0; i < costs.size() && m_mpz.lt(weight, m_zmin_cost); ++i) {
weight += m_zweights[costs[i]];
disj.push_back(m.mk_not(m_vars[costs[i]].get()));
}
if (m_min_cost_atom) {
disj.push_back(m.mk_not(m_min_cost_atom));
}
if (is_optimal()) {
unsynch_mpq_manager mgr;
scoped_mpq q(mgr);
mgr.set(q, m_zmin_cost, m_den.to_mpq().numerator());
rational rw = rational(q);
IF_VERBOSE(1, verbose_stream() << "(wmaxsat with upper bound: " << rw << ")\n";);
m_zmin_cost = weight;
m_found_optimal = true;
m_cost_save.reset();
m_cost_save.append(m_costs);
TRACE("opt",
tout << "costs: ";
for (unsigned i = 0; i < m_costs.size(); ++i) {
tout << mk_pp(get_enode(m_costs[i])->get_owner(), get_manager()) << " ";
}
tout << "\n";
get_context().display(tout);
);
}
expr_ref result(m.mk_or(disj.size(), disj.c_ptr()), m);
TRACE("opt",
tout << result << " weight: " << weight << "\n";
tout << "cost: " << m_zcost << " min-cost: " << m_zmin_cost << "\n";);
return result;
}
expr_ref theory_wmaxsat::mk_optimal_block(svector<bool_var> const& ws, rational const& weight) {
ast_manager& m = get_manager();
expr_ref_vector disj(m);
rational new_w = weight*m_den;
m_zmin_cost = new_w.to_mpq().numerator();
m_cost_save.reset();
for (unsigned i = 0; i < ws.size(); ++i) {
bool_var bv = ws[i];
theory_var v = m_bool2var[bv];
m_cost_save.push_back(v);
disj.push_back(m.mk_not(m_vars[v].get()));
}
if (m_min_cost_atom) {
disj.push_back(m.mk_not(m_min_cost_atom));
}
expr_ref result(m.mk_or(disj.size(), disj.c_ptr()), m);
return result;
}
void theory_wmaxsat::block() {
if (m_vars.empty()) {
return;
}
++m_stats.m_num_blocks;
ast_manager& m = get_manager();
context& ctx = get_context();
literal_vector lits;
compare_cost compare_cost(*this);
svector<theory_var> costs(m_costs);
std::sort(costs.begin(), costs.end(), compare_cost);
scoped_mpz weight(m_mpz);
m_mpz.reset(weight);
for (unsigned i = 0; i < costs.size() && weight < m_zmin_cost; ++i) {
weight += m_zweights[costs[i]];
lits.push_back(~literal(m_var2bool[costs[i]]));
}
if (m_min_cost_atom) {
lits.push_back(~literal(m_min_cost_bv));
}
TRACE("opt",
tout << "block: ";
for (unsigned i = 0; i < lits.size(); ++i) {
expr_ref tmp(m);
ctx.literal2expr(lits[i], tmp);
tout << tmp << " ";
}
tout << "\n";
);
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
}
void theory_wmaxsat::normalize() {
m_den = rational::one();
for (unsigned i = 0; i < m_rweights.size(); ++i) {
m_den = lcm(m_den, denominator(m_rweights[i]));
}
m_den = lcm(m_den, denominator(m_rmin_cost));
SASSERT(!m_den.is_zero());
m_zweights.reset();
for (unsigned i = 0; i < m_rweights.size(); ++i) {
rational r = m_rweights[i]*m_den;
SASSERT(r.is_int());
mpq const& q = r.to_mpq();
m_zweights.push_back(q.numerator());
}
rational r = m_rcost* m_den;
m_zcost = r.to_mpq().numerator();
r = m_rmin_cost * m_den;
m_zmin_cost = r.to_mpq().numerator();
m_normalize = false;
}
};

129
src/smt/theory_wmaxsat.h Normal file
View file

@ -0,0 +1,129 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_wmaxsat.h
Abstract:
Weighted Max-SAT theory plugin.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-05
Notes:
--*/
#include "smt_theory.h"
#include "smt_clause.h"
#include "filter_model_converter.h"
namespace smt {
class theory_wmaxsat : public theory {
struct stats {
unsigned m_num_blocks;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
ref<filter_model_converter> m_mc;
mutable unsynch_mpz_manager m_mpz;
app_ref_vector m_vars; // Auxiliary variables per soft clause
expr_ref_vector m_fmls; // Formulas per soft clause
app_ref m_min_cost_atom; // atom tracking modified lower bound
app_ref_vector m_min_cost_atoms;
bool_var m_min_cost_bv; // max cost Boolean variable
vector<rational> m_rweights; // weights of theory variables.
scoped_mpz_vector m_zweights;
scoped_mpz_vector m_old_values;
svector<theory_var> m_costs; // set of asserted theory variables
svector<theory_var> m_cost_save; // set of asserted theory variables
rational m_rcost; // current sum of asserted costs
rational m_rmin_cost; // current maximal cost assignment.
scoped_mpz m_zcost; // current sum of asserted costs
scoped_mpz m_zmin_cost; // current maximal cost assignment.
bool m_found_optimal;
u_map<theory_var> m_bool2var; // bool_var -> theory_var
svector<bool_var> m_var2bool; // theory_var -> bool_var
bool m_propagate;
bool m_normalize;
rational m_den; // lcm of denominators for rational weights.
svector<bool> m_assigned;
stats m_stats;
public:
theory_wmaxsat(ast_manager& m, ref<filter_model_converter>& mc);
virtual ~theory_wmaxsat();
void get_assignment(svector<bool>& result);
virtual void init_search_eh();
bool_var assert_weighted(expr* fml, rational const& w);
bool_var register_var(app* var, bool attach);
rational const& get_min_cost();
expr* set_min_cost(rational const& c);
class numeral_trail : public trail<context> {
typedef scoped_mpz T;
T & m_value;
scoped_mpz_vector& m_old_values;
public:
numeral_trail(T & value, scoped_mpz_vector& old):
m_value(value),
m_old_values(old) {
old.push_back(value);
}
virtual ~numeral_trail() {
}
virtual void undo(context & ctx) {
m_value = m_old_values.back();
m_old_values.shrink(m_old_values.size() - 1);
}
};
virtual void assign_eh(bool_var v, bool is_true);
virtual final_check_status final_check_eh();
virtual bool use_diseqs() const {
return false;
}
virtual bool build_models() const {
return false;
}
void reset() {
reset_eh();
}
virtual void reset_eh();
virtual theory * mk_fresh(context * new_ctx) { return 0; }
virtual bool internalize_atom(app * atom, bool gate_ctx) { return false; }
virtual bool internalize_term(app * term) { return false; }
virtual void new_eq_eh(theory_var v1, theory_var v2) { }
virtual void new_diseq_eh(theory_var v1, theory_var v2) { }
virtual void collect_statistics(::statistics & st) const {
st.update("wmaxsat num blocks", m_stats.m_num_blocks);
}
virtual bool can_propagate() {
return m_propagate;
}
virtual void propagate();
bool is_optimal() const;
expr_ref mk_block();
expr_ref mk_optimal_block(svector<bool_var> const& ws, rational const& weight);
private:
void block();
void normalize();
class compare_cost {
theory_wmaxsat& m_th;
public:
compare_cost(theory_wmaxsat& t):m_th(t) {}
bool operator() (theory_var v, theory_var w) const {
return m_th.m_mpz.gt(m_th.m_zweights[v], m_th.m_zweights[w]);
}
};
};
};