3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-01 02:18:46 +00:00

v2 of dual maxres engine

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-08-03 18:50:21 -07:00
parent 622d8b5cd1
commit d429e72e92
6 changed files with 253 additions and 139 deletions

View file

@ -89,7 +89,7 @@ public:
m_solver.pop_to_base_level(); m_solver.pop_to_base_level();
dep2asm_t dep2asm; dep2asm_t dep2asm;
m_model.reset(); m_model = 0;
lbool r = internalize_formulas(); lbool r = internalize_formulas();
if (r != l_true) return r; if (r != l_true) return r;
r = internalize_assumptions(num_assumptions, assumptions, dep2asm); r = internalize_assumptions(num_assumptions, assumptions, dep2asm);
@ -161,7 +161,7 @@ public:
r.append(m_core.size(), m_core.c_ptr()); r.append(m_core.size(), m_core.c_ptr());
} }
virtual void get_model(model_ref & m) { virtual void get_model(model_ref & m) {
if (!m_model) { if (!m_model.get()) {
extract_model(); extract_model();
} }
m = m_model; m = m_model;
@ -275,6 +275,7 @@ private:
// bit-blasting model converter. // bit-blasting model converter.
void extract_model() { void extract_model() {
TRACE("sat", tout << "retrieve model\n";);
model_ref md = alloc(model, m); model_ref md = alloc(model, m);
sat::model const & ll_m = m_solver.get_model(); sat::model const & ll_m = m_solver.get_model();
atom2bool_var::iterator it = m_map.begin(); atom2bool_var::iterator it = m_map.begin();
@ -300,6 +301,7 @@ private:
if (m_mc) { if (m_mc) {
(*m_mc)(m_model); (*m_mc)(m_model);
} }
SASSERT(m_model);
// IF_VERBOSE(0, model_smt2_pp(verbose_stream(), m, *(m_model.get()), 0);); // IF_VERBOSE(0, model_smt2_pp(verbose_stream(), m, *(m_model.get()), 0););
} }

View file

@ -58,10 +58,10 @@ Notes:
#include "maxres.h" #include "maxres.h"
#include "ast_pp.h" #include "ast_pp.h"
#include "mus.h" #include "mus.h"
#include "mss.h"
using namespace opt; using namespace opt;
class maxres : public maxsmt_solver_base { class maxres : public maxsmt_solver_base {
public: public:
enum strategy_t { enum strategy_t {
@ -75,8 +75,10 @@ private:
obj_map<expr, rational> m_asm2weight; obj_map<expr, rational> m_asm2weight;
ptr_vector<expr> m_new_core; ptr_vector<expr> m_new_core;
mus m_mus; mus m_mus;
mss m_mss;
expr_ref_vector m_trail; expr_ref_vector m_trail;
strategy_t m_st; strategy_t m_st;
rational m_max_upper;
public: public:
maxres(ast_manager& m, opt_solver* s, params_ref& p, maxres(ast_manager& m, opt_solver* s, params_ref& p,
@ -85,6 +87,7 @@ public:
maxsmt_solver_base(s, m, p, ws, soft), maxsmt_solver_base(s, m, p, ws, soft),
m_B(m), m_asms(m), m_B(m), m_asms(m),
m_mus(m_s, m), m_mus(m_s, m),
m_mss(m_s, m),
m_trail(m), m_trail(m),
m_st(st) m_st(st)
{ {
@ -168,7 +171,6 @@ public:
default: default:
break; break;
} }
IF_VERBOSE(1, verbose_stream() << "(opt.max_res [" << m_lower << ":" << m_upper << "])\n";);
} }
return l_true; return l_true;
} }
@ -179,8 +181,7 @@ public:
init_local(); init_local();
enable_bvsat(); enable_bvsat();
enable_sls(); enable_sls();
lbool was_sat = l_false; ptr_vector<expr> mcs;
ptr_vector<expr> soft_compl;
vector<ptr_vector<expr> > cores; vector<ptr_vector<expr> > cores;
while (m_lower < m_upper) { while (m_lower < m_upper) {
TRACE("opt", TRACE("opt",
@ -189,37 +190,38 @@ public:
tout << "\n"; tout << "\n";
display(tout); display(tout);
); );
lbool is_sat = m_s->check_sat(0, 0); lbool is_sat = try_improve_bound(cores, mcs);
if (m_cancel) { if (m_cancel) {
return l_undef; return l_undef;
} }
if (is_sat == l_true) {
was_sat = l_true;
is_sat = extend_model(soft_compl);
switch (is_sat) {
case l_undef:
break;
case l_false:
is_sat = process_unsat();
break;
case l_true:
is_sat = process_sat(soft_compl);
break;
}
}
switch (is_sat) { switch (is_sat) {
case l_undef: case l_undef:
return l_undef; return l_undef;
case l_false: case l_false:
SASSERT(cores.empty() && mcs.empty());
m_lower = m_upper; m_lower = m_upper;
return was_sat; return l_true;
case l_true: case l_true:
SASSERT(cores.empty() || mcs.empty());
SASSERT(!cores.empty() || !mcs.empty());
for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) {
is_sat = process_unsat(cores[i]);
}
if (is_sat == l_true && !mcs.empty()) {
is_sat = process_sat(mcs);
}
if (is_sat != l_true) {
return is_sat;
}
break; break;
} }
} }
return was_sat; m_lower = m_lower;
return l_true;
} }
lbool mss_solver() { lbool mss_solver() {
NOT_IMPLEMENTED_YET(); NOT_IMPLEMENTED_YET();
return l_undef; return l_undef;
@ -314,6 +316,7 @@ public:
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr())); fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
m_s->assert_expr(fml); m_s->assert_expr(fml);
m_lower += w; m_lower += w;
IF_VERBOSE(1, verbose_stream() << "(opt.maxres [" << m_lower << ":" << m_upper << "])\n";);
return l_true; return l_true;
} }
@ -422,6 +425,7 @@ public:
// cs is a correction set (a complement of a (maximal) satisfying assignment). // cs is a correction set (a complement of a (maximal) satisfying assignment).
void cs_max_resolve(ptr_vector<expr>& cs, rational const& w) { void cs_max_resolve(ptr_vector<expr>& cs, rational const& w) {
TRACE("opt", display_vec(tout << "correction set: ", cs.size(), cs.c_ptr()););
SASSERT(!cs.empty()); SASSERT(!cs.empty());
expr_ref fml(m), asum(m); expr_ref fml(m), asum(m);
app_ref cls(m), d(m), dd(m); app_ref cls(m), d(m), dd(m);
@ -437,6 +441,7 @@ public:
// asm => b_i // asm => b_i
// asm => d_{i-1} or b_{i-1} // asm => d_{i-1} or b_{i-1}
// d_i => d_{i-1} or b_{i-1} // d_i => d_{i-1} or b_{i-1}
//
for (unsigned i = 1; i < cs.size(); ++i) { for (unsigned i = 1; i < cs.size(); ++i) {
expr* b_i = m_B[i-1].get(); expr* b_i = m_B[i-1].get();
expr* b_i1 = m_B[i].get(); expr* b_i1 = m_B[i].get();
@ -460,82 +465,89 @@ public:
m_s->assert_expr(fml); m_s->assert_expr(fml);
} }
// lbool try_improve_bound(vector<ptr_vector<expr> >& cores, ptr_vector<expr>& mcs) {
// The hard constraints are satisfiable. cores.reset();
// Extend the current model to satisfy as many mcs.reset();
// soft constraints as possible until either ptr_vector<expr> core;
// hitting an unsatisfiable subset of size < 1/2*#assumptions, expr_ref_vector asms(m_asms);
// or producing a maximal satisfying assignment exceeding while (true) {
// number of soft constraints >= 1/2*#assumptions. rational upper = m_max_upper;
// In both cases, soft constraints that are not satisfied unsigned sz = 0;
// is <= 1/2*#assumptions. In this way, the new modified assumptions for (unsigned i = 0; m_upper <= upper && i < asms.size(); ++i, ++sz) {
// account for at most 1/2 of the current assumptions. upper -= get_weight(asms[i].get());
// The core reduction algorithms also need to take into account }
// at most 1/2 of the assumptions for minimization. lbool is_sat = m_s->check_sat(sz, asms.c_ptr());
// switch (is_sat) {
case l_true: {
lbool extend_model(ptr_vector<expr>& soft_compl) { ptr_vector<expr> lits;
ptr_vector<expr> asms; lits.append(asms.size(), asms.c_ptr());
model_ref mdl; set_mus(false);
expr_ref tmp(m); is_sat = m_mss(cores, lits);
m_s->get_model(mdl); set_mus(true);
unsigned num_true = update_model(mdl, asms, soft_compl); if (is_sat != l_true) {
for (unsigned j = 0; j < m_asms.size(); ++j) { return is_sat;
expr* fml = m_asms[j].get();
VERIFY(mdl->eval(fml, tmp));
if (m.is_false(tmp)) {
asms.push_back(fml);
lbool is_sat = m_s->check_sat(asms.size(), asms.c_ptr());
asms.pop_back();
switch (is_sat) {
case l_false:
if (num_true*2 < m_asms.size()) {
return l_false;
}
break;
case l_true:
m_s->get_model(mdl);
num_true = update_model(mdl, asms, soft_compl);
break;
case l_undef:
return l_undef;
} }
m_mss.get_model(m_model); // last model is best way to reduce search space.
update_assignment();
if (cores.empty() || asms.size() < cores.back().size()) {
cores.reset();
mcs.append(asms.size(), asms.c_ptr());
}
return l_true;
}
case l_undef:
return l_undef;
case l_false:
core.reset();
m_s->get_unsat_core(core);
is_sat = minimize_core(core);
if (is_sat != l_true) {
break;
}
if (core.empty()) {
cores.reset();
mcs.reset();
return l_false;
}
cores.push_back(core);
if (core.size() >= 3) {
return l_true;
}
//
// check arithmetic: cannot improve upper bound
//
if (m_upper <= upper) {
return l_true;
}
remove_soft(core, asms);
break;
} }
} }
return l_true;
return l_undef;
} }
unsigned update_model(model_ref& mdl, ptr_vector<expr>& asms, ptr_vector<expr>& soft_compl) {
expr_ref tmp(m); void update_assignment() {
asms.reset(); rational upper(0);
soft_compl.reset(); for (unsigned i = 0; i < m_soft.size(); ++i) {
rational weight = m_lower; expr_ref tmp(m);
unsigned num_true = 0; expr* n = m_soft[i].get();
for (unsigned i = 0; i < m_asms.size(); ++i) { VERIFY(m_model->eval(n, tmp));
expr* fml = m_asms[i].get(); CTRACE("opt", !m.is_true(tmp) && !m.is_false(tmp),
VERIFY(mdl->eval(fml, tmp)); tout << mk_pp(n, m) << " |-> " << mk_pp(tmp, m) << "\n";);
SASSERT(m.is_false(tmp) || m.is_true(tmp));
if (m.is_false(tmp)) { m_assignment[i] = m.is_true(tmp);
weight += get_weight(fml); if (!m_assignment[i]) {
soft_compl.push_back(fml); upper += m_weights[i];
}
else {
++num_true;
asms.push_back(fml);
} }
} }
if (weight < m_upper) { SASSERT(upper <= m_upper);
m_upper = weight; m_upper = upper;
m_model = mdl; IF_VERBOSE(1, verbose_stream() <<
for (unsigned i = 0; i < m_soft.size(); ++i) { "(opt.maxres [" << m_lower << ":" << m_upper << "])\n";);
expr_ref tmp(m);
VERIFY(m_model->eval(m_soft[i].get(), tmp));
m_assignment[i] = m.is_true(tmp);
}
IF_VERBOSE(1, verbose_stream() <<
"(opt.mus-mss_max_res [" << m_lower << ":" << m_upper << "])\n";);
}
return num_true;
} }
void remove_soft(ptr_vector<expr> const& core, expr_ref_vector& asms) { void remove_soft(ptr_vector<expr> const& core, expr_ref_vector& asms) {
@ -564,6 +576,7 @@ public:
for (unsigned i = 0; i < m_soft.size(); ++i) { for (unsigned i = 0; i < m_soft.size(); ++i) {
add_soft(m_soft[i].get(), m_weights[i]); add_soft(m_soft[i].get(), m_weights[i]);
} }
m_max_upper = m_upper;
} }
}; };

View file

@ -138,8 +138,6 @@ namespace opt {
m_s = sat_solver; m_s = sat_solver;
} }
void maxsmt_solver_base::enable_bvsat() { void maxsmt_solver_base::enable_bvsat() {
if (m_enable_sat && !m_sat_enabled && probe_bv()) { if (m_enable_sat && !m_sat_enabled && probe_bv()) {
enable_inc_bvsat(); enable_inc_bvsat();
@ -159,6 +157,12 @@ namespace opt {
} }
} }
void maxsmt_solver_base::set_mus(bool f) {
params_ref p;
p.set_bool("minimize_core", f);
m_s->updt_params(p);
}
app* maxsmt_solver_base::mk_fresh_bool(char const* name) { app* maxsmt_solver_base::mk_fresh_bool(char const* name) {
app* result = m.mk_fresh_const(name, m.mk_bool_sort()); app* result = m.mk_fresh_const(name, m.mk_bool_sort());
m_mc->insert(result->get_decl()); m_mc->insert(result->get_decl());

View file

@ -94,6 +94,7 @@ namespace opt {
void init(); void init();
expr* mk_not(expr* e); expr* mk_not(expr* e);
bool probe_bv(); bool probe_bv();
void set_mus(bool f);
void enable_bvsat(); void enable_bvsat();
void enable_sls(); void enable_sls();
app* mk_fresh_bool(char const* name); app* mk_fresh_bool(char const* name);

View file

@ -27,35 +27,74 @@ Notes:
namespace opt { namespace opt {
mss::mss(solver& s, ast_manager& m): s(s), m(m), m_cancel(false) { mss::mss(ref<solver>& s, ast_manager& m): m_s(s), m(m), m_cancel(false) {
} }
mss::~mss() { mss::~mss() {
} }
void mss::check_parameters(vector<exprs > const& cores, exprs& literals) { bool mss::check_result() {
lbool is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
if (is_sat == l_undef) return true;
SASSERT(is_sat == l_true);
if (is_sat == l_false) return false;
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
for (; it != end; ++it) {
m_mss.push_back(*it);
is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
m_mss.pop_back();
if (is_sat == l_undef) return true;
SASSERT(is_sat == l_false);
if (is_sat == l_true) return false;
}
return true;
}
void mss::initialize(vector<exprs>& cores, exprs& literals) {
expr* n; expr* n;
expr_set lits, core_lits;
for (unsigned i = 0; i < literals.size(); ++i) { for (unsigned i = 0; i < literals.size(); ++i) {
n = literals[i]; n = literals[i];
lits.insert(n);
m.is_not(n, n); m.is_not(n, n);
if (!is_uninterp_const(n)) { if (!is_uninterp_const(n)) {
throw default_exception("arguments have to be uninterpreted literals"); throw default_exception("arguments have to be uninterpreted literals");
} }
} }
// cores are disjoint exprs rest_core;
// cores are a subset of literals
// literals not in cores evaluate to true in current model
}
/**
\brief Move literals satisfied in todo into mss.
Precondition: the solver state is satisfiable.
*/
void mss::update_model() {
expr_ref tmp(m); expr_ref tmp(m);
s.get_model(m_model); //
update_set(m_todo); // the last core is a dummy core. It contains literals that
// did not occur in previous cores and did not evaluate to true
// in the current model.
//
for (unsigned i = 0; i < cores.size(); ++i) {
exprs const& core = cores[i];
for (unsigned j = 0; j < core.size(); ++j) {
expr* n = core[j];
if (!core_lits.contains(n)) {
core_lits.insert(n);
VERIFY(m_model->eval(n, tmp));
if (m.is_true(tmp)) {
m_mss.push_back(n);
}
}
}
}
for (unsigned i = 0; i < literals.size(); ++i) {
expr* n = literals[i];
if (!core_lits.contains(n)) {
VERIFY(m_model->eval(n, tmp));
if (m.is_true(tmp)) {
m_mss.push_back(n);
}
else {
rest_core.push_back(n);
core_lits.insert(n);
}
}
}
cores.push_back(rest_core);
} }
void mss::update_set(exprs& lits) { void mss::update_set(exprs& lits) {
@ -69,7 +108,7 @@ namespace opt {
continue; continue;
} }
VERIFY(m_model->eval(n, tmp)); VERIFY(m_model->eval(n, tmp));
if (m.is_false(tmp)) { if (!m.is_true(tmp)) {
if (j != i) { if (j != i) {
lits[j] = lits[i]; lits[j] = lits[i];
} }
@ -83,33 +122,44 @@ namespace opt {
} }
lbool mss::operator()(vector<exprs> const& cores, exprs& literals) { lbool mss::operator()(vector<exprs> const& _cores, exprs& literals) {
m_mss.reset(); m_mss.reset();
m_mcs.reset(); m_mcs.reset();
m_todo.reset(); m_s->get_model(m_model);
m_todo.append(literals); SASSERT(m_model);
check_parameters(cores, literals); vector<exprs> cores(_cores);
update_model(); TRACE("opt",
for (unsigned i = 0; i < cores.size(); ++i) {
display_vec(tout << "core: ", cores[i].size(), cores[i].c_ptr());
}
display_vec(tout << "lits: ", literals.size(), literals.c_ptr());
);
initialize(cores, literals);
TRACE("opt", display(tout););
lbool is_sat = l_true; lbool is_sat = l_true;
for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) { for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) {
is_sat = process_core(cores[i]); bool has_mcs = false;
bool is_last = i + 1 < cores.size();
SASSERT(check_invariant());
update_set(cores[i]);
is_sat = process_core(1, cores[i], has_mcs, is_last);
} }
if (is_sat == l_true) { if (is_sat == l_true) {
SASSERT(check_invariant());
TRACE("opt", display(tout););
literals.reset(); literals.reset();
literals.append(m_mss); literals.append(m_mss);
SASSERT(check_result());
} }
return is_sat; return is_sat;
} }
lbool mss::process_core(exprs const& _core) { //
// at least one literal in core is false in current model. // at least one literal in core is false in current model.
// pick literals in core that are not yet in mss. // pick literals in core that are not yet in mss.
exprs core(_core); //
update_set(core); lbool mss::process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last) {
return process_core(1, core);
}
lbool mss::process_core(unsigned sz, exprs& core) {
TRACE("opt", tout << "process: " << sz << " out of " << core.size() << " literals\n";); TRACE("opt", tout << "process: " << sz << " out of " << core.size() << " literals\n";);
SASSERT(sz > 0); SASSERT(sz > 0);
if (core.empty()) { if (core.empty()) {
@ -118,18 +168,25 @@ namespace opt {
if (m_cancel) { if (m_cancel) {
return l_undef; return l_undef;
} }
if (sz == 1 && is_last && !has_mcs) {
// there has to be at least one false
// literal in the core.
m_mcs.insert(core[0]);
return l_true;
}
sz = std::min(sz, core.size()); sz = std::min(sz, core.size());
unsigned sz_save = m_mss.size(); unsigned sz_save = m_mss.size();
m_mss.append(sz, core.c_ptr()); m_mss.append(sz, core.c_ptr());
lbool is_sat = s.check_sat(m_mss.size(), m_mss.c_ptr()); lbool is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
m_mss.resize(sz_save); m_mss.resize(sz_save);
switch (is_sat) { switch (is_sat) {
case l_true: case l_true:
update_model(); m_s->get_model(m_model);
update_set(core); update_set(core);
return process_core(2*sz, core); return process_core(2*sz, core, has_mcs, is_last);
case l_false: case l_false:
if (sz == 1) { if (sz == 1) {
has_mcs = true;
m_mcs.insert(core[0]); m_mcs.insert(core[0]);
core[0] = core.back(); core[0] = core.back();
core.pop_back(); core.pop_back();
@ -138,12 +195,12 @@ namespace opt {
exprs core2; exprs core2;
core2.append(core.size()-sz, core.c_ptr()+sz); core2.append(core.size()-sz, core.c_ptr()+sz);
core.resize(sz); core.resize(sz);
is_sat = process_core(sz, core2); is_sat = process_core(sz, core2, has_mcs, false);
if (is_sat != l_true) { if (is_sat != l_true) {
return is_sat; return is_sat;
} }
} }
return process_core(1, core); return process_core(1, core, has_mcs, is_last);
case l_undef: case l_undef:
return l_undef; return l_undef;
} }
@ -151,8 +208,41 @@ namespace opt {
return l_true; return l_true;
} }
void mss::display_vec(std::ostream& out, unsigned sz, expr* const* args) const {
for (unsigned i = 0; i < sz; ++i) {
out << mk_pp(args[i], m) << " ";
}
out << "\n";
}
void mss::display(std::ostream& out) const { void mss::display(std::ostream& out) const {
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
out << "mcs:\n";
for (; it != end; ++it) {
out << mk_pp(*it, m) << "\n";
}
out << "\n";
out << "mss:\n";
for (unsigned i = 0; i < m_mss.size(); ++i) {
out << mk_pp(m_mss[i], m) << "\n";
}
out << "\n";
if (m_model) {
model_smt2_pp(out, m, *(m_model.get()), 0);
}
}
bool mss::check_invariant() const {
if (!m_model) return true;
expr_ref tmp(m);
for (unsigned i = 0; i < m_mss.size(); ++i) {
expr* n = m_mss[i];
VERIFY(m_model->eval(n, tmp));
CTRACE("opt", !m.is_true(tmp), tout << mk_pp(n, m) << " |-> " << mk_pp(tmp, m) << "\n";);
SASSERT(!m.is_false(tmp));
}
return true;
} }
} }

View file

@ -21,30 +21,34 @@ Notes:
namespace opt { namespace opt {
class mss { class mss {
solver& s; ref<solver>& m_s;
ast_manager& m; ast_manager& m;
volatile bool m_cancel; volatile bool m_cancel;
typedef ptr_vector<expr> exprs; typedef ptr_vector<expr> exprs;
typedef obj_hashtable<expr> expr_set; typedef obj_hashtable<expr> expr_set;
exprs m_mss; exprs m_mss;
expr_set m_mcs; expr_set m_mcs;
exprs m_todo;
model_ref m_model; model_ref m_model;
public: public:
mss(solver& s, ast_manager& m); mss(ref<solver>& s, ast_manager& m);
~mss(); ~mss();
lbool operator()(vector<ptr_vector<expr> > const& cores, ptr_vector<expr>& literals); lbool operator()(vector<exprs> const& cores, exprs& literals);
void set_cancel(bool f) { m_cancel = f; } void set_cancel(bool f) { m_cancel = f; }
void get_model(model_ref& mdl) { mdl = m_model; }
private: private:
void check_parameters(vector<exprs > const& cores, exprs& literals); void initialize(vector<exprs>& cores, exprs& literals);
bool check_result();
void update_model(); void update_model();
void update_set(exprs& lits); void update_set(exprs& lits);
lbool process_core(exprs const& _core); lbool process_core(exprs const& _core);
lbool process_core(unsigned sz, exprs& core); lbool process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last);
void display(std::ostream& out) const; void display(std::ostream& out) const;
void display_vec(std::ostream& out, unsigned sz, expr* const* args) const;
bool check_invariant() const;
}; };
}; };