3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

v2 of dual maxres engine

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-08-03 18:50:21 -07:00
parent 622d8b5cd1
commit d429e72e92
6 changed files with 253 additions and 139 deletions

View file

@ -89,7 +89,7 @@ public:
m_solver.pop_to_base_level();
dep2asm_t dep2asm;
m_model.reset();
m_model = 0;
lbool r = internalize_formulas();
if (r != l_true) return r;
r = internalize_assumptions(num_assumptions, assumptions, dep2asm);
@ -161,7 +161,7 @@ public:
r.append(m_core.size(), m_core.c_ptr());
}
virtual void get_model(model_ref & m) {
if (!m_model) {
if (!m_model.get()) {
extract_model();
}
m = m_model;
@ -275,6 +275,7 @@ private:
// bit-blasting model converter.
void extract_model() {
TRACE("sat", tout << "retrieve model\n";);
model_ref md = alloc(model, m);
sat::model const & ll_m = m_solver.get_model();
atom2bool_var::iterator it = m_map.begin();
@ -300,6 +301,7 @@ private:
if (m_mc) {
(*m_mc)(m_model);
}
SASSERT(m_model);
// IF_VERBOSE(0, model_smt2_pp(verbose_stream(), m, *(m_model.get()), 0););
}

View file

@ -58,10 +58,10 @@ Notes:
#include "maxres.h"
#include "ast_pp.h"
#include "mus.h"
#include "mss.h"
using namespace opt;
class maxres : public maxsmt_solver_base {
public:
enum strategy_t {
@ -75,8 +75,10 @@ private:
obj_map<expr, rational> m_asm2weight;
ptr_vector<expr> m_new_core;
mus m_mus;
mss m_mss;
expr_ref_vector m_trail;
strategy_t m_st;
rational m_max_upper;
public:
maxres(ast_manager& m, opt_solver* s, params_ref& p,
@ -85,6 +87,7 @@ public:
maxsmt_solver_base(s, m, p, ws, soft),
m_B(m), m_asms(m),
m_mus(m_s, m),
m_mss(m_s, m),
m_trail(m),
m_st(st)
{
@ -168,7 +171,6 @@ public:
default:
break;
}
IF_VERBOSE(1, verbose_stream() << "(opt.max_res [" << m_lower << ":" << m_upper << "])\n";);
}
return l_true;
}
@ -179,8 +181,7 @@ public:
init_local();
enable_bvsat();
enable_sls();
lbool was_sat = l_false;
ptr_vector<expr> soft_compl;
ptr_vector<expr> mcs;
vector<ptr_vector<expr> > cores;
while (m_lower < m_upper) {
TRACE("opt",
@ -189,37 +190,38 @@ public:
tout << "\n";
display(tout);
);
lbool is_sat = m_s->check_sat(0, 0);
lbool is_sat = try_improve_bound(cores, mcs);
if (m_cancel) {
return l_undef;
}
if (is_sat == l_true) {
was_sat = l_true;
is_sat = extend_model(soft_compl);
switch (is_sat) {
case l_undef:
break;
case l_false:
is_sat = process_unsat();
break;
case l_true:
is_sat = process_sat(soft_compl);
break;
}
}
switch (is_sat) {
case l_undef:
return l_undef;
case l_false:
SASSERT(cores.empty() && mcs.empty());
m_lower = m_upper;
return was_sat;
case l_true:
return l_true;
case l_true:
SASSERT(cores.empty() || mcs.empty());
SASSERT(!cores.empty() || !mcs.empty());
for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) {
is_sat = process_unsat(cores[i]);
}
if (is_sat == l_true && !mcs.empty()) {
is_sat = process_sat(mcs);
}
if (is_sat != l_true) {
return is_sat;
}
break;
}
}
return was_sat;
m_lower = m_lower;
return l_true;
}
lbool mss_solver() {
NOT_IMPLEMENTED_YET();
return l_undef;
@ -314,6 +316,7 @@ public:
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
m_s->assert_expr(fml);
m_lower += w;
IF_VERBOSE(1, verbose_stream() << "(opt.maxres [" << m_lower << ":" << m_upper << "])\n";);
return l_true;
}
@ -422,6 +425,7 @@ public:
// cs is a correction set (a complement of a (maximal) satisfying assignment).
void cs_max_resolve(ptr_vector<expr>& cs, rational const& w) {
TRACE("opt", display_vec(tout << "correction set: ", cs.size(), cs.c_ptr()););
SASSERT(!cs.empty());
expr_ref fml(m), asum(m);
app_ref cls(m), d(m), dd(m);
@ -437,6 +441,7 @@ public:
// asm => b_i
// asm => d_{i-1} or b_{i-1}
// d_i => d_{i-1} or b_{i-1}
//
for (unsigned i = 1; i < cs.size(); ++i) {
expr* b_i = m_B[i-1].get();
expr* b_i1 = m_B[i].get();
@ -460,82 +465,89 @@ public:
m_s->assert_expr(fml);
}
//
// The hard constraints are satisfiable.
// Extend the current model to satisfy as many
// soft constraints as possible until either
// hitting an unsatisfiable subset of size < 1/2*#assumptions,
// or producing a maximal satisfying assignment exceeding
// number of soft constraints >= 1/2*#assumptions.
// In both cases, soft constraints that are not satisfied
// is <= 1/2*#assumptions. In this way, the new modified assumptions
// account for at most 1/2 of the current assumptions.
// The core reduction algorithms also need to take into account
// at most 1/2 of the assumptions for minimization.
//
lbool extend_model(ptr_vector<expr>& soft_compl) {
ptr_vector<expr> asms;
model_ref mdl;
expr_ref tmp(m);
m_s->get_model(mdl);
unsigned num_true = update_model(mdl, asms, soft_compl);
for (unsigned j = 0; j < m_asms.size(); ++j) {
expr* fml = m_asms[j].get();
VERIFY(mdl->eval(fml, tmp));
if (m.is_false(tmp)) {
asms.push_back(fml);
lbool is_sat = m_s->check_sat(asms.size(), asms.c_ptr());
asms.pop_back();
switch (is_sat) {
case l_false:
if (num_true*2 < m_asms.size()) {
return l_false;
}
break;
case l_true:
m_s->get_model(mdl);
num_true = update_model(mdl, asms, soft_compl);
break;
case l_undef:
return l_undef;
lbool try_improve_bound(vector<ptr_vector<expr> >& cores, ptr_vector<expr>& mcs) {
cores.reset();
mcs.reset();
ptr_vector<expr> core;
expr_ref_vector asms(m_asms);
while (true) {
rational upper = m_max_upper;
unsigned sz = 0;
for (unsigned i = 0; m_upper <= upper && i < asms.size(); ++i, ++sz) {
upper -= get_weight(asms[i].get());
}
lbool is_sat = m_s->check_sat(sz, asms.c_ptr());
switch (is_sat) {
case l_true: {
ptr_vector<expr> lits;
lits.append(asms.size(), asms.c_ptr());
set_mus(false);
is_sat = m_mss(cores, lits);
set_mus(true);
if (is_sat != l_true) {
return is_sat;
}
m_mss.get_model(m_model); // last model is best way to reduce search space.
update_assignment();
if (cores.empty() || asms.size() < cores.back().size()) {
cores.reset();
mcs.append(asms.size(), asms.c_ptr());
}
return l_true;
}
case l_undef:
return l_undef;
case l_false:
core.reset();
m_s->get_unsat_core(core);
is_sat = minimize_core(core);
if (is_sat != l_true) {
break;
}
if (core.empty()) {
cores.reset();
mcs.reset();
return l_false;
}
cores.push_back(core);
if (core.size() >= 3) {
return l_true;
}
//
// check arithmetic: cannot improve upper bound
//
if (m_upper <= upper) {
return l_true;
}
remove_soft(core, asms);
break;
}
}
return l_true;
return l_undef;
}
unsigned update_model(model_ref& mdl, ptr_vector<expr>& asms, ptr_vector<expr>& soft_compl) {
expr_ref tmp(m);
asms.reset();
soft_compl.reset();
rational weight = m_lower;
unsigned num_true = 0;
for (unsigned i = 0; i < m_asms.size(); ++i) {
expr* fml = m_asms[i].get();
VERIFY(mdl->eval(fml, tmp));
SASSERT(m.is_false(tmp) || m.is_true(tmp));
if (m.is_false(tmp)) {
weight += get_weight(fml);
soft_compl.push_back(fml);
}
else {
++num_true;
asms.push_back(fml);
void update_assignment() {
rational upper(0);
for (unsigned i = 0; i < m_soft.size(); ++i) {
expr_ref tmp(m);
expr* n = m_soft[i].get();
VERIFY(m_model->eval(n, tmp));
CTRACE("opt", !m.is_true(tmp) && !m.is_false(tmp),
tout << mk_pp(n, m) << " |-> " << mk_pp(tmp, m) << "\n";);
m_assignment[i] = m.is_true(tmp);
if (!m_assignment[i]) {
upper += m_weights[i];
}
}
if (weight < m_upper) {
m_upper = weight;
m_model = mdl;
for (unsigned i = 0; i < m_soft.size(); ++i) {
expr_ref tmp(m);
VERIFY(m_model->eval(m_soft[i].get(), tmp));
m_assignment[i] = m.is_true(tmp);
}
IF_VERBOSE(1, verbose_stream() <<
"(opt.mus-mss_max_res [" << m_lower << ":" << m_upper << "])\n";);
}
return num_true;
SASSERT(upper <= m_upper);
m_upper = upper;
IF_VERBOSE(1, verbose_stream() <<
"(opt.maxres [" << m_lower << ":" << m_upper << "])\n";);
}
void remove_soft(ptr_vector<expr> const& core, expr_ref_vector& asms) {
@ -564,6 +576,7 @@ public:
for (unsigned i = 0; i < m_soft.size(); ++i) {
add_soft(m_soft[i].get(), m_weights[i]);
}
m_max_upper = m_upper;
}
};

View file

@ -138,8 +138,6 @@ namespace opt {
m_s = sat_solver;
}
void maxsmt_solver_base::enable_bvsat() {
if (m_enable_sat && !m_sat_enabled && probe_bv()) {
enable_inc_bvsat();
@ -159,6 +157,12 @@ namespace opt {
}
}
void maxsmt_solver_base::set_mus(bool f) {
params_ref p;
p.set_bool("minimize_core", f);
m_s->updt_params(p);
}
app* maxsmt_solver_base::mk_fresh_bool(char const* name) {
app* result = m.mk_fresh_const(name, m.mk_bool_sort());
m_mc->insert(result->get_decl());

View file

@ -94,6 +94,7 @@ namespace opt {
void init();
expr* mk_not(expr* e);
bool probe_bv();
void set_mus(bool f);
void enable_bvsat();
void enable_sls();
app* mk_fresh_bool(char const* name);

View file

@ -27,35 +27,74 @@ Notes:
namespace opt {
mss::mss(solver& s, ast_manager& m): s(s), m(m), m_cancel(false) {
mss::mss(ref<solver>& s, ast_manager& m): m_s(s), m(m), m_cancel(false) {
}
mss::~mss() {
}
}
void mss::check_parameters(vector<exprs > const& cores, exprs& literals) {
bool mss::check_result() {
lbool is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
if (is_sat == l_undef) return true;
SASSERT(is_sat == l_true);
if (is_sat == l_false) return false;
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
for (; it != end; ++it) {
m_mss.push_back(*it);
is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
m_mss.pop_back();
if (is_sat == l_undef) return true;
SASSERT(is_sat == l_false);
if (is_sat == l_true) return false;
}
return true;
}
void mss::initialize(vector<exprs>& cores, exprs& literals) {
expr* n;
expr_set lits, core_lits;
for (unsigned i = 0; i < literals.size(); ++i) {
n = literals[i];
lits.insert(n);
m.is_not(n, n);
if (!is_uninterp_const(n)) {
throw default_exception("arguments have to be uninterpreted literals");
}
}
// cores are disjoint
// cores are a subset of literals
// literals not in cores evaluate to true in current model
}
/**
\brief Move literals satisfied in todo into mss.
Precondition: the solver state is satisfiable.
*/
void mss::update_model() {
exprs rest_core;
expr_ref tmp(m);
s.get_model(m_model);
update_set(m_todo);
//
// the last core is a dummy core. It contains literals that
// did not occur in previous cores and did not evaluate to true
// in the current model.
//
for (unsigned i = 0; i < cores.size(); ++i) {
exprs const& core = cores[i];
for (unsigned j = 0; j < core.size(); ++j) {
expr* n = core[j];
if (!core_lits.contains(n)) {
core_lits.insert(n);
VERIFY(m_model->eval(n, tmp));
if (m.is_true(tmp)) {
m_mss.push_back(n);
}
}
}
}
for (unsigned i = 0; i < literals.size(); ++i) {
expr* n = literals[i];
if (!core_lits.contains(n)) {
VERIFY(m_model->eval(n, tmp));
if (m.is_true(tmp)) {
m_mss.push_back(n);
}
else {
rest_core.push_back(n);
core_lits.insert(n);
}
}
}
cores.push_back(rest_core);
}
void mss::update_set(exprs& lits) {
@ -69,7 +108,7 @@ namespace opt {
continue;
}
VERIFY(m_model->eval(n, tmp));
if (m.is_false(tmp)) {
if (!m.is_true(tmp)) {
if (j != i) {
lits[j] = lits[i];
}
@ -83,33 +122,44 @@ namespace opt {
}
lbool mss::operator()(vector<exprs> const& cores, exprs& literals) {
lbool mss::operator()(vector<exprs> const& _cores, exprs& literals) {
m_mss.reset();
m_mcs.reset();
m_todo.reset();
m_todo.append(literals);
check_parameters(cores, literals);
update_model();
m_s->get_model(m_model);
SASSERT(m_model);
vector<exprs> cores(_cores);
TRACE("opt",
for (unsigned i = 0; i < cores.size(); ++i) {
display_vec(tout << "core: ", cores[i].size(), cores[i].c_ptr());
}
display_vec(tout << "lits: ", literals.size(), literals.c_ptr());
);
initialize(cores, literals);
TRACE("opt", display(tout););
lbool is_sat = l_true;
for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) {
is_sat = process_core(cores[i]);
bool has_mcs = false;
bool is_last = i + 1 < cores.size();
SASSERT(check_invariant());
update_set(cores[i]);
is_sat = process_core(1, cores[i], has_mcs, is_last);
}
if (is_sat == l_true) {
SASSERT(check_invariant());
TRACE("opt", display(tout););
literals.reset();
literals.append(m_mss);
SASSERT(check_result());
}
return is_sat;
}
lbool mss::process_core(exprs const& _core) {
// at least one literal in core is false in current model.
// pick literals in core that are not yet in mss.
exprs core(_core);
update_set(core);
return process_core(1, core);
}
lbool mss::process_core(unsigned sz, exprs& core) {
//
// at least one literal in core is false in current model.
// pick literals in core that are not yet in mss.
//
lbool mss::process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last) {
TRACE("opt", tout << "process: " << sz << " out of " << core.size() << " literals\n";);
SASSERT(sz > 0);
if (core.empty()) {
@ -118,18 +168,25 @@ namespace opt {
if (m_cancel) {
return l_undef;
}
if (sz == 1 && is_last && !has_mcs) {
// there has to be at least one false
// literal in the core.
m_mcs.insert(core[0]);
return l_true;
}
sz = std::min(sz, core.size());
unsigned sz_save = m_mss.size();
m_mss.append(sz, core.c_ptr());
lbool is_sat = s.check_sat(m_mss.size(), m_mss.c_ptr());
lbool is_sat = m_s->check_sat(m_mss.size(), m_mss.c_ptr());
m_mss.resize(sz_save);
switch (is_sat) {
case l_true:
update_model();
m_s->get_model(m_model);
update_set(core);
return process_core(2*sz, core);
return process_core(2*sz, core, has_mcs, is_last);
case l_false:
if (sz == 1) {
has_mcs = true;
m_mcs.insert(core[0]);
core[0] = core.back();
core.pop_back();
@ -138,12 +195,12 @@ namespace opt {
exprs core2;
core2.append(core.size()-sz, core.c_ptr()+sz);
core.resize(sz);
is_sat = process_core(sz, core2);
is_sat = process_core(sz, core2, has_mcs, false);
if (is_sat != l_true) {
return is_sat;
}
}
return process_core(1, core);
return process_core(1, core, has_mcs, is_last);
case l_undef:
return l_undef;
}
@ -151,8 +208,41 @@ namespace opt {
return l_true;
}
void mss::display_vec(std::ostream& out, unsigned sz, expr* const* args) const {
for (unsigned i = 0; i < sz; ++i) {
out << mk_pp(args[i], m) << " ";
}
out << "\n";
}
void mss::display(std::ostream& out) const {
expr_set::iterator it = m_mcs.begin(), end = m_mcs.end();
out << "mcs:\n";
for (; it != end; ++it) {
out << mk_pp(*it, m) << "\n";
}
out << "\n";
out << "mss:\n";
for (unsigned i = 0; i < m_mss.size(); ++i) {
out << mk_pp(m_mss[i], m) << "\n";
}
out << "\n";
if (m_model) {
model_smt2_pp(out, m, *(m_model.get()), 0);
}
}
bool mss::check_invariant() const {
if (!m_model) return true;
expr_ref tmp(m);
for (unsigned i = 0; i < m_mss.size(); ++i) {
expr* n = m_mss[i];
VERIFY(m_model->eval(n, tmp));
CTRACE("opt", !m.is_true(tmp), tout << mk_pp(n, m) << " |-> " << mk_pp(tmp, m) << "\n";);
SASSERT(!m.is_false(tmp));
}
return true;
}
}

View file

@ -21,30 +21,34 @@ Notes:
namespace opt {
class mss {
solver& s;
ref<solver>& m_s;
ast_manager& m;
volatile bool m_cancel;
typedef ptr_vector<expr> exprs;
typedef obj_hashtable<expr> expr_set;
exprs m_mss;
expr_set m_mcs;
exprs m_todo;
model_ref m_model;
public:
mss(solver& s, ast_manager& m);
mss(ref<solver>& s, ast_manager& m);
~mss();
lbool operator()(vector<ptr_vector<expr> > const& cores, ptr_vector<expr>& literals);
lbool operator()(vector<exprs> const& cores, exprs& literals);
void set_cancel(bool f) { m_cancel = f; }
void get_model(model_ref& mdl) { mdl = m_model; }
private:
void check_parameters(vector<exprs > const& cores, exprs& literals);
void initialize(vector<exprs>& cores, exprs& literals);
bool check_result();
void update_model();
void update_set(exprs& lits);
lbool process_core(exprs const& _core);
lbool process_core(unsigned sz, exprs& core);
lbool process_core(unsigned sz, exprs& core, bool& has_mcs, bool is_last);
void display(std::ostream& out) const;
void display_vec(std::ostream& out, unsigned sz, expr* const* args) const;
bool check_invariant() const;
};
};