3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

refactor weighted theory solver into own file

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-03-29 16:54:12 -07:00
parent 8d23b2b813
commit d67f1f36c4
5 changed files with 511 additions and 490 deletions

View file

@ -41,7 +41,7 @@ namespace opt {
m_context(mgr, m_params),
m(mgr),
m_dump_benchmarks(false),
m_fm(m) {
m_fm(alloc(filter_model_converter, m)) {
m_logic = l;
if (m_logic != symbol::null)
m_context.set_logic(m_logic);
@ -231,20 +231,20 @@ namespace opt {
if (typeid(smt::theory_inf_arith) == typeid(opt)) {
smt::theory_inf_arith& th = dynamic_cast<smt::theory_inf_arith&>(opt);
return expr_ref(th.mk_ge(m_fm, v, val), m);
return expr_ref(th.mk_ge(mc(), v, val), m);
}
if (typeid(smt::theory_mi_arith) == typeid(opt)) {
smt::theory_mi_arith& th = dynamic_cast<smt::theory_mi_arith&>(opt);
SASSERT(val.is_finite());
return expr_ref(th.mk_ge(m_fm, v, val.get_numeral()), m);
return expr_ref(th.mk_ge(mc(), v, val.get_numeral()), m);
}
if (typeid(smt::theory_i_arith) == typeid(opt)) {
SASSERT(val.is_finite());
SASSERT(val.get_infinitesimal().is_zero());
smt::theory_i_arith& th = dynamic_cast<smt::theory_i_arith&>(opt);
return expr_ref(th.mk_ge(m_fm, v, val.get_rational()), m);
return expr_ref(th.mk_ge(mc(), v, val.get_rational()), m);
}
// difference logic?

View file

@ -50,7 +50,7 @@ namespace opt {
bool m_dump_benchmarks;
static unsigned m_dump_count;
statistics m_stats;
filter_model_converter m_fm;
ref<filter_model_converter> m_fm;
public:
opt_solver(ast_manager & m, params_ref const & p, symbol const & l);
virtual ~opt_solver();
@ -82,7 +82,8 @@ namespace opt {
inf_eps const & get_objective_value(unsigned obj_index);
expr_ref mk_ge(unsigned obj_index, inf_eps const& val);
filter_model_converter& mc() { return m_fm; }
filter_model_converter& mc() { return *(m_fm.get()); }
ref<filter_model_converter>& mc_ref() { return m_fm; }
static opt_solver& to_opt(solver& s);
bool dump_benchmarks();

View file

@ -21,6 +21,7 @@ Notes:
#include "smt_theory.h"
#include "smt_context.h"
#include "ast_pp.h"
#include "theory_wmaxsat.h"
#include "opt_params.hpp"
#include "pb_decl_plugin.h"
#include "uint_set.h"
@ -36,440 +37,31 @@ Notes:
#include "bvsls_opt_engine.h"
#include "nnf_tactic.h"
namespace smt {
class theory_weighted_maxsat : public theory {
struct stats {
unsigned m_num_blocks;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
opt::opt_solver& s;
mutable unsynch_mpz_manager m_mpz;
app_ref_vector m_vars; // Auxiliary variables per soft clause
expr_ref_vector m_fmls; // Formulas per soft clause
app_ref m_min_cost_atom; // atom tracking modified lower bound
app_ref_vector m_min_cost_atoms;
bool_var m_min_cost_bv; // max cost Boolean variable
vector<rational> m_rweights; // weights of theory variables.
scoped_mpz_vector m_zweights;
scoped_mpz_vector m_old_values;
svector<theory_var> m_costs; // set of asserted theory variables
svector<theory_var> m_cost_save; // set of asserted theory variables
rational m_rcost; // current sum of asserted costs
rational m_rmin_cost; // current maximal cost assignment.
scoped_mpz m_zcost; // current sum of asserted costs
scoped_mpz m_zmin_cost; // current maximal cost assignment.
bool m_found_optimal;
u_map<theory_var> m_bool2var; // bool_var -> theory_var
svector<bool_var> m_var2bool; // theory_var -> bool_var
bool m_propagate;
bool m_normalize;
rational m_den; // lcm of denominators for rational weights.
svector<bool> m_assigned;
stats m_stats;
public:
theory_weighted_maxsat(ast_manager& m, opt::opt_solver& s):
theory(m.mk_family_id("weighted_maxsat")),
s(s),
m_vars(m),
m_fmls(m),
m_min_cost_atom(m),
m_min_cost_atoms(m),
m_zweights(m_mpz),
m_old_values(m_mpz),
m_zcost(m_mpz),
m_zmin_cost(m_mpz),
m_found_optimal(false),
m_propagate(false),
m_normalize(false)
{}
virtual ~theory_weighted_maxsat() {
m_old_values.reset();
}
/**
\brief return the complement of variables that are currently assigned.
*/
void get_assignment(svector<bool>& result) {
result.reset();
if (!m_found_optimal) {
for (unsigned i = 0; i < m_vars.size(); ++i) {
result.push_back(false);
}
}
else {
std::sort(m_cost_save.begin(), m_cost_save.end());
for (unsigned i = 0, j = 0; i < m_vars.size(); ++i) {
if (j < m_cost_save.size() && m_cost_save[j] == i) {
result.push_back(false);
++j;
}
else {
result.push_back(true);
}
}
}
TRACE("opt",
tout << "cost save: ";
for (unsigned i = 0; i < m_cost_save.size(); ++i) {
tout << m_cost_save[i] << " ";
}
tout << "\nvars: ";
for (unsigned i = 0; i < m_vars.size(); ++i) {
tout << mk_pp(m_vars[i].get(), get_manager()) << " ";
}
tout << "\nassignment: ";
for (unsigned i = 0; i < result.size(); ++i) {
tout << result[i] << " ";
}
tout << "\n";);
}
virtual void init_search_eh() {
m_propagate = true;
}
bool_var assert_weighted(expr* fml, rational const& w) {
context & ctx = get_context();
ast_manager& m = get_manager();
app_ref var(m), wfml(m);
var = m.mk_fresh_const("w", m.mk_bool_sort());
s.mc().insert(var->get_decl());
wfml = m.mk_or(var, fml);
ctx.assert_expr(wfml);
m_rweights.push_back(w);
m_vars.push_back(var);
m_fmls.push_back(fml);
m_assigned.push_back(false);
m_rmin_cost += w;
m_normalize = true;
return register_var(var, true);
}
bool_var register_var(app* var, bool attach) {
context & ctx = get_context();
ast_manager& m = get_manager();
bool_var bv;
SASSERT(!ctx.e_internalized(var));
enode* x = ctx.mk_enode(var, false, true, true);
if (ctx.b_internalized(var)) {
bv = ctx.get_bool_var(var);
}
else {
bv = ctx.mk_bool_var(var);
}
ctx.set_enode_flag(bv, true);
if (attach) {
ctx.set_var_theory(bv, get_id());
theory_var v = mk_var(x);
ctx.attach_th_var(x, this, v);
m_bool2var.insert(bv, v);
SASSERT(v == m_var2bool.size());
m_var2bool.push_back(bv);
SASSERT(ctx.bool_var2enode(bv));
}
return bv;
}
rational const& get_min_cost() {
unsynch_mpq_manager mgr;
scoped_mpq q(mgr);
mgr.set(q, m_zmin_cost, m_den.to_mpq().numerator());
m_rmin_cost = rational(q);
return m_rmin_cost;
}
expr* set_min_cost(rational const& c) {
m_normalize = true;
ast_manager& m = get_manager();
std::ostringstream strm;
strm << "cost <= " << c;
m_rmin_cost = c;
m_min_cost_atom = m.mk_fresh_const(strm.str().c_str(), m.mk_bool_sort());
m_min_cost_atoms.push_back(m_min_cost_atom);
s.mc().insert(m_min_cost_atom->get_decl());
m_min_cost_bv = register_var(m_min_cost_atom, false);
return m_min_cost_atom;
}
// scoped_mpz leaks.
class numeral_trail : public trail<context> {
typedef scoped_mpz T;
T & m_value;
scoped_mpz_vector& m_old_values;
// numeral_trail(numeral_trail const& nt);
public:
numeral_trail(T & value, scoped_mpz_vector& old):
m_value(value),
m_old_values(old) {
old.push_back(value);
}
virtual ~numeral_trail() {
}
virtual void undo(context & ctx) {
m_value = m_old_values.back();
m_old_values.shrink(m_old_values.size() - 1);
}
};
virtual void assign_eh(bool_var v, bool is_true) {
TRACE("opt", tout << "Assign " << mk_pp(m_vars[m_bool2var[v]].get(), get_manager()) << " " << is_true << "\n";);
if (is_true) {
if (m_normalize) normalize();
context& ctx = get_context();
theory_var tv = m_bool2var[v];
if (m_assigned[tv]) return;
scoped_mpz w(m_mpz);
w = m_zweights[tv];
ctx.push_trail(numeral_trail(m_zcost, m_old_values));
ctx.push_trail(push_back_vector<context, svector<theory_var> >(m_costs));
ctx.push_trail(value_trail<context, bool>(m_assigned[tv]));
m_zcost += w;
m_costs.push_back(tv);
m_assigned[tv] = true;
if (m_zcost > m_zmin_cost) {
block();
}
}
}
virtual final_check_status final_check_eh() {
if (m_normalize) normalize();
return FC_DONE;
}
virtual bool use_diseqs() const {
return false;
}
virtual bool build_models() const {
return false;
}
void reset() {
reset_eh();
}
virtual void reset_eh() {
theory::reset_eh();
m_vars.reset();
m_fmls.reset();
m_rweights.reset();
m_costs.reset();
m_rmin_cost.reset();
m_rcost.reset();
m_zweights.reset();
m_zcost.reset();
m_zmin_cost.reset();
m_cost_save.reset();
m_bool2var.reset();
m_var2bool.reset();
m_min_cost_atom = 0;
m_min_cost_atoms.reset();
m_propagate = false;
m_found_optimal = false;
m_assigned.reset();
}
virtual theory * mk_fresh(context * new_ctx) { return 0; }
virtual bool internalize_atom(app * atom, bool gate_ctx) { return false; }
virtual bool internalize_term(app * term) { return false; }
virtual void new_eq_eh(theory_var v1, theory_var v2) { }
virtual void new_diseq_eh(theory_var v1, theory_var v2) { }
virtual void collect_statistics(::statistics & st) const {
st.update("wmaxsat num blocks", m_stats.m_num_blocks);
}
virtual bool can_propagate() {
return m_propagate;
}
virtual void propagate() {
context& ctx = get_context();
for (unsigned i = 0; m_propagate && i < m_vars.size(); ++i) {
bool_var bv = m_var2bool[i];
lbool asgn = ctx.get_assignment(bv);
if (asgn == l_true) {
assign_eh(bv, true);
}
}
m_propagate = false;
}
bool is_optimal() const {
return !m_found_optimal || m_zcost < m_zmin_cost;
}
expr_ref mk_block() {
++m_stats.m_num_blocks;
ast_manager& m = get_manager();
expr_ref_vector disj(m);
compare_cost compare_cost(*this);
svector<theory_var> costs(m_costs);
std::sort(costs.begin(), costs.end(), compare_cost);
scoped_mpz weight(m_mpz);
m_mpz.reset(weight);
for (unsigned i = 0; i < costs.size() && m_mpz.lt(weight, m_zmin_cost); ++i) {
weight += m_zweights[costs[i]];
disj.push_back(m.mk_not(m_vars[costs[i]].get()));
}
if (m_min_cost_atom) {
disj.push_back(m.mk_not(m_min_cost_atom));
}
if (is_optimal()) {
unsynch_mpq_manager mgr;
scoped_mpq q(mgr);
mgr.set(q, m_zmin_cost, m_den.to_mpq().numerator());
rational rw = rational(q);
IF_VERBOSE(1, verbose_stream() << "(wmaxsat with upper bound: " << rw << ")\n";);
m_zmin_cost = weight;
m_found_optimal = true;
m_cost_save.reset();
m_cost_save.append(m_costs);
TRACE("opt",
tout << "costs: ";
for (unsigned i = 0; i < m_costs.size(); ++i) {
tout << mk_pp(get_enode(m_costs[i])->get_owner(), get_manager()) << " ";
}
tout << "\n";
get_context().display(tout);
);
}
expr_ref result(m.mk_or(disj.size(), disj.c_ptr()), m);
TRACE("opt",
tout << result << " weight: " << weight << "\n";
tout << "cost: " << m_zcost << " min-cost: " << m_zmin_cost << "\n";);
return result;
}
expr_ref mk_optimal_block(svector<bool_var> const& ws, rational const& weight) {
ast_manager& m = get_manager();
expr_ref_vector disj(m);
rational new_w = weight*m_den;
m_zmin_cost = new_w.to_mpq().numerator();
m_cost_save.reset();
for (unsigned i = 0; i < ws.size(); ++i) {
bool_var bv = ws[i];
theory_var v = m_bool2var[bv];
m_cost_save.push_back(v);
disj.push_back(m.mk_not(m_vars[v].get()));
}
if (m_min_cost_atom) {
disj.push_back(m.mk_not(m_min_cost_atom));
}
expr_ref result(m.mk_or(disj.size(), disj.c_ptr()), m);
return result;
}
private:
void block() {
if (m_vars.empty()) {
return;
}
++m_stats.m_num_blocks;
ast_manager& m = get_manager();
context& ctx = get_context();
literal_vector lits;
compare_cost compare_cost(*this);
svector<theory_var> costs(m_costs);
std::sort(costs.begin(), costs.end(), compare_cost);
scoped_mpz weight(m_mpz);
m_mpz.reset(weight);
for (unsigned i = 0; i < costs.size() && weight < m_zmin_cost; ++i) {
weight += m_zweights[costs[i]];
lits.push_back(~literal(m_var2bool[costs[i]]));
}
if (m_min_cost_atom) {
lits.push_back(~literal(m_min_cost_bv));
}
TRACE("opt",
tout << "block: ";
for (unsigned i = 0; i < lits.size(); ++i) {
expr_ref tmp(m);
ctx.literal2expr(lits[i], tmp);
tout << tmp << " ";
}
tout << "\n";
);
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
}
void normalize() {
m_den = rational::one();
for (unsigned i = 0; i < m_rweights.size(); ++i) {
m_den = lcm(m_den, denominator(m_rweights[i]));
}
m_den = lcm(m_den, denominator(m_rmin_cost));
SASSERT(!m_den.is_zero());
m_zweights.reset();
for (unsigned i = 0; i < m_rweights.size(); ++i) {
rational r = m_rweights[i]*m_den;
SASSERT(r.is_int());
mpq const& q = r.to_mpq();
m_zweights.push_back(q.numerator());
}
rational r = m_rcost* m_den;
m_zcost = r.to_mpq().numerator();
r = m_rmin_cost * m_den;
m_zmin_cost = r.to_mpq().numerator();
m_normalize = false;
}
class compare_cost {
theory_weighted_maxsat& m_th;
public:
compare_cost(theory_weighted_maxsat& t):m_th(t) {}
bool operator() (theory_var v, theory_var w) const {
return m_th.m_mpz.gt(m_th.m_zweights[v], m_th.m_zweights[w]);
}
};
};
}
namespace opt {
struct wmaxsmt::imp {
ast_manager& m;
opt_solver& s;
expr_ref_vector m_soft;
svector<bool> m_assignment;
vector<rational> m_weights;
rational m_upper;
rational m_lower;
model_ref m_model;
symbol m_engine;
bool m_print_all_models;
opt_solver& s; // solver state that contains hard constraints
expr_ref_vector m_soft; // set of soft constraints
vector<rational> m_weights; // their weights
svector<bool> m_assignment; // truth assignment to soft constrsaints
rational m_upper; // current upper bound for wmaxsmt
rational m_lower; // current lower bound for wmaxsmt
model_ref m_model; // current best model is stored here.
symbol m_engine; // config
bool m_print_all_models; // config
params_ref m_params; // config
volatile bool m_cancel;
params_ref m_params;
opt_solver m_solver;
ref<solver> m_sat_solver;
scoped_ptr<imp> m_imp;
smt::pb_sls m_sls;
bvsls_opt_engine m_bvsls;
opt_solver m_solver; // used for recursively calling maxsmt
scoped_ptr<imp> m_imp; //
ref<solver> m_sat_solver; // used for maxsmt over QF_BV
smt::pb_sls m_sls; // used for sls improvement of assignment
bvsls_opt_engine m_bvsls; // used for bvsls improvements of assignment
imp(ast_manager& m, opt_solver& s, expr_ref_vector const& soft_constraints, vector<rational> const& weights):
m(m), s(s), m_soft(soft_constraints), m_weights(weights), m_print_all_models(false), m_cancel(false),
m(m), s(s), m_soft(soft_constraints),
m_weights(weights), m_print_all_models(false), m_cancel(false),
m_solver(m, m_params, symbol("bound")),
m_sls(m),
m_bvsls(m, m_params)
@ -490,25 +82,25 @@ namespace opt {
m_upper.reset();
}
smt::theory_weighted_maxsat* get_theory() const {
smt::theory_wmaxsat* get_theory() const {
smt::context& ctx = s.get_context();
smt::theory_id th_id = m.get_family_id("weighted_maxsat");
smt::theory* th = ctx.get_theory(th_id);
if (th) {
return dynamic_cast<smt::theory_weighted_maxsat*>(th);
return dynamic_cast<smt::theory_wmaxsat*>(th);
}
else {
return 0;
}
}
smt::theory_weighted_maxsat* ensure_theory() {
smt::theory_weighted_maxsat* wth = get_theory();
smt::theory_wmaxsat* ensure_theory() {
smt::theory_wmaxsat* wth = get_theory();
if (wth) {
wth->reset();
}
else {
wth = alloc(smt::theory_weighted_maxsat, m, s);
wth = alloc(smt::theory_wmaxsat, m, s.mc_ref());
s.get_context().register_plugin(wth);
}
return wth;
@ -566,6 +158,7 @@ namespace opt {
m_sat_solver->set_cancel(f);
}
m_sls.set_cancel(f);
m_bvsls.set_cancel(f);
m_cancel = f;
m_solver.set_cancel(f);
m_imp->m_cancel = f;
@ -581,7 +174,7 @@ namespace opt {
class scoped_ensure_theory {
smt::theory_weighted_maxsat* m_wth;
smt::theory_wmaxsat* m_wth;
public:
scoped_ensure_theory(imp& i) {
m_wth = i.ensure_theory();
@ -589,7 +182,7 @@ namespace opt {
~scoped_ensure_theory() {
m_wth->reset();
}
smt::theory_weighted_maxsat& operator()() { return *m_wth; }
smt::theory_wmaxsat& operator()() { return *m_wth; }
};
lbool incremental_solve() {
@ -809,7 +402,7 @@ namespace opt {
lbool conditional_solve(expr* cond) {
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.conditional solve)\n";);
smt::theory_weighted_maxsat& wth = *get_theory();
smt::theory_wmaxsat& wth = *get_theory();
bool was_sat = false;
lbool is_sat = l_true;
while (l_true == is_sat) {
@ -1533,54 +1126,14 @@ namespace opt {
};
#if 0
// The case m_lower = 0, m_upper = 1 is not handled correctly.
// cost becomes 0
lbool bisection_solve() {
IF_VERBOSE(3, verbose_stream() << "(bisection solve)\n";);
TRACE("opt", tout << "weighted maxsat\n";);
scoped_ensure_theory wth(*this);
solver::scoped_push _s(s);
lbool is_sat = l_true;
bool was_sat = false;
expr_ref_vector bounds(m);
for (unsigned i = 0; i < m_soft.size(); ++i) {
wth().assert_weighted(m_soft[i].get(), m_weights[i]);
}
solver::scoped_push __s(s);
m_lower = rational::zero();
m_upper = wth().get_min_cost();
while (m_lower < m_upper && is_sat != l_undef) {
rational cost = div(m_upper + m_lower, rational(2));
bounds.push_back(wth().set_min_cost(cost));
is_sat = s.check_sat_core(1,bounds.c_ptr()+bounds.size()-1);
if (m_cancel) {
is_sat = l_undef;
}
switch(is_sat) {
case l_true: {
if (wth().is_optimal()) {
updt_model(s);
}
expr_ref fml = wth().mk_block();
s.assert_expr(fml);
m_upper = wth().get_min_cost();
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.bwmax max cost: " << m_upper << ")\n";);
break;
}
case l_false: {
m_lower = cost;
IF_VERBOSE(1, verbose_stream() << "(wmaxsat.bwmax min cost: " << m_lower << ")\n";);
break;
}
case l_undef:
break;
}
}
if (was_sat) {
is_sat = l_true;
}
return is_sat;
}
class base_solver {
opt_solver& s;
public:
base_solver(opt_solver& s): s(s) {}
virutal void assert_soft(expr* e, rational const& w) = 0;
virtual void get_model(model_ref& m) = 0;
virtual void block() = 0;
virtual lbool check() = 0;
virtual void get_core(ptr_vector<expr>& core) { UNREACHABLE(); }
};
#endif