3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-04 16:44:07 +00:00

wip: add recursive functions

This commit is contained in:
Simon Cruanes 2017-11-07 15:57:27 +01:00
parent fba22d2fac
commit d5e134dd94
19 changed files with 1362 additions and 4 deletions

View file

@ -83,3 +83,11 @@ This addition to Z3 would bring many benefits compared to current alternatives (
recursive functions
- makes `define-funs-rec` a first-class citizen of the language, usable to model user-defined theories or to analyze functional
programs directly
## Optimizations
- maybe `C_f_i` literals should never be decided on
(they can always be propagated).
Even stronger: they should not be part of conflicts?
(i.e. tune conflict resolution to always resolve
these literals away, disregarding their level)

View file

@ -36,6 +36,7 @@ z3_add_component(ast
occurs.cpp
pb_decl_plugin.cpp
pp.cpp
recfun_decl_plugin.cpp
reg_decl_plugins.cpp
seq_decl_plugin.cpp
shared_occs.cpp

View file

@ -32,5 +32,27 @@ struct mk_pp : public mk_ismt2_pp {
}
};
//<! print vector of ASTs
class mk_pp_vec {
ast_manager & m;
ast_ref_vector vec;
public:
mk_pp_vec(unsigned len, ast ** vec0, ast_manager & m) : m(m), vec(m) {
for (unsigned i=0; i<len; ++i) vec.push_back(vec0[i]);
}
void display(std::ostream & out) const {
bool first = true;
for (ast* e : vec) {
if (first) { first = false; } else { out << " "; }
out << mk_pp(e, m);
}
}
};
inline std::ostream& operator<<(std::ostream & out, mk_pp_vec const & pp) {
pp.display(out);
return out;
}
#endif

View file

@ -0,0 +1,469 @@
/*++
Module Name:
recfun_decl_plugin.cpp
Abstract:
Declaration and definition of (potentially recursive) functions
Author:
Simon Cruanes 2017-11
Revision History:
--*/
#include <functional>
#include <sstream>
#include "ast/expr_functors.h"
#include "ast/expr_substitution.h"
#include "ast/recfun_decl_plugin.h"
#include "ast/ast_pp.h"
#include "util/scoped_ptr_vector.h"
#define DEBUG(x) do { auto& out = std::cout; out << "recfun: "; x; out << '\n' << std::flush; } while(0)
#define VALIDATE_PARAM(m, _pred_) if (!(_pred_)) m.raise_exception("invalid parameter to recfun " #_pred_);
namespace recfun {
case_pred::case_pred(ast_manager & m, family_id fid, std::string const & s, sort_ref_vector const & domain)
: m_name(), m_name_buf(s), m_domain(domain), m_decl(m)
{
m_name = symbol(m_name_buf.c_str());
func_decl_info info(fid, OP_FUN_CASE_PRED);
m_decl = m.mk_func_decl(m_name, domain.size(), domain.c_ptr(), m.mk_bool_sort(), info);
}
case_def::case_def(ast_manager &m,
family_id fid,
def * d,
std::string & name,
sort_ref_vector const & arg_sorts,
unsigned num_guards, expr ** guards, expr* rhs)
: m_pred(m, fid, name, arg_sorts), m_guards(m), m_rhs(expr_ref(rhs,m)), m_def(d) {
for (unsigned i=0; i<num_guards; ++i) {
m_guards.push_back(expr_ref(guards[i], m));
}
}
def::def(ast_manager &m, family_id fid, symbol const & s,
unsigned arity, sort *const * domain, sort* range)
: m_manager(m), m_name(s),
m_domain(m), m_range(range, m), m_vars(m), m_cases(),
m_decl(m), m_fid(fid), m_macro(false)
{
for (unsigned i=0; i < arity; ++i)
m_domain.push_back(domain[i]);
SASSERT(arity == get_arity());
func_decl_info info(fid, OP_FUN_DEFINED);
m_decl = m.mk_func_decl(m_name, arity, domain, range, info);
}
// does `e` contain any `ite` construct?
bool def::contains_ite(expr * e) {
struct ite_find_p : public i_expr_pred {
ast_manager & m;
ite_find_p(ast_manager & m) : m(m) {}
virtual bool operator()(expr * e) { return m.is_ite(e); }
};
ite_find_p p(m());
check_pred cp(p, m());
return cp(e);
}
/*
* compilation of functions to a list of cases.
*
* We use a backtracking algorithm in a relatively functional style,
* where the multiple states (corresponding to alternatives) are stored in
* a region, and deallocated at the end
*/
// immutable list of choices of `ite` terms (mapping each one's condition to true/false)
struct choice_lst {
app * ite;
bool sign;
choice_lst const * next; // or null for the last one
choice_lst(app * ite, bool sign, choice_lst const * next) : ite(ite), sign(sign), next(next) {}
};
struct ite_lst {
app * ite; // invariant: `is_ite(e)`
ite_lst const * next;
ite_lst(app * ite, ite_lst const * next) : ite(ite), next(next) {}
};
// immutable stack of expressions to unfold
struct unfold_lst {
expr * e;
unfold_lst const * next; // or null for last one
};
// main state for one branch of the search tree.
struct branch {
choice_lst const * path; // choices made so far
ite_lst const * to_split; // `ite` terms to make a choice on
unfold_lst const * to_unfold; // terms yet to unfold
branch(choice_lst const * path, ite_lst const * to_split, unfold_lst const * to_unfold) : path(path), to_split(to_split), to_unfold(to_unfold) {}
branch(branch const & from) : path(from.path), to_split(from.to_split), to_unfold(from.to_unfold) {}
};
// state for computing cases from the RHS of a functions' definition
class case_state {
region m_reg;
ast_manager & m_manager;
vector<branch> m_branches;
public:
case_state(ast_manager & m) : m_reg(), m_manager(m), m_branches() {}
bool empty() const { return m_branches.empty(); }
ast_manager & m() const { return m_manager; }
region & reg() { return m_reg; }
branch pop_branch() {
branch res = m_branches.back();
m_branches.pop_back();
return res;
}
void push_branch(branch const & b) { m_branches.push_back(b); }
unfold_lst const * cons_unfold(expr * e, unfold_lst const * next) {
return new (reg()) unfold_lst{e, next};
}
unfold_lst const * cons_unfold(expr * e1, expr * e2, unfold_lst const * next) {
return cons_unfold(e1, cons_unfold(e2, next));
}
unfold_lst const * mk_unfold_lst(expr * e) {
return cons_unfold(e, nullptr);
}
ite_lst const * cons_ite(app * ite, ite_lst const * next) {
return new (reg()) ite_lst{ite, next};
}
choice_lst const * cons_choice(app * ite, bool sign, choice_lst const * next) {
return new (reg()) choice_lst{ite, sign, next};
}
};
//<! build a substitution and a list of conditions from a path
void convert_path(ast_manager & m,
choice_lst const * choices,
expr_ref_vector & conditions /* out */,
expr_substitution & subst /* out */)
{
for (; choices != nullptr; choices = choices->next) {
app * ite = choices->ite;
SASSERT(m.is_ite(ite));
// condition to add to the guard
expr * cond0 = ite->get_arg(0);
conditions.push_back(choices->sign ? cond0 : m.mk_not(cond0));
// binding to add to the substitution
subst.insert(ite, choices->sign ? ite->get_arg(1) : ite->get_arg(2));
}
}
// substitute `subst` in `e`
expr_ref replace_subst(th_rewriter & th_rw, ast_manager & m,
expr_substitution & subst, expr * e) {
th_rw.reset();
th_rw.set_substitution(&subst);
expr_ref res(m);
th_rw(e, res);
return res;
}
void def::add_case(std::string & name, unsigned n_conditions, expr ** conditions, expr * rhs, bool is_imm) {
case_def c(m(), m_fid, this, name, get_domain(), n_conditions, conditions, rhs);
c.set_is_immediate(is_imm);
TRACE("recfun", tout << "add_case " << name << " " << mk_pp(rhs, m())
<< " :is_imm " << is_imm
<< " :guards " << mk_pp_vec(n_conditions, (ast**)conditions, m()););
DEBUG(out << "add_case " << name << " " << mk_pp(rhs, m())
<< " :is_imm " << is_imm
<< " :guards " << mk_pp_vec(n_conditions, (ast**)conditions, m()));
m_cases.push_back(c);
}
// Compute a set of cases, given the RHS
void def::compute_cases(is_immediate_pred & is_i, th_rewriter & th_rw,
unsigned n_vars, var *const * vars, expr* rhs0)
{
if (m_cases.size() != 0) {
TRACE("recfun", tout << "bug: cases for " << m_name << " has cases already";);
UNREACHABLE();
}
SASSERT(n_vars = m_domain.size());
DEBUG(out << "compute cases " << mk_pp(rhs0, m()));
unsigned case_idx = 0;
std::string name;
name.append("case_");
name.append(m_name.bare_str());
name.append("_");
for (unsigned i=0; i<n_vars; ++i)
m_vars.push_back(vars[i]);
#if 0
// simplify `rhs`
expr_ref simplified_rhs(m());
expr* rhs;
th_rw.reset();
th_rw(rhs0, simplified_rhs);
rhs = simplified_rhs.get();
DEBUG(out << "simplified into " << mk_pp(rhs, m()));
#else
expr* rhs = rhs0;
#endif
// is the function a macro (unconditional body)?
m_macro = n_vars == 0 || !contains_ite(rhs);
if (m_macro) {
// constant function or trivial control flow, only one (dummy) case
name.append("dummy");
add_case(name, 0, 0, rhs);
return;
}
// analyze control flow of `rhs`, accumulating guards and
// rebuilding a `ite`-free RHS on the fly for each path in `rhs`.
// Each such `ite`-free term is converted into a case_def and added to definition.
case_state st(m());
{
branch b(nullptr, nullptr, st.mk_unfold_lst(rhs));
st.push_branch(b);
}
while (! st.empty()) {
DEBUG(out << "main loop iter");
branch b = st.pop_branch();
// first: unfold expressions, stopping when we meet subterms that are `ite`
while (b.to_unfold != nullptr) {
ptr_vector<expr> stack;
stack.push_back(b.to_unfold->e);
b.to_unfold = b.to_unfold->next;
while (! stack.empty()) {
expr * e = stack.back();
stack.pop_back();
if (m().is_ite(e)) {
// need to do a case split on `e`, forking the search space
b.to_split = st.cons_ite(to_app(e), b.to_split);
} else if (is_app(e)) {
// explore arguments
app * a = to_app(e);
for (unsigned i=0; i < a->get_num_args(); ++i)
stack.push_back(a->get_arg(i));
}
}
}
if (b.to_split != nullptr) {
// split one `ite`, which will lead to distinct (sets of) cases
app * ite = b.to_split->ite;
SASSERT(m().is_ite(ite));
/* explore both positive choice and negative choice.
* each contains a longer path, with `ite` mapping to `true` (resp. `false),
* and must unfold the `then` (resp. `else`) branch.
* We must also unfold the test itself, for it could contain
* tests.
*/
branch b_pos(st.cons_choice(ite, true, b.path),
b.to_split->next,
st.cons_unfold(ite->get_arg(0), ite->get_arg(1), b.to_unfold));
branch b_neg(st.cons_choice(ite, false, b.path),
b.to_split->next,
st.cons_unfold(ite->get_arg(0), ite->get_arg(2), b.to_unfold));
st.push_branch(b_neg);
st.push_branch(b_pos);
}
else {
// leaf of the search tree
expr_ref_vector conditions_raw(m());
expr_substitution subst(m());
convert_path(m(), b.path, conditions_raw, subst);
// substitute, to get rid of `ite` terms
expr_ref case_rhs = replace_subst(th_rw, m(), subst, rhs);
expr_ref_vector conditions(m());
for (expr * g : conditions_raw) {
expr_ref g_subst(replace_subst(th_rw, m(), subst, g), m());
conditions.push_back(g_subst);
}
unsigned old_name_len = name.size();
{ // TODO: optimize? this does many copies
std::ostringstream sout;
sout << ((unsigned long) case_idx);
name.append(sout.str());
}
case_idx ++;
// yield new case
bool is_imm = is_i(case_rhs);
add_case(name, conditions.size(), conditions.c_ptr(), case_rhs, is_imm);
name.resize(old_name_len);
}
}
TRACE("recfun", tout << "done analysing " << get_name(););
}
/*
* Main manager for defined functions
*/
util::util(ast_manager & m, family_id id)
: m_manager(m), m_family_id(id), m_th_rw(m), m_plugin(0) {
m_plugin = dynamic_cast<decl::plugin*>(m.get_plugin(m_family_id));
}
def * util::decl_fun(symbol const& name, unsigned n, sort *const * domain, sort * range) {
return alloc(def, m(), m_family_id, name, n, domain, range);
}
void util::set_definition(promise_def & d, unsigned n_vars, var * const * vars, expr * rhs) {
d.set_definition(n_vars, vars, rhs);
}
// used to know which `app` are from this theory
struct is_imm_pred : is_immediate_pred {
util & u;
is_imm_pred(util & u) : u(u) {}
bool operator()(expr * rhs) {
// find an `app` that is an application of a defined function
struct find : public i_expr_pred {
util & u;
find(util & u) : u(u) {}
bool operator()(expr * e) override {
//return is_app(e) ? u.owns_app(to_app(e)) : false;
if (! is_app(e)) return false;
app * a = to_app(e);
return u.is_defined(a);
}
};
find f(u);
check_pred cp(f, u.m());
bool contains_defined_fun = cp(rhs);
return ! contains_defined_fun;
}
};
// set definition
void promise_def::set_definition(unsigned n_vars, var * const * vars, expr * rhs) {
SASSERT(n_vars == d->get_arity());
is_imm_pred is_i(*u);
d->compute_cases(is_i, u->get_th_rewriter(), n_vars, vars, rhs);
}
namespace decl {
plugin::plugin() : decl_plugin(), m_defs(), m_case_defs(), m_def_block() {}
plugin::~plugin() { finalize(); }
void plugin::finalize() {
for (auto& kv : m_defs) {
dealloc(kv.m_value);
}
m_defs.reset();
// m_case_defs does not own its data, no need to deallocate
m_case_defs.reset();
m_util = 0; // force deletion
}
util & plugin::u() const {
SASSERT(m_manager);
SASSERT(m_family_id != null_family_id);
if (m_util.get() == 0) {
m_util = alloc(util, *m_manager, m_family_id);
}
return *(m_util.get());
}
promise_def plugin::mk_def(symbol const& name, unsigned n, sort *const * params, sort * range) {
SASSERT(! m_defs.contains(name));
def* d = u().decl_fun(name, n, params, range);
m_defs.insert(name, d);
return promise_def(&u(), d);
}
void plugin::set_definition(promise_def & d, unsigned n_vars, var * const * vars, expr * rhs) {
u().set_definition(d, n_vars, vars, rhs);
for (case_def & c : d.get_def()->get_cases()) {
m_case_defs.insert(c.get_name(), &c);
}
}
def* plugin::mk_def(symbol const& name, unsigned n, sort ** params, sort * range,
unsigned n_vars, var ** vars, expr * rhs) {
SASSERT(! m_defs.contains(name));
promise_def d = mk_def(name, n, params, range);
set_definition(d, n_vars, vars, rhs);
return d.get_def();
}
func_decl * plugin::mk_fun_pred_decl(unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range)
{
VALIDATE_PARAM(m(), m().is_bool(range) && num_parameters == 1 && parameters[0].is_ast());
func_decl_info info(m_family_id, OP_FUN_CASE_PRED, num_parameters, parameters);
info.m_private_parameters = true;
return m().mk_func_decl(symbol(parameters[0].get_symbol()), arity, domain, range, info);
}
func_decl * plugin::mk_fun_defined_decl(decl_kind k, unsigned num_parameters,
parameter const * parameters,
unsigned arity, sort * const * domain, sort * range)
{
VALIDATE_PARAM(m(), num_parameters == 1 && parameters[0].is_ast());
func_decl_info info(m_family_id, k, num_parameters, parameters);
info.m_private_parameters = true;
return m().mk_func_decl(symbol(parameters[0].get_symbol()), arity,
domain, range, info);
}
// generic declaration of symbols
func_decl * plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range)
{
switch(k) {
case OP_FUN_CASE_PRED:
return mk_fun_pred_decl(num_parameters, parameters, arity, domain, range);
case OP_FUN_DEFINED:
return mk_fun_defined_decl(k, num_parameters, parameters, arity, domain, range);
default:
UNREACHABLE(); return 0;
}
}
}
}

View file

@ -0,0 +1,246 @@
/*++
Module Name:
recfun_decl_plugin.h
Abstract:
Declaration and definition of (potentially recursive) functions
Author:
Simon Cruanes 2017-11
Revision History:
--*/
#pragma once
#include "ast/ast.h"
#include "ast/rewriter/th_rewriter.h"
namespace recfun {
class case_def; //<! one possible control path of a function
class case_pred; //<! a predicate guarding a given control flow path of a function
class util; //<! util for other modules
class def; //!< definition of a (recursive) function
class promise_def; //!< definition to be complete
enum op_kind {
OP_FUN_DEFINED, // defined function with one or more cases, possibly recursive
OP_FUN_CASE_PRED, // predicate guarding a given control flow path
};
/*! A predicate `p(t1…tn)`, that, if true, means `f(t1…tn)` is following
a given path of its control flow and can be unrolled.
For example, `fact n := if n<2 then 1 else n * fact(n-1)` would have two cases,
and therefore two case predicates `C_fact_0` and `C_fact_1`, where
`C_fact_0(t)=true` means `t<2` (first path) and `C_fact_1(t)=true` means `¬(t<2)` (second path).
*/
class case_pred {
friend class case_def;
symbol m_name; //<! symbol for the predicate
std::string m_name_buf; //<! memory for m_name
sort_ref_vector const & m_domain;
func_decl_ref m_decl; //<! declaration for the predicate
case_pred(ast_manager & m, family_id fid, std::string const & s, sort_ref_vector const & args);
public:
symbol const & get_name() const { return m_name; }
sort_ref_vector const & get_domain() const { return m_domain; }
func_decl * get_decl() const { return m_decl.get(); }
unsigned get_arity() const { return m_domain.size(); }
};
typedef var_ref_vector vars;
class case_def {
friend class def;
case_pred m_pred; //<! predicate used for this case
expr_ref_vector m_guards; //<! conjunction that is equivalent to this case
expr_ref m_rhs; //<! if guard is true, `f(t1…tn) = rhs` holds
def * m_def; //<! definition this is a part of
bool m_immediate; //<! does `rhs` contain no defined_fun/case_pred?
case_def(ast_manager & m,
family_id fid,
def * d,
std::string & name,
sort_ref_vector const & arg_sorts,
unsigned num_guards,
expr** guards,
expr* rhs);
void add_guard(expr_ref && e) { m_guards.push_back(e); }
public:
symbol const& get_name() const { return m_pred.get_name(); }
case_pred const & get_pred() const { return m_pred; }
def * get_def() const { return m_def; }
expr_ref_vector const & get_guards() const { return m_guards; }
expr * get_guards_c_ptr() const { return *m_guards.c_ptr(); }
expr * get_guard(unsigned i) const { return m_guards[i]; }
expr * get_rhs() const { return m_rhs; }
unsigned num_guards() const { return m_guards.size(); }
bool is_immediate() const { return m_immediate; };
void set_is_immediate(bool b) { m_immediate = b; }
};
// closure for computing whether a `rhs` expression is immediate
struct is_immediate_pred {
virtual bool operator()(expr * rhs) = 0;
};
class def {
friend class util;
friend class promise_def;
typedef vector<case_def> cases;
ast_manager & m_manager;
symbol m_name; //<! name of function
sort_ref_vector m_domain; //<! type of arguments
sort_ref m_range; //<! return type
vars m_vars; //<! variables of the function
cases m_cases; //!< possible cases
func_decl_ref m_decl; //!< generic declaration
family_id m_fid;
bool m_macro;
def(ast_manager &m, family_id fid, symbol const & s, unsigned arity, sort *const * domain, sort* range);
// compute cases for a function, given its RHS (possibly containing `ite`).
void compute_cases(is_immediate_pred &, th_rewriter & th_rw,
unsigned n_vars, var *const * vars, expr* rhs);
void add_case(std::string & name, unsigned n_conds, expr ** conditions, expr* rhs, bool is_imm = false);
bool contains_ite(expr* e); // expression contains a test?
public:
ast_manager & m() const { return m_manager; }
symbol const & get_name() const { return m_name; }
vars const & get_vars() const { return m_vars; }
cases & get_cases() { return m_cases; }
unsigned get_arity() const { return m_domain.size(); }
sort_ref_vector const & get_domain() const { return m_domain; }
sort_ref const & get_range() const { return m_range; }
func_decl * get_decl() const { return m_decl.get(); }
bool is_fun_macro() const { return m_macro; }
bool is_fun_defined() const { return !is_fun_macro(); }
expr * get_macro_rhs() const {
SASSERT(is_fun_macro());
return m_cases[0].get_rhs();
}
};
// definition to be complete (missing RHS)
class promise_def {
friend class util;
util * u;
def * d;
void set_definition(unsigned n_vars, var * const * vars, expr * rhs); // call only once
public:
promise_def(util * u, def * d) : u(u), d(d) {}
promise_def(promise_def const & from) : u(from.u), d(from.d) {}
def * get_def() const { return d; }
};
namespace decl {
class plugin : public decl_plugin {
typedef map<symbol, def*, symbol_hash_proc, symbol_eq_proc> def_map;
typedef map<symbol, case_def*, symbol_hash_proc, symbol_eq_proc> case_def_map;
mutable scoped_ptr<util> m_util;
def_map m_defs; // function->def
case_def_map m_case_defs; // case_pred->def
svector<symbol> m_def_block;
ast_manager & m() { return *m_manager; }
public:
plugin();
virtual ~plugin() override;
virtual void finalize() override;
util & u() const; // build or return util
virtual bool is_fully_interp(sort * s) const override { return false; } // might depend on unin sorts
virtual decl_plugin * mk_fresh() override { return alloc(plugin); }
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) override { UNREACHABLE(); return 0; }
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) override;
promise_def mk_def(symbol const& name, unsigned n, sort *const * params, sort * range);
void set_definition(promise_def & d, unsigned n_vars, var * const * vars, expr * rhs);
def* mk_def(symbol const& name, unsigned n, sort ** params, sort * range, unsigned n_vars, var ** vars, expr * rhs);
bool has_def(const symbol& s) const { return m_defs.contains(s); }
def const& get_def(const symbol& s) const { return *(m_defs[s]); }
promise_def get_promise_def(const symbol &s) const { return promise_def(&u(), m_defs[s]); }
def& get_def(symbol const& s) { return *(m_defs[s]); }
bool has_case_def(const symbol& s) const { return m_case_defs.contains(s); }
case_def& get_case_def(symbol const& s) { SASSERT(has_case_def(s)); return *(m_case_defs[s]); }
bool is_declared(symbol const& s) const { return m_defs.contains(s); }
private:
func_decl * mk_fun_pred_decl(unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
func_decl * mk_fun_defined_decl(decl_kind k,
unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
};
}
// Varus utils for recursive functions
class util {
friend class decl::plugin;
ast_manager & m_manager;
family_id m_family_id;
th_rewriter m_th_rw;
decl::plugin * m_plugin;
bool compute_is_immediate(expr * rhs);
void set_definition(promise_def & d, unsigned n_vars, var * const * vars, expr * rhs);
public:
util(ast_manager &m, family_id);
ast_manager & m() { return m_manager; }
th_rewriter & get_th_rewriter() { return m_th_rw; }
bool is_case_pred(app * e) const { return is_app_of(e, m_family_id, OP_FUN_CASE_PRED); }
bool is_defined(app * e) const { return is_app_of(e, m_family_id, OP_FUN_DEFINED); }
bool owns_app(app * e) const { return e->get_family_id() == m_family_id; }
//<! add a function declaration
def * decl_fun(symbol const & s, unsigned n_args, sort *const * args, sort * range);
def& get_def(symbol const & s) {
SASSERT(m_plugin->has_def(s));
return m_plugin->get_def(s);
}
case_def& get_case_def(symbol const & s) {
SASSERT(m_plugin->has_case_def(s));
return m_plugin->get_case_def(s);
}
app* mk_fun_defined(def const & d, unsigned n_args, expr * const * args) {
return m().mk_app(d.get_decl(), n_args, args);
}
app* mk_fun_defined(def const & d, ptr_vector<expr> const & args) {
return mk_fun_defined(d, args.size(), args.c_ptr());
}
app* mk_case_pred(case_pred const & p, ptr_vector<expr> const & args) {
return m().mk_app(p.get_decl(), args.size(), args.c_ptr());
}
};
}
typedef recfun::def recfun_def;
typedef recfun::case_def recfun_case_def;
typedef recfun::decl::plugin recfun_decl_plugin;
typedef recfun::util recfun_util;

View file

@ -22,6 +22,7 @@ Revision History:
#include "ast/array_decl_plugin.h"
#include "ast/bv_decl_plugin.h"
#include "ast/datatype_decl_plugin.h"
#include "ast/recfun_decl_plugin.h"
#include "ast/dl_decl_plugin.h"
#include "ast/seq_decl_plugin.h"
#include "ast/pb_decl_plugin.h"
@ -40,6 +41,9 @@ void reg_decl_plugins(ast_manager & m) {
if (!m.get_plugin(m.mk_family_id(symbol("datatype")))) {
m.register_plugin(symbol("datatype"), alloc(datatype_decl_plugin));
}
if (!m.get_plugin(m.mk_family_id(symbol("recfun")))) {
m.register_plugin(symbol("recfun"), alloc(recfun_decl_plugin));
}
if (!m.get_plugin(m.mk_family_id(symbol("datalog_relation")))) {
m.register_plugin(symbol("datalog_relation"), alloc(datalog::dl_decl_plugin));
}

View file

@ -678,6 +678,8 @@ bool cmd_context::logic_has_datatype() const {
return !has_logic() || smt_logics::logic_has_datatype(m_logic);
}
bool cmd_context::logic_has_recfun() const { return true; }
void cmd_context::init_manager_core(bool new_manager) {
SASSERT(m_manager != 0);
SASSERT(m_pmanager != 0);
@ -690,6 +692,7 @@ void cmd_context::init_manager_core(bool new_manager) {
register_plugin(symbol("bv"), alloc(bv_decl_plugin), logic_has_bv());
register_plugin(symbol("array"), alloc(array_decl_plugin), logic_has_array());
register_plugin(symbol("datatype"), alloc(datatype_decl_plugin), logic_has_datatype());
register_plugin(symbol("recfun"), alloc(recfun_decl_plugin), logic_has_recfun());
register_plugin(symbol("seq"), alloc(seq_decl_plugin), logic_has_seq());
register_plugin(symbol("pb"), alloc(pb_decl_plugin), logic_has_pb());
register_plugin(symbol("fpa"), alloc(fpa_decl_plugin), logic_has_fpa());
@ -705,6 +708,7 @@ void cmd_context::init_manager_core(bool new_manager) {
load_plugin(symbol("bv"), logic_has_bv(), fids);
load_plugin(symbol("array"), logic_has_array(), fids);
load_plugin(symbol("datatype"), logic_has_datatype(), fids);
load_plugin(symbol("recfun"), logic_has_recfun(), fids);
load_plugin(symbol("seq"), logic_has_seq(), fids);
load_plugin(symbol("fpa"), logic_has_fpa(), fids);
load_plugin(symbol("pb"), logic_has_pb(), fids);
@ -868,7 +872,24 @@ void cmd_context::insert(symbol const & s, object_ref * r) {
m_object_refs.insert(s, r);
}
void cmd_context::insert_rec_fun(func_decl* f, expr_ref_vector const& binding, svector<symbol> const& ids, expr* e) {
recfun_decl_plugin * cmd_context::get_recfun_plugin() {
ast_manager & m = get_ast_manager();
family_id id = m.get_family_id("recfun");
recfun_decl_plugin* p = reinterpret_cast<recfun_decl_plugin*>(m.get_plugin(id));
SASSERT(p);
return p;
}
recfun::promise_def cmd_context::decl_rec_fun(const symbol &name, unsigned int arity, sort *const *domain, sort *range) {
SASSERT(logic_has_recfun());
recfun_decl_plugin* p = get_recfun_plugin();
recfun::promise_def def = p->mk_def(name, arity, domain, range);
return def;
}
// insert a recursive function as a regular quantified axiom
void cmd_context::insert_rec_fun_as_axiom(func_decl *f, expr_ref_vector const& binding, svector<symbol> const &ids, expr* e) {
expr_ref eq(m());
app_ref lhs(m());
lhs = m().mk_app(f, binding.size(), binding.c_ptr());
@ -899,6 +920,31 @@ void cmd_context::insert_rec_fun(func_decl* f, expr_ref_vector const& binding, s
assert_expr(eq);
}
// TODO: make this a parameter
#define USE_NATIVE_RECFUN 1
void cmd_context::insert_rec_fun(func_decl* f, expr_ref_vector const& binding, svector<symbol> const& ids, expr* rhs) {
TRACE("recfun", tout<<"define recfun " << f->get_name()
<<" = " << mk_pp(rhs, m()) << "\n";);
if (! USE_NATIVE_RECFUN) {
// just use an axiom
insert_rec_fun_as_axiom(f, binding, ids, rhs);
return;
}
recfun_decl_plugin* p = get_recfun_plugin();
var_ref_vector vars(m());
for (expr* b : binding) {
SASSERT(is_var(b));
vars.push_back(to_var(b));
}
recfun::promise_def d = p->get_promise_def(f->get_name());
p->set_definition(d, vars.size(), vars.c_ptr(), rhs);
}
func_decl * cmd_context::find_func_decl(symbol const & s) const {
builtin_decl d;
if (m_builtin_decls.find(s, d)) {

View file

@ -29,6 +29,7 @@ Notes:
#include "util/dictionary.h"
#include "solver/solver.h"
#include "ast/datatype_decl_plugin.h"
#include "ast/recfun_decl_plugin.h"
#include "util/stopwatch.h"
#include "util/cmd_context_types.h"
#include "util/event_handler.h"
@ -289,6 +290,7 @@ protected:
bool logic_has_array() const;
bool logic_has_datatype() const;
bool logic_has_fpa() const;
bool logic_has_recfun() const;
void print_unsupported_msg() { regular_stream() << "unsupported" << std::endl; }
void print_unsupported_info(symbol const& s, int line, int pos) { if (s != symbol::null) diagnostic_stream() << "; " << s << " line: " << line << " position: " << pos << std::endl;}
@ -304,6 +306,7 @@ protected:
void erase_macro(symbol const& s);
bool macros_find(symbol const& s, unsigned n, expr*const* args, expr*& t) const;
recfun_decl_plugin * get_recfun_plugin();
public:
cmd_context(bool main_ctx = true, ast_manager * m = 0, symbol const & l = symbol::null);
@ -382,9 +385,11 @@ public:
void insert_user_tactic(symbol const & s, sexpr * d);
void insert_aux_pdecl(pdecl * p);
void insert_rec_fun(func_decl* f, expr_ref_vector const& binding, svector<symbol> const& ids, expr* e);
void insert_rec_fun_as_axiom(func_decl* f, expr_ref_vector const& binding, svector<symbol> const& ids, expr* e);
func_decl * find_func_decl(symbol const & s) const;
func_decl * find_func_decl(symbol const & s, unsigned num_indices, unsigned const * indices,
unsigned arity, sort * const * domain, sort * range) const;
recfun::promise_def decl_rec_fun(const symbol &name, unsigned int arity, sort *const *domain, sort *range);
psort_decl * find_psort_decl(symbol const & s) const;
cmd * find_cmd(symbol const & s) const;
sexpr * find_user_tactic(symbol const & s) const;

View file

@ -2278,7 +2278,7 @@ namespace smt2 {
next();
}
void parse_rec_fun_decl(func_decl_ref& f, expr_ref_vector& bindings, svector<symbol>& ids) {
recfun::promise_def parse_rec_fun_decl(func_decl_ref& f, expr_ref_vector& bindings, svector<symbol>& ids) {
SASSERT(m_num_bindings == 0);
check_identifier("invalid function/constant definition, symbol expected");
symbol id = curr_id();
@ -2289,7 +2289,8 @@ namespace smt2 {
unsigned num_vars = parse_sorted_vars();
SASSERT(num_vars == m_num_bindings);
parse_sort("Invalid recursive function definition");
f = m().mk_func_decl(id, num_vars, sort_stack().c_ptr() + sort_spos, sort_stack().back());
recfun::promise_def pdef = m_ctx.decl_rec_fun(id, num_vars, sort_stack().c_ptr() + sort_spos, sort_stack().back());
f = pdef.get_def()->get_decl();
bindings.append(num_vars, expr_stack().c_ptr() + expr_spos);
ids.append(num_vars, symbol_stack().c_ptr() + sym_spos);
symbol_stack().shrink(sym_spos);
@ -2297,6 +2298,7 @@ namespace smt2 {
expr_stack().shrink(expr_spos);
m_env.end_scope();
m_num_bindings = 0;
return pdef;
}
void parse_rec_fun_bodies(func_decl_ref_vector const& decls, vector<expr_ref_vector> const& bindings, vector<svector<symbol> >const & ids) {

View file

@ -58,6 +58,7 @@ z3_add_component(smt
theory_lra.cpp
theory_opt.cpp
theory_pb.cpp
theory_recfun.cpp
theory_seq.cpp
theory_str.cpp
theory_utvpi.cpp

View file

@ -27,6 +27,7 @@ void smt_params::updt_local_params(params_ref const & _p) {
m_random_seed = p.random_seed();
m_relevancy_lvl = p.relevancy();
m_ematching = p.ematching();
m_recfun_max_depth = p.recfun_max_depth();
m_phase_selection = static_cast<phase_selection>(p.phase_selection());
m_restart_strategy = static_cast<restart_strategy>(p.restart_strategy());
m_restart_factor = p.restart_factor();

View file

@ -105,6 +105,9 @@ struct smt_params : public preprocessor_params,
bool m_new_core2th_eq;
bool m_ematching;
// TODO: move into its own file?
unsigned m_recfun_max_depth;
// -----------------------------------
//
// Case split strategy
@ -258,6 +261,7 @@ struct smt_params : public preprocessor_params,
m_display_features(false),
m_new_core2th_eq(true),
m_ematching(true),
m_recfun_max_depth(500),
m_case_split_strategy(CS_ACTIVITY_DELAY_NEW),
m_rel_case_split_order(0),
m_lookahead_diseq(false),

View file

@ -83,5 +83,6 @@ def_module_params(module_name='smt',
('core.extend_patterns', BOOL, False, 'extend unsat core with literals that trigger (potential) quantifier instances'),
('core.extend_patterns.max_distance', UINT, UINT_MAX, 'limits the distance of a pattern-extended unsat core'),
('core.extend_nonlocal_patterns', BOOL, False, 'extend unsat cores with literals that have quantifiers with patterns that contain symbols which are not in the quantifier\'s body'),
('lemma_gc_strategy', UINT, 0, 'lemma garbage collection strategy: 0 - fixed, 1 - geometric, 2 - at restart, 3 - none')
('lemma_gc_strategy', UINT, 0, 'lemma garbage collection strategy: 0 - fixed, 1 - geometric, 2 - at restart, 3 - none'),
('recfun.max_depth', UINT, 500, 'maximum depth of unrolling for recursive functions')
))

View file

@ -28,6 +28,7 @@ Revision History:
#include "smt/theory_array_full.h"
#include "smt/theory_bv.h"
#include "smt/theory_datatype.h"
#include "smt/theory_recfun.h"
#include "smt/theory_dummy.h"
#include "smt/theory_dl.h"
#include "smt/theory_seq_empty.h"
@ -217,6 +218,7 @@ namespace smt {
void setup::setup_QF_DT() {
setup_QF_UF();
setup_datatypes();
setup_recfuns();
}
void setup::setup_QF_BVRE() {
@ -845,6 +847,13 @@ namespace smt {
m_context.register_plugin(alloc(theory_datatype, m_manager, m_params));
}
void setup::setup_recfuns() {
TRACE("recfun", tout << "registering theory recfun...\n";);
theory_recfun * th = alloc(theory_recfun, m_manager);
m_context.register_plugin(th);
th->setup_params();
}
void setup::setup_dl() {
m_context.register_plugin(mk_theory_dl(m_manager));
}
@ -898,6 +907,7 @@ namespace smt {
setup_arrays();
setup_bv();
setup_datatypes();
setup_recfuns();
setup_dl();
setup_seq_str(st);
setup_card();

View file

@ -93,6 +93,7 @@ namespace smt {
void setup_unknown(static_features & st);
void setup_arrays();
void setup_datatypes();
void setup_recfuns();
void setup_bv();
void setup_arith();
void setup_dl();

363
src/smt/theory_recfun.cpp Normal file
View file

@ -0,0 +1,363 @@
#include "util/stats.h"
#include "ast/ast_util.h"
#include "smt/theory_recfun.h"
#include "smt/params/smt_params_helper.hpp"
#define DEBUG(x) \
do { \
TRACE("recfun", tout << x << '\n';); \
auto& out = std::cout; out << "recfun: "; out << x; out << '\n' << std::flush; } while(0)
// NOTE: debug
struct pp_lits {
smt::context & ctx;
smt::literal *lits;
unsigned len;
pp_lits(smt::context & ctx, unsigned len, smt::literal *lits) : ctx(ctx), lits(lits), len(len) {}
};
std::ostream & operator<<(std::ostream & out, pp_lits const & pp) {
out << "clause{";
bool first = true;
for (auto i = 0; i < pp.len; ++i) {
if (first) { first = false; } else { out << " "; }
pp.ctx.display_detailed_literal(out, pp.lits[i]);
}
return out << "}";
}
namespace smt {
theory_recfun::theory_recfun(ast_manager & m)
: theory(m.mk_family_id("recfun")), m_util(0), m_trail(*this),
m_guards(), m_max_depth(0), m_q_case_expand(), m_q_body_expand()
{
recfun_decl_plugin * plugin =
reinterpret_cast<recfun_decl_plugin*>(m.get_plugin(get_family_id()));
SASSERT(plugin);
m_util = & plugin->u();
SASSERT(m_util);
}
theory_recfun::~theory_recfun() {
reset_queues();
for (auto & kv : m_guards) {
m().dec_ref(kv.m_key);
}
m_guards.reset();
}
char const * theory_recfun::get_name() const { return "recfun"; }
void theory_recfun::setup_params() {
// obtain max depth via parameters
smt_params_helper p(get_context().get_params());
set_max_depth(p.recfun_max_depth());
}
theory* theory_recfun::mk_fresh(context* new_ctx) {
return alloc(theory_recfun, new_ctx->get_manager());
}
bool theory_recfun::internalize_atom(app * atom, bool gate_ctx) {
context & ctx = get_context();
if (! ctx.e_internalized(atom)) {
unsigned num_args = atom->get_num_args();
for (unsigned i = 0; i < num_args; ++i)
ctx.internalize(atom->get_arg(i), false);
ctx.mk_enode(atom, false, true, false);
}
if (! ctx.b_internalized(atom)) {
bool_var v = ctx.mk_bool_var(atom);
ctx.set_var_theory(v, get_id());
}
return true;
}
bool theory_recfun::internalize_term(app * term) {
DEBUG("internalizing term: " << mk_pp(term, m()));
context & ctx = get_context();
for (expr* e : *term) ctx.internalize(e, false);
// the internalization of the arguments may have triggered the internalization of term.
if (ctx.e_internalized(term))
return true;
ctx.mk_enode(term, false, false, true);
return true; // the theory doesn't actually map terms to variables
}
void theory_recfun::reset_queues() {
m_q_case_expand.reset();
m_q_body_expand.reset();
}
void theory_recfun::reset_eh() {
m_trail.reset();
reset_queues();
}
/*
* when `n` becomes relevant, if it's `f(t1tn)` with `f` defined,
* then case-expand `n`. If it's a macro we can also immediately
* body-expand it.
*/
void theory_recfun::relevant_eh(app * n) {
SASSERT(get_context().relevancy());
if (u().is_defined(n)) {
DEBUG("relevant_eh: (defined) " << mk_pp(n, m()));
case_expansion e(u(), n);
push_case_expand(std::move(e));
}
}
void theory_recfun::push_scope_eh() {
theory::push_scope_eh();
m_trail.push_scope();
}
void theory_recfun::pop_scope_eh(unsigned num_scopes) {
m_trail.pop_scope(num_scopes);
theory::pop_scope_eh(num_scopes);
reset_queues();
}
void theory_recfun::restart_eh() {
m_trail.reset();
reset_queues();
}
bool theory_recfun::can_propagate() {
return ! (m_q_case_expand.empty() && m_q_body_expand.empty());
}
void theory_recfun::propagate() {
for (case_expansion & e : m_q_case_expand) {
if (e.m_def->is_fun_macro()) {
// body expand immediately
assert_macro_axiom(e);
}
else {
// case expand
SASSERT(e.m_def->is_fun_defined());
assert_case_axioms(e);
}
}
m_q_case_expand.clear();
for (body_expansion & e : m_q_body_expand) {
assert_body_axiom(e);
}
m_q_body_expand.clear();
}
void theory_recfun::max_depth_conflict() {
DEBUG("max-depth conflict");
// TODO: build clause from `m_guards`
/*
context & ctx = get_context();
region & r = ctx.get_region();
ctx.set_conflict(
*/
}
// if `is_true` and `v = C_f_i(t1…tn)`, then body-expand i-th case of `f(t1…tn)`
void theory_recfun::assign_eh(bool_var v, bool is_true) {
expr* e = get_context().bool_var2expr(v);
DEBUG("assign_eh "<< mk_pp(e,m()));
if (!is_true) return;
if (!is_app(e)) return;
app* a = to_app(e);
if (u().is_case_pred(a)) {
DEBUG("assign_case_pred_true "<< mk_pp(e,m()));
// add to set of local assumptions, for depth-limit purpose
{
m_guards.insert(e, empty());
m().inc_ref(e);
insert_ref_map<theory_recfun,guard_set,ast_manager,expr*> trail_elt(m(), m_guards, e);
m_trail.push(trail_elt);
}
if (m_guards.size() > get_max_depth()) {
// too many body-expansions: depth-limit conflict
max_depth_conflict();
}
else {
// body-expand
body_expansion b_e(u(), a);
push_body_expand(std::move(b_e));
}
}
}
// replace `vars` by `args` in `e`
expr_ref theory_recfun::apply_args(recfun::vars const & vars,
ptr_vector<expr> const & args,
expr * e) {
// check that var order is standard
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
var_subst subst(m(), true);
expr_ref new_body(m());
subst(e, args.size(), args.c_ptr(), new_body);
get_context().get_rewriter()(new_body); // simplify
return new_body;
}
app_ref theory_recfun::apply_pred(recfun::case_pred const & p,
ptr_vector<expr> const & args){
app_ref res(u().mk_case_pred(p, args), m());
return res;
}
void theory_recfun::assert_macro_axiom(case_expansion & e) {
DEBUG("assert_macro_axiom " << pp_case_expansion(e,m()));
SASSERT(e.m_def->is_fun_macro());
expr * lhs = e.m_lhs;
context & ctx = get_context();
auto & vars = e.m_def->get_vars();
// substitute `e.args` into the macro RHS
expr * rhs = apply_args(vars, e.m_args, e.m_def->get_macro_rhs());
DEBUG("macro expansion yields" << mk_pp(rhs,m()));
// now build the axiom `lhs = rhs`
ctx.internalize(rhs, false);
DEBUG("adding axiom: " << mk_pp(lhs, m()) << " = " << mk_pp(rhs, m()));
if (m().proofs_enabled()) {
// add unit clause `lhs=rhs`
literal l(mk_eq(lhs, rhs, true));
ctx.mark_as_relevant(l);
literal lits[1] = {l};
ctx.mk_th_axiom(get_id(), 1, lits);
}
else {
//region r;
enode * e_lhs = ctx.get_enode(lhs);
enode * e_rhs = ctx.get_enode(rhs);
// TODO: proper justification
//justification * js = ctx.mk_justification(
ctx.assign_eq(e_lhs, e_rhs, eq_justification());
}
}
void theory_recfun::assert_case_axioms(case_expansion & e) {
DEBUG("assert_case_axioms "<< pp_case_expansion(e,m())
<< " with " << e.m_def->get_cases().size() << " cases");
SASSERT(e.m_def->is_fun_defined());
context & ctx = get_context();
// add case-axioms for all case-paths
auto & vars = e.m_def->get_vars();
for (recfun::case_def const & c : e.m_def->get_cases()) {
// applied predicate to `args`
app_ref pred_applied = apply_pred(c.get_pred(), e.m_args);
SASSERT(u().owns_app(pred_applied));
// substitute arguments in `path`
expr_ref_vector path(m());
for (auto & g : c.get_guards()) {
expr_ref g_applied = apply_args(vars, e.m_args, g);
path.push_back(g_applied);
}
// assert `p(args) <=> And(guards)` (with CNF on the fly)
ctx.internalize(pred_applied, false);
// FIXME: we need to be informed wen `pred_applied` is true!!
ctx.mark_as_relevant(ctx.get_bool_var(pred_applied));
literal concl = ctx.get_literal(pred_applied);
{
// assert `guards=>p(args)`
literal_vector c;
c.push_back(concl);
for (expr* g : path) {
ctx.internalize(g, false);
c.push_back(~ ctx.get_literal(g));
}
//TRACE("recfun", tout << "assert_case_axioms " << pp_case_expansion(e)
// << " axiom " << mk_pp(*l) <<"\n";);
DEBUG("assert_case_axiom " << pp_lits(get_context(), path.size()+1, c.c_ptr()));
get_context().mk_th_axiom(get_id(), path.size()+1, c.c_ptr());
}
{
// assert `p(args) => guards[i]` for each `i`
for (expr * _g : path) {
SASSERT(ctx.b_internalized(_g));
literal g = ctx.get_literal(_g);
literal c[2] = {~ concl, g};
DEBUG("assert_case_axiom " << pp_lits(get_context(), 2, c));
get_context().mk_th_axiom(get_id(), 2, c);
}
}
// also body-expand paths that do not depend on any defined fun
if (c.is_immediate()) {
body_expansion be(c, e.m_args);
assert_body_axiom(be);
}
}
}
void theory_recfun::assert_body_axiom(body_expansion & e) {
DEBUG("assert_body_axioms "<< pp_body_expansion(e,m()));
context & ctx = get_context();
recfun::def & d = *e.m_cdef->get_def();
auto & vars = d.get_vars();
auto & args = e.m_args;
// check that var order is standard
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
expr_ref lhs(u().mk_fun_defined(d, args), m());
// substitute `e.args` into the RHS of this particular case
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
// substitute `e.args` into the guard of this particular case, to make
// the `condition` part of the clause `conds => lhs=rhs`
expr_ref_vector guards(m());
for (auto & g : e.m_cdef->get_guards()) {
expr_ref new_guard = apply_args(vars, args, g);
guards.push_back(new_guard);
}
// now build the axiom `conds => lhs = rhs`
ctx.internalize(rhs, false);
for (auto& g : guards) ctx.internalize(g, false);
// add unit clause `conds => lhs=rhs`
literal_vector clause;
for (auto& g : guards) {
ctx.internalize(g, false);
literal l = ~ ctx.get_literal(g);
ctx.mark_as_relevant(l);
clause.push_back(l);
}
literal l(mk_eq(lhs, rhs, true));
ctx.mark_as_relevant(l);
clause.push_back(l);
DEBUG("assert_body_axiom " << pp_lits(get_context(), clause.size(), clause.c_ptr()));
ctx.mk_th_axiom(get_id(), clause.size(), clause.c_ptr());
}
final_check_status theory_recfun::final_check_eh() {
return FC_DONE;
}
void theory_recfun::add_theory_assumptions(expr_ref_vector & assumptions) {
DEBUG("add_theory_assumptions");
// TODO: add depth-limit assumptions?
}
void theory_recfun::display(std::ostream & out) const {
out << "recfun{}";
}
void theory_recfun::collect_statistics(::statistics & st) const {
st.update("recfun macro expansion", m_stats.m_macro_expansions);
st.update("recfun case expansion", m_stats.m_case_expansions);
st.update("recfun body expansion", m_stats.m_body_expansions);
}
std::ostream& operator<<(std::ostream & out, theory_recfun::pp_case_expansion const & e) {
return out << "case_exp(" << mk_pp(e.e.m_lhs, e.m) << ")";
}
std::ostream& operator<<(std::ostream & out, theory_recfun::pp_body_expansion const & e) {
out << "body_exp(" << e.e.m_cdef->get_name();
for (auto* t : e.e.m_args) {
out << " " << mk_pp(t,e.m);
}
return out << ")";
}
}

155
src/smt/theory_recfun.h Normal file
View file

@ -0,0 +1,155 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
theory_recfun.h
Abstract:
Theory responsible for unrolling recursive functions
Author:
Leonardo de Moura (leonardo) 2008-10-31.
Revision History:
--*/
#ifndef THEORY_RECFUN_H_
#define THEORY_RECFUN_H_
#include "smt/smt_theory.h"
#include "smt/smt_context.h"
#include "ast/ast_pp.h"
#include "ast/recfun_decl_plugin.h"
namespace smt {
class theory_recfun : public theory {
struct stats {
unsigned m_case_expansions, m_body_expansions, m_macro_expansions;
void reset() { memset(this, 0, sizeof(stats)); }
stats() { reset(); }
};
// one case-expansion of `f(t1…tn)`
struct case_expansion {
expr * m_lhs; // the term to expand
recfun_def * m_def;
ptr_vector<expr> m_args;
case_expansion(recfun_util& u, app * n) : m_lhs(n), m_def(0), m_args()
{
SASSERT(u.is_defined(n));
func_decl * d = n->get_decl();
const symbol& name = d->get_name();
m_def = &u.get_def(name);
m_args.append(n->get_num_args(), n->get_args());
}
case_expansion(case_expansion const & from)
: m_lhs(from.m_lhs),
m_def(from.m_def),
m_args(from.m_args) {}
case_expansion(case_expansion && from)
: m_lhs(from.m_lhs),
m_def(from.m_def),
m_args(std::move(from.m_args)) {}
};
struct pp_case_expansion {
case_expansion & e;
ast_manager & m;
pp_case_expansion(case_expansion & e, ast_manager & m) : e(e), m(m) {}
};
friend std::ostream& operator<<(std::ostream&, pp_case_expansion const &);
// one body-expansion of `f(t1…tn)` using a `C_f_i(t1…tn)`
struct body_expansion {
recfun_case_def const * m_cdef;
ptr_vector<expr> m_args;
body_expansion(recfun_util& u, app * n) : m_cdef(0), m_args() {
SASSERT(u.is_case_pred(n));
func_decl * d = n->get_decl();
const symbol& name = d->get_name();
m_cdef = &u.get_case_def(name);
for (unsigned i = 0; i < n->get_num_args(); ++i)
m_args.push_back(n->get_arg(i));
}
body_expansion(recfun_case_def const & d, ptr_vector<expr> & args) : m_cdef(&d), m_args(args) {}
body_expansion(body_expansion const & from): m_cdef(from.m_cdef), m_args(from.m_args) {}
body_expansion(body_expansion && from) : m_cdef(from.m_cdef), m_args(std::move(from.m_args)) {}
};
struct pp_body_expansion {
body_expansion & e;
ast_manager & m;
pp_body_expansion(body_expansion & e, ast_manager & m) : e(e), m(m) {}
};
friend std::ostream& operator<<(std::ostream&, pp_body_expansion const &);
struct empty{};
typedef trail_stack<theory_recfun> th_trail_stack;
typedef obj_map<expr, empty> guard_set;
recfun_util * m_util;
stats m_stats;
th_trail_stack m_trail;
guard_set m_guards; // true case-preds
unsigned m_max_depth; // for fairness and termination
vector<case_expansion> m_q_case_expand;
vector<body_expansion> m_q_body_expand;
recfun_util & u() const { SASSERT(m_util); return *m_util; }
ast_manager & m() { return get_manager(); }
bool is_defined(app * f) const { return u().is_defined(f); }
bool is_case_pred(app * f) const { return u().is_case_pred(f); }
bool is_defined(enode * e) const { return is_defined(e->get_owner()); }
bool is_case_pred(enode * e) const { return is_case_pred(e->get_owner()); }
void reset_queues();
expr_ref apply_args(recfun::vars const & vars, ptr_vector<expr> const & args, expr * e); //!< substitute variables by args
app_ref apply_pred(recfun::case_pred const & p, ptr_vector<expr> const & args); //<! apply predicate to args
void assert_macro_axiom(case_expansion & e);
void assert_case_axioms(case_expansion & e);
void assert_body_axiom(body_expansion & e);
void max_depth_conflict(void);
protected:
void push_case_expand(case_expansion&& e) { m_q_case_expand.push_back(e); }
void push_body_expand(body_expansion&& e) { m_q_body_expand.push_back(e); }
bool internalize_atom(app * atom, bool gate_ctx) override;
bool internalize_term(app * term) override;
void reset_eh() override;
void relevant_eh(app * n) override;
char const * get_name() const override;
final_check_status final_check_eh() override;
void assign_eh(bool_var v, bool is_true) override;
void push_scope_eh() override;
void pop_scope_eh(unsigned num_scopes) override;
void restart_eh() override;
bool can_propagate() override;
void propagate() override;
void new_eq_eh(theory_var v1, theory_var v2) override {}
void new_diseq_eh(theory_var v1, theory_var v2) override {}
void add_theory_assumptions(expr_ref_vector & assumptions) override;
public:
theory_recfun(ast_manager & m);
virtual ~theory_recfun() override;
void setup_params(); // read parameters
virtual theory * mk_fresh(context * new_ctx) override;
virtual void display(std::ostream & out) const override;
virtual void collect_statistics(::statistics & st) const override;
unsigned get_max_depth() const { return m_max_depth; }
void set_max_depth(unsigned n) { SASSERT(n>0); m_max_depth = n; }
};
}
#endif

View file

@ -31,6 +31,7 @@ public:
void reset() { std::for_each(m_vector.begin(), m_vector.end(), delete_proc<T>()); m_vector.reset(); }
void push_back(T * ptr) { m_vector.push_back(ptr); }
void pop_back() { SASSERT(!empty()); set(size()-1, 0); m_vector.pop_back(); }
T * back() const { return m_vector.back(); }
T * operator[](unsigned idx) const { return m_vector[idx]; }
void set(unsigned idx, T * ptr) {
if (m_vector[idx] == ptr)
@ -51,6 +52,13 @@ public:
push_back(0);
}
}
//!< swap last element with given pointer
void swap_back(scoped_ptr<T> & ptr) {
SASSERT(!empty());
T * tmp = ptr.detach();
ptr = m_vector.back();
m_vector[m_vector.size()-1] = tmp;
}
};
#endif

View file

@ -143,6 +143,17 @@ public:
};
template<typename Ctx, typename M, typename Mgr, typename D>
class insert_ref_map : public trail<Ctx> {
Mgr& m;
M& m_map;
D m_obj;
public:
insert_ref_map(Mgr& m, M& t, D o) : m(m), m_map(t), m_obj(o) {}
virtual ~insert_ref_map() {}
virtual void undo(Ctx & ctx) { m_map.remove(m_obj); m.dec_ref(m_obj); }
};
template<typename Ctx, typename V>
class push_back_vector : public trail<Ctx> {