3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00

Partial cleanup of util/lp/*

This commit is contained in:
Christoph M. Wintersteiger 2017-09-17 16:00:06 +01:00
parent 00651f8f21
commit d61b722b68
109 changed files with 3503 additions and 2023 deletions

View file

@ -1,9 +1,24 @@
/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/lp_dual_simplex.h"
namespace lean{
namespace lp{
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
switch (m_core_solver->get_status()) {
@ -15,7 +30,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_a
}
break;
case DUAL_UNBOUNDED:
lean_unreachable();
SASSERT(false);
case ITERATIONS_EXHAUSTED:
this->m_status = ITERATIONS_EXHAUSTED;
break;
@ -26,12 +41,12 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_a
this->m_status = FLOATING_POINT_ERROR;
break;
default:
lean_unreachable();
SASSERT(false);
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
lean_assert(j >= this->number_of_core_structurals());
SASSERT(j >= this->number_of_core_structurals());
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
case column_type::low_bound:
m_low_bounds[j] = numeric_traits<T>::zero();
@ -44,7 +59,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_st
m_can_enter_basis[j] = false;
break;
default:
lean_unreachable();
SASSERT(false);
}
}
@ -58,7 +73,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for
break;
case column_type::fixed:
case column_type::upper_bound:
lean_unreachable();
SASSERT(false);
case column_type::boxed:
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
m_low_bounds[j] = numeric_traits<T>::zero();
@ -70,7 +85,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for
m_column_types_of_core_solver[j] = column_type::free_column;
break;
default:
lean_unreachable();
SASSERT(false);
}
// T cost_was = this->m_costs[j];
this->set_scaled_cost(j);
@ -115,7 +130,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2()
this->m_status = FLOATING_POINT_ERROR;
break;
default:
lean_unreachable();
SASSERT(false);
}
this->m_second_stage_iterations = m_core_solver->total_iterations();
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
@ -129,7 +144,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros(
}
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
lean_assert(m_core_solver == nullptr);
SASSERT(m_core_solver == nullptr);
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
if (this->m_settings.get_message_ostream() != nullptr)
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
@ -177,7 +192,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_s
}
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
lean_assert(j < this->m_A->column_count());
SASSERT(j < this->m_A->column_count());
if (j >= this->number_of_core_structurals()) {
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
}
@ -186,12 +201,12 @@ template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
// see 4.7 in the dissertation of Achim Koberstein
lean_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
SASSERT(this->m_core_solver_columns_to_external_columns.find(j) !=
this->m_core_solver_columns_to_external_columns.end());
T free_bound = T(1e4); // see 4.8
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
lean_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
SASSERT(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
switch (ci->get_column_type()) {
case column_type::upper_bound: {
@ -221,14 +236,14 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_
this->m_upper_bounds[j] = this->m_low_bounds[j] = numeric_traits<T>::zero(); // is it needed?
break;
default:
lean_unreachable();
SASSERT(false);
}
m_column_types_of_core_solver[j] = column_type::boxed;
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
this->m_costs[j] = 0;
lean_assert(get_column_type(j) != column_type::upper_bound);
SASSERT(get_column_type(j) != column_type::upper_bound);
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::low_bound))) {
m_column_types_of_core_solver[j] = column_type::boxed;
this->m_low_bounds[j] = numeric_traits<T>::zero();
@ -254,7 +269,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bou
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
unsigned & slack_var,
unsigned & artificial) {
lean_assert(row < this->row_count());
SASSERT(row < this->row_count());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
// we need to bring the program to the form Ax = b
T rs = this->m_b[row];