mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
seq
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
c5a9d81d93
commit
d58c219b54
2 changed files with 177 additions and 98 deletions
|
@ -22,6 +22,7 @@ Revision History:
|
|||
#include "smt_model_generator.h"
|
||||
#include "theory_seq.h"
|
||||
#include "seq_rewriter.h"
|
||||
#include "ast_trail.h"
|
||||
|
||||
using namespace smt;
|
||||
|
||||
|
@ -118,7 +119,9 @@ theory_seq::theory_seq(ast_manager& m):
|
|||
theory(m.mk_family_id("seq")),
|
||||
m(m),
|
||||
m_dam(m_dep_array_value_manager, m_alloc),
|
||||
m_rep(m, m_dm),
|
||||
m_rep(m, m_dm),
|
||||
m_sort2len_fn(m),
|
||||
m_factory(0),
|
||||
m_ineqs(m),
|
||||
m_exclude(m),
|
||||
m_axioms(m),
|
||||
|
@ -129,7 +132,7 @@ theory_seq::theory_seq(ast_manager& m):
|
|||
m_rewrite(m),
|
||||
m_util(m),
|
||||
m_autil(m),
|
||||
m_trail_stack(*this) {
|
||||
m_trail_stack(*this) {
|
||||
m_lhs.push_back(expr_array());
|
||||
m_rhs.push_back(expr_array());
|
||||
m_deps.push_back(enode_pair_dependency_array());
|
||||
|
@ -506,6 +509,11 @@ bool theory_seq::internalize_term(app* term) {
|
|||
!m_util.is_skolem(term)) {
|
||||
set_incomplete(term);
|
||||
}
|
||||
expr* arg;
|
||||
func_decl* fn;
|
||||
if (m_util.str.is_length(term, arg) && !m_sort2len_fn.find(m.get_sort(arg), fn)) {
|
||||
m_trail_stack.push(ast2ast_trail<theory_seq, sort, func_decl>(m_sort2len_fn, m.get_sort(arg), term->get_decl()));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -555,8 +563,7 @@ void theory_seq::collect_statistics(::statistics & st) const {
|
|||
}
|
||||
|
||||
void theory_seq::init_model(model_generator & mg) {
|
||||
m_factory = alloc(seq_factory, get_manager(),
|
||||
get_family_id(), mg.get_model());
|
||||
m_factory = alloc(seq_factory, get_manager(), get_family_id(), mg.get_model());
|
||||
mg.register_factory(m_factory);
|
||||
}
|
||||
|
||||
|
@ -575,7 +582,7 @@ model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) {
|
|||
void theory_seq::set_incomplete(app* term) {
|
||||
TRACE("seq", tout << "No support for: " << mk_pp(term, m) << "\n";);
|
||||
if (!m_incomplete) {
|
||||
m_trail_stack.push(value_trail<theory_seq,bool>(m_incomplete));
|
||||
m_trail_stack.push(value_trail<theory_seq, bool>(m_incomplete));
|
||||
m_incomplete = true;
|
||||
}
|
||||
}
|
||||
|
@ -659,72 +666,73 @@ void theory_seq::create_axiom(expr_ref& e) {
|
|||
}
|
||||
|
||||
/*
|
||||
encode that s is not a proper prefix of xs
|
||||
*/
|
||||
expr_ref theory_seq::tightest_prefix(expr* s, expr* x) {
|
||||
expr_ref s1 = mk_skolem(symbol("first"), s);
|
||||
expr_ref c = mk_skolem(symbol("last"), s);
|
||||
expr_ref fml(m);
|
||||
|
||||
fml = m.mk_and(m.mk_eq(s, m_util.str.mk_concat(s1, c)),
|
||||
m.mk_eq(m_util.str.mk_length(c), m_autil.mk_int(1)),
|
||||
m.mk_not(m_util.str.mk_contains(s, m_util.str.mk_concat(x, s1))));
|
||||
|
||||
return fml;
|
||||
}
|
||||
|
||||
|
||||
\brief nodes n1 and n2 are about to get merged.
|
||||
if n1 occurs in the context of a length application,
|
||||
then instantiate length axioms for each concatenation in the class of n2.
|
||||
In this way we ensure that length respects concatenation.
|
||||
*/
|
||||
void theory_seq::new_eq_len_concat(enode* n1, enode* n2) {
|
||||
context& ctx = get_context();
|
||||
// TBD: walk use list of n1 for concat, walk use-list of n2 for length.
|
||||
// instantiate length distributes over concatenation axiom.
|
||||
SASSERT(n1->get_root() != n2->get_root());
|
||||
if (!m_util.is_seq(n1->get_owner())) {
|
||||
return;
|
||||
}
|
||||
func_decl* f_len = 0;
|
||||
|
||||
// TBD: extract length function for sort if it is used.
|
||||
// TBD: add filter for already processed length equivalence classes
|
||||
if (!f_len) {
|
||||
if (!m_sort2len_fn.find(m.get_sort(n1->get_owner()), f_len)) {
|
||||
return;
|
||||
}
|
||||
enode_vector::const_iterator it = ctx.begin_enodes_of(f_len);
|
||||
|
||||
enode* r1 = n1->get_root();
|
||||
enode_vector::const_iterator it = ctx.begin_enodes_of(f_len);
|
||||
enode_vector::const_iterator end = ctx.end_enodes_of(f_len);
|
||||
bool has_concat = true;
|
||||
for (; has_concat && it != end; ++it) {
|
||||
if ((*it)->get_root() == n1->get_root()) {
|
||||
enode* start2 = n2;
|
||||
do {
|
||||
if (m_util.str.is_concat(n2->get_owner())) {
|
||||
has_concat = true;
|
||||
add_len_concat_axiom(n2->get_owner());
|
||||
}
|
||||
n2 = n2->get_next();
|
||||
}
|
||||
while (n2 != start2);
|
||||
}
|
||||
bool has_len = false;
|
||||
for (; !has_len && it != end; ++it) {
|
||||
has_len = ((*it)->get_root() == r1);
|
||||
}
|
||||
if (!has_len) {
|
||||
return;
|
||||
}
|
||||
enode* start2 = n2;
|
||||
do {
|
||||
if (m_util.str.is_concat(n2->get_owner())) {
|
||||
expr_ref ln(m);
|
||||
ln = m_util.str.mk_length(n2->get_owner());
|
||||
add_len_axiom(ln);
|
||||
}
|
||||
n2 = n2->get_next();
|
||||
}
|
||||
while (n2 != start2);
|
||||
}
|
||||
|
||||
void theory_seq::add_len_concat_axiom(expr* c) {
|
||||
// or just internalize lc and have relevancy propagation create axiom?
|
||||
expr *a, *b;
|
||||
expr_ref la(m), lb(m), lc(m), fml(m);
|
||||
VERIFY(m_util.str.is_concat(c, a, b));
|
||||
la = m_util.str.mk_length(a);
|
||||
lb = m_util.str.mk_length(b);
|
||||
lc = m_util.str.mk_length(c);
|
||||
fml = m.mk_eq(m_autil.mk_add(la, lb), lc);
|
||||
create_axiom(fml);
|
||||
|
||||
/*
|
||||
encode that s is not a proper prefix of xs1
|
||||
where s1 is all of s, except the last element.
|
||||
|
||||
lit or s = "" or s = s1*c
|
||||
lit or s = "" or len(c) = 1
|
||||
lit or s = "" or !prefix(s, x*s1)
|
||||
*/
|
||||
void theory_seq::tightest_prefix(expr* s, expr* x, literal lit) {
|
||||
expr_ref s1 = mk_skolem(symbol("first"), s);
|
||||
expr_ref c = mk_skolem(symbol("last"), s);
|
||||
expr_ref s1c(m_util.str.mk_concat(s1, c), m);
|
||||
expr_ref lc(m_util.str.mk_length(c), m);
|
||||
expr_ref one(m_autil.mk_int(1), m);
|
||||
expr_ref emp(m_util.str.mk_empty(m.get_sort(s)), m);
|
||||
literal s_eq_emp = mk_eq(s, emp, false);
|
||||
add_axiom(lit, s_eq_emp, mk_eq(s, s1c, false));
|
||||
add_axiom(lit, s_eq_emp, mk_eq(lc, one, false));
|
||||
add_axiom(lit, s_eq_emp, ~mk_literal(m_util.str.mk_contains(s, m_util.str.mk_concat(x, s1))));
|
||||
}
|
||||
|
||||
/*
|
||||
let i = Index(s, t)
|
||||
|
||||
(!contains(s, t) -> i = -1)
|
||||
(contains(s, t) & s = empty -> i = 0)
|
||||
(contains(s, t) & s != empty -> t = xsy & tightest_prefix(s, x))
|
||||
(s = empty -> i = 0)
|
||||
(contains(s, t) & s != empty -> t = xsy)
|
||||
(contains(s, t) -> tightest_prefix(s, x))
|
||||
|
||||
optional lemmas:
|
||||
(len(s) > len(t) -> i = -1)
|
||||
|
@ -733,43 +741,41 @@ void theory_seq::add_len_concat_axiom(expr* c) {
|
|||
void theory_seq::add_indexof_axiom(expr* i) {
|
||||
expr* s, *t;
|
||||
VERIFY(m_util.str.is_index(i, s, t));
|
||||
expr_ref cnt(m), fml(m), eq_empty(m);
|
||||
expr_ref fml(m), emp(m), minus_one(m), zero(m), xsy(m);
|
||||
expr_ref x = mk_skolem(m_contains_left_sym, s, t);
|
||||
expr_ref y = mk_skolem(m_contains_right_sym, s, t);
|
||||
eq_empty = m.mk_eq(s, m_util.str.mk_empty(m.get_sort(s)));
|
||||
cnt = m_util.str.mk_contains(s, t);
|
||||
fml = m.mk_or(cnt, m.mk_eq(i, m_autil.mk_int(-1)));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(cnt), m.mk_not(eq_empty), m.mk_eq(i, m_autil.mk_int(0)));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(cnt), eq_empty, m.mk_eq(t, m_util.str.mk_concat(x,s,y)));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(cnt), eq_empty, tightest_prefix(s, x));
|
||||
create_axiom(fml);
|
||||
minus_one = m_autil.mk_int(-1);
|
||||
zero = m_autil.mk_int(0);
|
||||
emp = m_util.str.mk_empty(m.get_sort(s));
|
||||
xsy = m_util.str.mk_concat(x,s,y);
|
||||
literal cnt = mk_literal(m_util.str.mk_contains(s, t));
|
||||
literal eq_empty = mk_eq(s, emp, false);
|
||||
add_axiom(cnt, mk_eq(i, minus_one, false));
|
||||
add_axiom(~eq_empty, mk_eq(i, zero, false));
|
||||
add_axiom(~cnt, eq_empty, mk_eq(t, xsy, false));
|
||||
tightest_prefix(s, x, ~cnt);
|
||||
}
|
||||
|
||||
/*
|
||||
let r = replace(a, s, t)
|
||||
|
||||
(contains(s, a) -> r = xty & a = xsy & tightest_prefix(s,xs)) &
|
||||
(contains(s, a) -> tightest_prefix(s,xs))
|
||||
(contains(s, a) -> r = xty & a = xsy) &
|
||||
(!contains(s, a) -> r = a)
|
||||
|
||||
*/
|
||||
void theory_seq::add_replace_axiom(expr* r) {
|
||||
expr* a, *s, *t;
|
||||
VERIFY(m_util.str.is_replace(r, a, s, t));
|
||||
expr_ref cnt(m), fml(m);
|
||||
cnt = m_util.str.mk_contains(s, a);
|
||||
expr_ref x = mk_skolem(m_contains_left_sym, s, a);
|
||||
expr_ref y = mk_skolem(m_contains_right_sym, s, a);
|
||||
fml = m.mk_or(m.mk_not(cnt), m.mk_eq(a, m_util.str.mk_concat(x, s, y)));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(cnt), m.mk_eq(r, m_util.str.mk_concat(x, t, y)));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(cnt), tightest_prefix(s, x));
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(cnt, m.mk_eq(r, a));
|
||||
create_axiom(fml);
|
||||
expr_ref xsy(m_util.str.mk_concat(x, t, y), m);
|
||||
expr_ref xty(m_util.str.mk_concat(x, s, y), m);
|
||||
literal cnt = mk_literal(m_util.str.mk_contains(s, a));
|
||||
add_axiom(cnt, mk_eq(r, a, false));
|
||||
add_axiom(~cnt, mk_eq(a, xsy, false));
|
||||
add_axiom(~cnt, mk_eq(r, xty, false));
|
||||
tightest_prefix(s, x, ~cnt);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -781,27 +787,26 @@ void theory_seq::add_replace_axiom(expr* r) {
|
|||
len(x) = rewrite(len(x))
|
||||
*/
|
||||
void theory_seq::add_len_axiom(expr* n) {
|
||||
expr* x;
|
||||
expr* x, *a, *b;
|
||||
VERIFY(m_util.str.is_length(n, x));
|
||||
expr_ref fml(m), eq1(m), eq2(m), nr(m);
|
||||
eq1 = m.mk_eq(m_autil.mk_int(0), n);
|
||||
eq2 = m.mk_eq(x, m_util.str.mk_empty(m.get_sort(x)));
|
||||
fml = m_autil.mk_le(m_autil.mk_int(0), n);
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(eq1), eq2);
|
||||
create_axiom(fml);
|
||||
fml = m.mk_or(m.mk_not(eq2), eq1);
|
||||
create_axiom(fml);
|
||||
nr = n;
|
||||
m_rewrite(nr);
|
||||
if (nr != n) {
|
||||
fml = m.mk_eq(n, nr);
|
||||
create_axiom(fml);
|
||||
expr_ref zero(m), emp(m);
|
||||
zero = m_autil.mk_int(0);
|
||||
emp = m_util.str.mk_empty(m.get_sort(x));
|
||||
literal eq1(mk_eq(zero, n, false));
|
||||
literal eq2(mk_eq(x, emp, false));
|
||||
add_axiom(mk_literal(m_autil.mk_le(zero, n)));
|
||||
add_axiom(~eq1, eq2);
|
||||
add_axiom(~eq2, eq1);
|
||||
if (m_util.str.is_concat(n, a, b)) {
|
||||
expr_ref _a(m_util.str.mk_length(a), m);
|
||||
expr_ref _b(m_util.str.mk_length(b), m);
|
||||
expr_ref a_p_b(m_autil.mk_add(_a, _b), m);
|
||||
add_axiom(mk_eq(n, a_p_b, false));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
check semantics of extract.
|
||||
TBD: check semantics of extract.
|
||||
|
||||
let e = extract(s, i, l)
|
||||
|
||||
|
@ -809,17 +814,73 @@ void theory_seq::add_len_axiom(expr* n) {
|
|||
0 <= i < len(s) & l >= len(s) - i -> len(e) = len(s) - i
|
||||
0 <= i < len(s) & 0 <= l < len(s) - i -> len(e) = l
|
||||
0 <= i < len(s) & l < 0 -> len(e) = 0
|
||||
i < 0 -> e = s
|
||||
i >= len(s) -> e = empty
|
||||
* i < 0 -> e = s
|
||||
* i >= len(s) -> e = empty
|
||||
*/
|
||||
|
||||
void theory_seq::add_extract_axiom(expr* e) {
|
||||
expr* s, *i, *j;
|
||||
VERIFY(m_util.str.is_extract(e, s, i, j));
|
||||
expr_ref i_ge_0(m), i_le_j(m), j_lt_s(m);
|
||||
|
||||
NOT_IMPLEMENTED_YET();
|
||||
expr* s, *i, *l;
|
||||
VERIFY(m_util.str.is_extract(e, s, i, l));
|
||||
expr_ref x(mk_skolem(symbol("extract_prefix"), s, e), m);
|
||||
expr_ref ls(m_util.str.mk_length(s), m);
|
||||
expr_ref lx(m_util.str.mk_length(x), m);
|
||||
expr_ref le(m_util.str.mk_length(e), m);
|
||||
expr_ref ls_minus_i(m_autil.mk_sub(ls, i), m);
|
||||
expr_ref xe(m_util.str.mk_concat(x, e), m);
|
||||
expr_ref zero(m_autil.mk_int(0), m);
|
||||
|
||||
literal i_ge_0 = mk_literal(m_autil.mk_ge(i, m_autil.mk_int(0)));
|
||||
literal i_le_l = mk_literal(m_autil.mk_le(i, l));
|
||||
literal i_ge_ls = mk_literal(m_autil.mk_ge(i, ls));
|
||||
literal l_ge_ls = mk_literal(m_autil.mk_ge(l, ls));
|
||||
literal l_ge_zero = mk_literal(m_autil.mk_ge(l, zero));
|
||||
|
||||
add_axiom(~i_ge_0, i_ge_ls, mk_literal(m_util.str.mk_prefix(xe, s)));
|
||||
add_axiom(~i_ge_0, i_ge_ls, mk_eq(lx, i, false));
|
||||
add_axiom(~i_ge_0, i_ge_ls, ~l_ge_ls, mk_eq(le, ls_minus_i, false));
|
||||
add_axiom(~i_ge_0, i_ge_ls, l_ge_zero, mk_eq(le, zero, false));
|
||||
}
|
||||
|
||||
/*
|
||||
let e = at(s, i)
|
||||
|
||||
0 <= i < len(s) -> s = xey & len(x) = i & len(e) = 1
|
||||
|
||||
*/
|
||||
void theory_seq::add_at_axiom(expr* e) {
|
||||
expr* s, *i;
|
||||
VERIFY(m_util.str.is_at(e, s, i));
|
||||
expr_ref x(m), y(m), lx(m), le(m), xey(m), one(m), len_e(m), len_x(m);
|
||||
x = mk_skolem(symbol("at_left"), s);
|
||||
y = mk_skolem(symbol("at_right"), s);
|
||||
xey = m_util.str.mk_concat(x, e, y);
|
||||
one = m_autil.mk_int(1);
|
||||
len_e = m_util.str.mk_length(e);
|
||||
len_x = m_util.str.mk_length(x);
|
||||
|
||||
literal i_ge_0 = mk_literal(m_autil.mk_ge(i, m_autil.mk_int(0)));
|
||||
literal i_ge_len_s = mk_literal(m_autil.mk_ge(i, m_util.str.mk_length(s)));
|
||||
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(s, xey, false));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(one, len_e, false));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(i, len_x, false));
|
||||
}
|
||||
|
||||
|
||||
literal theory_seq::mk_literal(expr* _e) {
|
||||
expr_ref e(_e, m);
|
||||
context& ctx = get_context();
|
||||
ctx.internalize(e, false);
|
||||
return ctx.get_literal(e);
|
||||
}
|
||||
|
||||
void theory_seq::add_axiom(literal l1, literal l2, literal l3, literal l4) {
|
||||
literal_vector lits;
|
||||
if (l1 != null_literal) lits.push_back(l1);
|
||||
if (l2 != null_literal) lits.push_back(l2);
|
||||
if (l3 != null_literal) lits.push_back(l3);
|
||||
if (l4 != null_literal) lits.push_back(l4);
|
||||
get_context().mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
||||
}
|
||||
|
||||
void theory_seq::assert_axiom(expr_ref& e) {
|
||||
|
@ -967,5 +1028,17 @@ void theory_seq::relevant_eh(app* n) {
|
|||
if (m_util.str.is_length(n)) {
|
||||
add_len_axiom(n);
|
||||
}
|
||||
else if (m_util.str.is_index(n)) {
|
||||
add_indexof_axiom(n);
|
||||
}
|
||||
else if (m_util.str.is_replace(n)) {
|
||||
add_replace_axiom(n);
|
||||
}
|
||||
else if (m_util.str.is_extract(n)) {
|
||||
add_extract_axiom(n);
|
||||
}
|
||||
else if (m_util.str.is_at(n)) {
|
||||
add_at_axiom(n);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@ Revision History:
|
|||
#include "theory_seq_empty.h"
|
||||
#include "th_rewriter.h"
|
||||
#include "union_find.h"
|
||||
#include "ast_trail.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
|
@ -101,6 +102,7 @@ namespace smt {
|
|||
vector<expr_array> m_lhs, m_rhs; // persistent sets of equalities.
|
||||
vector<enode_pair_dependency_array> m_deps; // persistent sets of dependencies.
|
||||
|
||||
ast2ast_trailmap<sort, func_decl> m_sort2len_fn; // length functions per sort.
|
||||
seq_factory* m_factory; // value factory
|
||||
expr_ref_vector m_ineqs; // inequalities to check solution against
|
||||
exclusion_table m_exclude; // set of asserted disequalities.
|
||||
|
@ -168,15 +170,19 @@ namespace smt {
|
|||
|
||||
void assert_axiom(expr_ref& e);
|
||||
void create_axiom(expr_ref& e);
|
||||
void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal, literal l4 = null_literal);
|
||||
|
||||
void add_indexof_axiom(expr* e);
|
||||
void add_replace_axiom(expr* e);
|
||||
void add_extract_axiom(expr* e);
|
||||
void add_len_concat_axiom(expr* c);
|
||||
void add_len_axiom(expr* n);
|
||||
void add_at_axiom(expr* n);
|
||||
literal mk_literal(expr* n);
|
||||
void tightest_prefix(expr* s, expr* x, literal lit);
|
||||
|
||||
void new_eq_len_concat(enode* n1, enode* n2);
|
||||
|
||||
expr_ref tightest_prefix(expr* s, expr* x);
|
||||
expr_ref canonize(expr* e, enode_pair_dependency*& eqs);
|
||||
expr_ref expand(expr* e, enode_pair_dependency*& eqs);
|
||||
void add_dependency(enode_pair_dependency*& dep, enode* a, enode* b);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue