3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

replace lean to lp

Signed-off-by: Lev Nachmanson <levnach@microsoft.com>
This commit is contained in:
Lev Nachmanson 2017-07-10 11:06:37 -07:00 committed by Lev Nachmanson
parent db0a3f4358
commit d41c65a4f9
72 changed files with 1334 additions and 1213 deletions

View file

@ -75,7 +75,7 @@ public:
/// return the first element of the queue and removes it from the queue
unsigned dequeue();
unsigned peek() const {
SASSERT(m_heap_size > 0);
lp_assert(m_heap_size > 0);
return m_heap[1];
}
#ifdef Z3DEBUG

View file

@ -20,7 +20,7 @@ Revision History:
#include "util/vector.h"
#include "util/lp/binary_heap_priority_queue.h"
namespace lp {
// this is the child place in the heap
// is is the child place in heap
template <typename T> void binary_heap_priority_queue<T>::swap_with_parent(unsigned i) {
unsigned parent = m_heap[i >> 1];
put_at(i >> 1, m_heap[i]);
@ -48,8 +48,8 @@ template <typename T> void binary_heap_priority_queue<T>::decrease_priority(unsi
template <typename T> bool binary_heap_priority_queue<T>::is_consistent() const {
for (int i = 0; i < m_heap_inverse.size(); i++) {
int i_index = m_heap_inverse[i];
SASSERT(i_index <= static_cast<int>(m_heap_size));
SASSERT(i_index == -1 || m_heap[i_index] == i);
lp_assert(i_index <= static_cast<int>(m_heap_size));
lp_assert(i_index == -1 || m_heap[i_index] == i);
}
for (unsigned i = 1; i < m_heap_size; i++) {
unsigned ch = i << 1;
@ -71,7 +71,7 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
if (o_in_heap == -1) {
return; // nothing to do
}
SASSERT(static_cast<unsigned>(o_in_heap) <= m_heap_size);
lp_assert(static_cast<unsigned>(o_in_heap) <= m_heap_size);
if (static_cast<unsigned>(o_in_heap) < m_heap_size) {
put_at(o_in_heap, m_heap[m_heap_size--]);
if (m_priorities[m_heap[o_in_heap]] > priority_of_o) {
@ -88,11 +88,11 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
}
}
} else {
SASSERT(static_cast<unsigned>(o_in_heap) == m_heap_size);
lp_assert(static_cast<unsigned>(o_in_heap) == m_heap_size);
m_heap_size--;
}
m_heap_inverse[o] = -1;
// SASSERT(is_consistent());
// lp_assert(is_consistent());
}
// n is the initial queue capacity.
// The capacity will be enlarged two times automatically if needed
@ -118,7 +118,7 @@ template <typename T> void binary_heap_priority_queue<T>::put_to_heap(unsigned i
template <typename T> void binary_heap_priority_queue<T>::enqueue_new(unsigned o, const T& priority) {
m_heap_size++;
int i = m_heap_size;
SASSERT(o < m_priorities.size());
lp_assert(o < m_priorities.size());
m_priorities[o] = priority;
put_at(i, o);
while (i > 1 && m_priorities[m_heap[i >> 1]] > priority) {
@ -150,7 +150,7 @@ template <typename T> void binary_heap_priority_queue<T>::change_priority_for_ex
/// return the first element of the queue and removes it from the queue
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue_and_get_priority(T & priority) {
SASSERT(m_heap_size != 0);
lp_assert(m_heap_size != 0);
int ret = m_heap[1];
priority = m_priorities[ret];
put_the_last_at_the_top_and_fix_the_heap();
@ -184,7 +184,7 @@ template <typename T> void binary_heap_priority_queue<T>::put_the_last_at_the_to
}
/// return the first element of the queue and removes it from the queue
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue() {
SASSERT(m_heap_size > 0);
lp_assert(m_heap_size > 0);
int ret = m_heap[1];
put_the_last_at_the_top_and_fix_the_heap();
m_heap_inverse[ret] = -1;

View file

@ -29,7 +29,7 @@ template <typename T> binary_heap_upair_queue<T>::binary_heap_upair_queue(unsign
template <typename T> unsigned
binary_heap_upair_queue<T>::dequeue_available_spot() {
SASSERT(m_available_spots.empty() == false);
lp_assert(m_available_spots.empty() == false);
unsigned ret = m_available_spots.back();
m_available_spots.pop_back();
return ret;
@ -69,7 +69,7 @@ template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsig
m_pairs.resize(new_size);
}
ij_index = dequeue_available_spot();
// SASSERT(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
// lp_assert(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
m_pairs[ij_index] = p;
m_pairs_to_index[p] = ij_index;
} else {
@ -79,7 +79,7 @@ template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsig
}
template <typename T> void binary_heap_upair_queue<T>::dequeue(unsigned & i, unsigned &j) {
SASSERT(!m_q.is_empty());
lp_assert(!m_q.is_empty());
unsigned ij_index = m_q.dequeue();
upair & p = m_pairs[ij_index];
i = p.first;

View file

@ -106,11 +106,11 @@ public :
}
const impq & ub(unsigned j) const {
SASSERT(upper_bound_is_available(j));
lp_assert(upper_bound_is_available(j));
return m_bp.get_upper_bound(j);
}
const impq & lb(unsigned j) const {
SASSERT(low_bound_is_available(j));
lp_assert(low_bound_is_available(j));
return m_bp.get_low_bound(j);
}
@ -168,7 +168,7 @@ public :
void limit_all_monoids_from_above() {
int strict = 0;
mpq total;
SASSERT(is_zero(total));
lp_assert(is_zero(total));
m_it.reset();
mpq a; unsigned j;
while (m_it.next(a, j)) {
@ -195,7 +195,7 @@ public :
void limit_all_monoids_from_below() {
int strict = 0;
mpq total;
SASSERT(is_zero(total));
lp_assert(is_zero(total));
m_it.reset();
mpq a; unsigned j;
while (m_it.next(a, j)) {
@ -287,7 +287,7 @@ public :
// mpq a; unsigned j;
// while (it->next(a, j)) {
// if (be.m_j == j) continue;
// SASSERT(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
// lp_assert(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
// is_neg(a)? low_bound: !low_bound);
// }

View file

@ -0,0 +1,47 @@
/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#include "util/lp/lar_solver.h"
namespace lp {
bound_propagator::bound_propagator(lar_solver & ls):
m_lar_solver(ls) {}
column_type bound_propagator::get_column_type(unsigned j) const {
return m_lar_solver.m_mpq_lar_core_solver.m_column_types()[j];
}
const impq & bound_propagator::get_low_bound(unsigned j) const {
return m_lar_solver.m_mpq_lar_core_solver.m_r_low_bounds()[j];
}
const impq & bound_propagator::get_upper_bound(unsigned j) const {
return m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j];
}
void bound_propagator::try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
j = m_lar_solver.adjust_column_index_to_term_index(j);
lconstraint_kind kind = is_low? GE : LE;
if (strict)
kind = static_cast<lconstraint_kind>(kind / 2);
if (!bound_is_interesting(j, kind, v))
return;
unsigned k; // index to ibounds
if (is_low) {
if (try_get_val(m_improved_low_bounds, j, k)) {
auto & found_bound = m_ibounds[k];
if (v > found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
} else {
m_improved_low_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
}
} else { // the upper bound case
if (try_get_val(m_improved_upper_bounds, j, k)) {
auto & found_bound = m_ibounds[k];
if (v < found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
} else {
m_improved_upper_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
}
}
}
}

View file

@ -115,11 +115,11 @@ public:
}
T get_low_bound() const {
SASSERT(m_low_bound_is_set);
lp_assert(m_low_bound_is_set);
return m_low_bound;
}
T get_upper_bound() const {
SASSERT(m_upper_bound_is_set);
lp_assert(m_upper_bound_is_set);
return m_upper_bound;
}
@ -171,7 +171,7 @@ public:
}
T get_fixed_value() const {
SASSERT(m_is_fixed);
lp_assert(m_is_fixed);
return m_fixed_value;
}

View file

@ -163,7 +163,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_
case column_type::free_column:
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
}
@ -372,7 +372,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_g
unsigned width = m_column_widths[col];
string s = row[col];
int number_of_blanks = width - static_cast<unsigned>(s.size());
SASSERT(number_of_blanks >= 0);
lp_assert(number_of_blanks >= 0);
print_blanks(number_of_blanks, m_out);
m_out << s << ' ';
if (col < row.size() - 1) {
@ -383,7 +383,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_g
string rs = T_to_string(rst);
int nb = m_rs_width - static_cast<int>(rs.size());
SASSERT(nb >= 0);
lp_assert(nb >= 0);
print_blanks(nb + 1, m_out);
m_out << rs << std::endl;
}

View file

@ -46,7 +46,7 @@ public:
dense_matrix(unsigned m, unsigned n);
dense_matrix operator*=(matrix<T, X> const & a) {
SASSERT(column_count() == a.row_count());
lp_assert(column_count() == a.row_count());
dense_matrix c(row_count(), a.column_count());
for (unsigned i = 0; i < row_count(); i++) {
for (unsigned j = 0; j < a.column_count(); j++) {

View file

@ -185,7 +185,7 @@ template <typename T, typename X> void dense_matrix<T, X>::multiply_row_by_const
template <typename T, typename X>
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b){
SASSERT(a.column_count() == b.row_count());
lp_assert(a.column_count() == b.row_count());
dense_matrix<T, X> ret(a.row_count(), b.column_count());
for (unsigned i = 0; i < ret.m_m; i++)
for (unsigned j = 0; j< ret.m_n; j++) {

View file

@ -76,7 +76,7 @@ public:
void push_back(unsigned row_index, T val ) {
SASSERT(row_index != m_column_index);
lp_assert(row_index != m_column_index);
m_column_vector.push_back(row_index, val);
}

View file

@ -74,8 +74,8 @@ void eta_matrix<T, X>::apply_from_right(vector<T> & w) {
t += w[it.first] * it.second;
}
w[m_column_index] = t;
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
// delete clone_w;
#endif
}
@ -114,9 +114,9 @@ void eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
}
}
#ifdef Z3DEBUG
// SASSERT(w.is_OK());
// SASSERT(vectors_are_equal<T>(wcopy, w.m_data));
#ifdef LEAN_DEBUG
// lp_assert(w.is_OK());
// lp_assert(vectors_are_equal<T>(wcopy, w.m_data));
#endif
}
#ifdef Z3DEBUG
@ -144,8 +144,8 @@ void eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p) {
for (auto & pair : m_column_vector.m_data) {
pair.first = p.get_rev(pair.first);
}
#ifdef Z3DEBUG
// SASSERT(deb == *this);
#ifdef LEAN_DEBUG
// lp_assert(deb == *this);
#endif
}
}

View file

@ -21,7 +21,7 @@ Revision History:
#include "util/vector.h"
#include "util/lp/numeric_pair.h"
#include "util/lp/eta_matrix.hpp"
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
template double lp::eta_matrix<double, double>::get_elem(unsigned int, unsigned int) const;
template lp::mpq lp::eta_matrix<lp::mpq, lp::mpq>::get_elem(unsigned int, unsigned int) const;
template lp::mpq lp::eta_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::get_elem(unsigned int, unsigned int) const;

View file

@ -110,7 +110,7 @@ public:
return m_data[i];
}
void clean_up() {
void clp_up() {
#if 0==1
for (unsigned k = 0; k < m_index.size(); k++) {
unsigned i = m_index[k];
@ -164,7 +164,7 @@ public:
}
}
void restore_index_and_clean_from_data() {
void restore_index_and_clp_from_data() {
m_index.resize(0);
for (unsigned i = 0; i < m_data.size(); i++) {
T & v = m_data[i];

View file

@ -56,13 +56,13 @@ template <typename T>
void indexed_vector<T>::resize(unsigned data_size) {
clear();
m_data.resize(data_size, numeric_traits<T>::zero());
SASSERT(is_OK());
lp_assert(is_OK());
}
template <typename T>
void indexed_vector<T>::set_value(const T& value, unsigned index) {
m_data[index] = value;
SASSERT(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
lp_assert(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
m_index.push_back(index);
}

View file

@ -35,7 +35,7 @@ public:
return m_data[j] >= 0;
}
void insert(unsigned j) {
SASSERT(j < m_data.size());
lp_assert(j < m_data.size());
if (contains(j)) return;
m_data[j] = m_index.size();
m_index.push_back(j);

View file

@ -5,10 +5,10 @@
#include "util/lp/int_solver.h"
#include "util/lp/lar_solver.h"
namespace lean {
namespace lp {
void int_solver::fix_non_base_columns() {
lean_assert(is_feasible() && inf_int_set_is_correct());
lp_assert(is_feasible() && inf_int_set_is_correct());
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
bool change = false;
for (unsigned j : lcs.m_r_nbasis) {
@ -22,7 +22,7 @@ void int_solver::fix_non_base_columns() {
if (m_lar_solver->find_feasible_solution() == INFEASIBLE)
failed();
init_inf_int_set();
lean_assert(is_feasible() && inf_int_set_is_correct());
lp_assert(is_feasible() && inf_int_set_is_correct());
}
void int_solver::failed() {
@ -30,11 +30,11 @@ void int_solver::failed() {
for (unsigned j : m_old_values_set.m_index) {
lcs.m_r_x[j] = m_old_values_data[j];
lean_assert(lcs.m_r_solver.column_is_feasible(j));
lp_assert(lcs.m_r_solver.column_is_feasible(j));
lcs.m_r_solver.remove_column_from_inf_set(j);
}
lean_assert(lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis());
lean_assert(lcs.m_r_solver.current_x_is_feasible());
lp_assert(lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis());
lp_assert(lcs.m_r_solver.current_x_is_feasible());
m_old_values_set.clear();
}
@ -78,7 +78,7 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (int j : m_inf_int_set.m_index) {
lean_assert(is_base(j) && column_is_int_inf(j));
lp_assert(is_base(j) && column_is_int_inf(j));
if (!is_boxed(j))
continue;
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_low_bounds()[j].x;
@ -109,7 +109,7 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
}
bool int_solver::mk_gomory_cut(unsigned row_index, explanation & ex) {
lean_assert(false);
lp_assert(false);
return true;
/*
const auto & row = m_lar_solver->A_r().m_rows[row_index];
@ -297,10 +297,10 @@ void int_solver::init_check_data() {
}
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
lean_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
lean_assert(is_feasible());
lp_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
lp_assert(is_feasible());
init_check_data();
lean_assert(inf_int_set_is_correct());
lp_assert(inf_int_set_is_correct());
// currently it is a reimplementation of
// final_check_status theory_arith<Ext>::check_int_feasibility()
// from theory_arith_int.h
@ -348,7 +348,7 @@ lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
if (j != -1) {
TRACE("arith_int", tout << "j" << j << " does not have an integer assignment: " << get_value(j) << "\n";);
lean_assert(t.is_empty());
lp_assert(t.is_empty());
t.add_to_map(j, mpq(1));
k = floor(get_value(j));
TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
@ -358,7 +358,7 @@ lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
return lia_move::branch;
}
}
lean_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
lp_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
// return true;
return lia_move::give_up;
}
@ -390,7 +390,8 @@ void int_solver::move_non_base_vars_to_bounds() {
void int_solver::set_value(unsigned j, const impq & new_val) {
void int_solver::set_value_for_nbasic_column(unsigned j, const impq & new_val) {
lp_assert(!is_base(j));
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
if (!m_old_values_set.contains(j)) {
m_old_values_set.insert(j);
@ -453,6 +454,7 @@ void int_solver::patch_int_infeasible_columns() {
TRACE("patch_int",
tout << "patching with 0\n";);
}
lp_assert(is_feasible() && inf_int_set_is_correct());
}
}
@ -623,7 +625,7 @@ linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
int_solver::int_solver(lar_solver* lar_slv) :
m_lar_solver(lar_slv),
m_branch_cut_counter(0) {
lean_assert(m_old_values_set.size() == 0);
lp_assert(m_old_values_set.size() == 0);
m_old_values_set.resize(lar_slv->A_r().column_count());
m_old_values_data.resize(lar_slv->A_r().column_count(), zero_of_type<impq>());
}
@ -742,8 +744,8 @@ bool int_solver::get_freedom_interval_for_column(unsigned x_j, bool & inf_l, imp
tout << "]\n";
tout << "val = " << get_value(x_j) << "\n";
);
lean_assert(inf_l || l <= get_value(x_j));
lean_assert(inf_u || u >= get_value(x_j));
lp_assert(inf_l || l <= get_value(x_j));
lp_assert(inf_u || u >= get_value(x_j));
return true;
}
@ -760,7 +762,7 @@ bool int_solver::value_is_int(unsigned j) const {
bool int_solver::is_feasible() const {
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
lean_assert(
lp_assert(
lcs.m_r_solver.calc_current_x_is_feasible_include_non_basis() ==
lcs.m_r_solver.current_x_is_feasible());
return lcs.m_r_solver.current_x_is_feasible();

View file

@ -9,7 +9,7 @@
#include "util/lp/int_set.h"
#include "util/lp/lar_term.h"
namespace lean {
namespace lp {
class lar_solver;
template <typename T, typename X>
struct lp_constraint;

View file

@ -40,7 +40,7 @@ inline std::string lconstraint_kind_string(lconstraint_kind t) {
case GT: return std::string(">");
case EQ: return std::string("=");
}
SASSERT(false);
lp_unreachable();
return std::string(); // it is unreachable
}
@ -88,7 +88,7 @@ public:
: lar_base_constraint(kind, right_side), m_coeffs(left_side) {}
lar_constraint(const lar_base_constraint & c) {
SASSERT(false); // should not be called : todo!
lp_assert(false); // should not be called : todo!
}
unsigned size() const override {

View file

@ -183,9 +183,9 @@ public:
}
void push() {
SASSERT(m_r_solver.basis_heading_is_correct());
SASSERT(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
SASSERT(m_column_types.size() == m_r_A.column_count());
lp_assert(m_r_solver.basis_heading_is_correct());
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
lp_assert(m_column_types.size() == m_r_A.column_count());
m_stacked_simplex_strategy = settings().simplex_strategy();
m_stacked_simplex_strategy.push();
m_column_types.push();
@ -207,7 +207,7 @@ public:
template <typename K>
void push_vector(stacked_vector<K> & pushed_vector, const vector<K> & vector) {
SASSERT(pushed_vector.size() <= vector.size());
lp_assert(pushed_vector.size() <= vector.size());
for (unsigned i = 0; i < vector.size();i++) {
if (i == pushed_vector.size()) {
pushed_vector.push_back(vector[i]);
@ -257,8 +257,8 @@ public:
pop_basis(k);
m_stacked_simplex_strategy.pop(k);
settings().simplex_strategy() = m_stacked_simplex_strategy;
SASSERT(m_r_solver.basis_heading_is_correct());
SASSERT(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
lp_assert(m_r_solver.basis_heading_is_correct());
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
}
bool need_to_presolve_with_double_solver() const {
@ -319,11 +319,11 @@ public:
break;
default:
SASSERT(false);
lp_assert(false);
}
break;
default:
SASSERT(false);
lp_unreachable();
}
m_r_solver.remove_column_from_inf_set(j);
return true;
@ -332,7 +332,7 @@ public:
void prepare_solver_x_with_signature_tableau(const lar_solution_signature & signature) {
SASSERT(m_r_solver.inf_set_is_correct());
lp_assert(m_r_solver.inf_set_is_correct());
for (auto &t : signature) {
unsigned j = t.first;
if (m_r_heading[j] >= 0)
@ -347,9 +347,9 @@ public:
m_r_solver.m_x[jb] -= delta * m_r_solver.m_A.get_val(cc);
m_r_solver.update_column_in_inf_set(jb);
}
SASSERT(m_r_solver.A_mult_x_is_off() == false);
lp_assert(m_r_solver.A_mult_x_is_off() == false);
}
SASSERT(m_r_solver.inf_set_is_correct());
lp_assert(m_r_solver.inf_set_is_correct());
}
@ -357,7 +357,7 @@ public:
void prepare_solver_x_with_signature(const lar_solution_signature & signature, lp_primal_core_solver<L,K> & s) {
for (auto &t : signature) {
unsigned j = t.first;
SASSERT(m_r_heading[j] < 0);
lp_assert(m_r_heading[j] < 0);
auto pos_type = t.second;
switch (pos_type) {
case at_low_bound:
@ -374,7 +374,7 @@ public:
case not_at_bound:
switch (m_column_types[j]) {
case column_type::free_column:
SASSERT(false); // unreachable
lp_assert(false); // unreachable
case column_type::upper_bound:
s.m_x[j] = s.m_upper_bounds[j];
break;
@ -392,15 +392,15 @@ public:
s.m_x[j] = s.m_low_bounds[j];
break;
default:
SASSERT(false);
lp_assert(false);
}
break;
default:
SASSERT(false);
lp_unreachable();
}
}
SASSERT(is_zero_vector(s.m_b));
lp_assert(is_zero_vector(s.m_b));
s.solve_Ax_eq_b();
}
@ -433,7 +433,7 @@ public:
// the queues of delayed indices
std::queue<unsigned> entr_q, leav_q;
auto * l = cs.m_factorization;
SASSERT(l->get_status() == LU_status::OK);
lp_assert(l->get_status() == LU_status::OK);
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
unsigned entering = trace_of_basis_change[i];
unsigned leaving = trace_of_basis_change[i+1];
@ -461,8 +461,8 @@ public:
continue;
}
}
SASSERT(cs.m_basis_heading[entering] < 0);
SASSERT(cs.m_basis_heading[leaving] >= 0);
lp_assert(cs.m_basis_heading[entering] < 0);
lp_assert(cs.m_basis_heading[leaving] >= 0);
if (l->get_status() == LU_status::OK) {
l->prepare_entering(entering, w); // to init vector w
l->replace_column(zero_of_type<L>(), w, cs.m_basis_heading[leaving]);
@ -486,7 +486,7 @@ public:
void solve_on_signature_tableau(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
r_basis_is_OK();
SASSERT(settings().use_tableau());
lp_assert(settings().use_tableau());
bool r = catch_up_in_lu_tableau(changes_of_basis, m_d_solver.m_basis_heading);
if (!r) { // it is the case where m_d_solver gives a degenerated basis
@ -505,10 +505,10 @@ public:
return;
m_r_solver.stop_tracing_basis_changes();
// and now catch up in the double solver
SASSERT(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
lp_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
}
SASSERT(r_basis_is_OK());
lp_assert(r_basis_is_OK());
}
bool adjust_x_of_column(unsigned j) {
@ -522,16 +522,16 @@ public:
}
m_r_solver.snap_column_to_bound_tableau(j);
SASSERT(m_r_solver.column_is_feasible(j));
lp_assert(m_r_solver.column_is_feasible(j));
m_r_solver.m_inf_set.erase(j);
*/
SASSERT(false);
lp_assert(false);
return true;
}
bool catch_up_in_lu_tableau(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading) {
SASSERT(r_basis_is_OK());
lp_assert(r_basis_is_OK());
// the queues of delayed indices
std::queue<unsigned> entr_q, leav_q;
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
@ -561,8 +561,8 @@ public:
continue;
}
}
SASSERT(m_r_solver.m_basis_heading[entering] < 0);
SASSERT(m_r_solver.m_basis_heading[leaving] >= 0);
lp_assert(m_r_solver.m_basis_heading[entering] < 0);
lp_assert(m_r_solver.m_basis_heading[leaving] >= 0);
m_r_solver.change_basis_unconditionally(entering, leaving);
if(!m_r_solver.pivot_column_tableau(entering, m_r_solver.m_basis_heading[entering])) {
// unroll the last step
@ -572,12 +572,12 @@ public:
#endif
m_r_solver.pivot_column_tableau(leaving, m_r_solver.m_basis_heading[leaving]);
#ifdef Z3DEBUG
SASSERT(t);
lp_assert(t);
#endif
return false;
}
}
SASSERT(r_basis_is_OK());
lp_assert(r_basis_is_OK());
return true;
}
@ -587,14 +587,14 @@ public:
if (!m_r_solver.m_settings.use_tableau())
return true;
for (unsigned j : m_r_solver.m_basis) {
SASSERT(m_r_solver.m_A.m_columns[j].size() == 1);
SASSERT(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
lp_assert(m_r_solver.m_A.m_columns[j].size() == 1);
lp_assert(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
}
for (unsigned j =0; j < m_r_solver.m_basis_heading.size(); j++) {
if (m_r_solver.m_basis_heading[j] >= 0) continue;
if (m_r_solver.m_column_types[j] == column_type::fixed) continue;
SASSERT(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
SASSERT( m_r_solver.m_basis_heading[j] <= -1);
lp_assert(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
lp_assert( m_r_solver.m_basis_heading[j] <= -1);
}
#endif
return true;
@ -630,7 +630,7 @@ public:
return;
m_r_solver.stop_tracing_basis_changes();
// and now catch up in the double solver
SASSERT(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
lp_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
}
}
@ -656,7 +656,7 @@ public:
template <typename L, typename K>
void extract_signature_from_lp_core_solver(const lp_primal_core_solver<L, K> & solver, lar_solution_signature & signature) {
signature.clear();
SASSERT(signature.size() == 0);
lp_assert(signature.size() == 0);
for (unsigned j = 0; j < solver.m_basis_heading.size(); j++) {
if (solver.m_basis_heading[j] < 0) {
signature[j] = solver.get_non_basic_column_value_position(j);
@ -679,7 +679,7 @@ public:
if (upper_bound_is_set(j)) {
const auto & ub = m_r_solver.m_upper_bounds[j];
m_d_upper_bounds[j] = ub.x.get_double() + delta * ub.y.get_double();
SASSERT(!low_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_low_bounds[j]));
lp_assert(!low_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_low_bounds[j]));
}
}
}
@ -744,7 +744,7 @@ public:
case column_type::fixed:
return true;
default:
SASSERT(false);
lp_assert(false);
}
return false;
}
@ -759,20 +759,20 @@ public:
case column_type::fixed:
return true;
default:
SASSERT(false);
lp_assert(false);
}
return false;
}
void update_delta(mpq& delta, numeric_pair<mpq> const& l, numeric_pair<mpq> const& u) const {
SASSERT(l <= u);
lp_assert(l <= u);
if (l.x < u.x && l.y > u.y) {
mpq delta1 = (u.x - l.x) / (l.y - u.y);
if (delta1 < delta) {
delta = delta1;
}
}
SASSERT(l.x + delta * l.y <= u.x + delta * u.y);
lp_assert(l.x + delta * l.y <= u.x + delta * u.y);
}
@ -819,14 +819,14 @@ public:
}
const impq & low_bound(unsigned j) const {
lean_assert(m_column_types()[j] == column_type::fixed ||
lp_assert(m_column_types()[j] == column_type::fixed ||
m_column_types()[j] == column_type::boxed ||
m_column_types()[j] == column_type::low_bound);
return m_r_low_bounds[j];
}
const impq & upper_bound(unsigned j) const {
lean_assert(m_column_types()[j] == column_type::fixed ||
lp_assert(m_column_types()[j] == column_type::fixed ||
m_column_types()[j] == column_type::boxed ||
m_column_types()[j] == column_type::upper_bound);
return m_r_upper_bounds[j];

View file

@ -72,9 +72,9 @@ lar_core_solver::lar_core_solver(
column_names){}
void lar_core_solver::init_costs(bool first_time) {
SASSERT(false); // should not be called
// SASSERT(this->m_x.size() >= this->m_n());
// SASSERT(this->m_column_types.size() >= this->m_n());
lp_assert(false); // should not be called
// lp_assert(this->m_x.size() >= this->m_n());
// lp_assert(this->m_column_types.size() >= this->m_n());
// if (first_time)
// this->m_costs.resize(this->m_n());
// X inf = this->m_infeasibility;
@ -84,7 +84,7 @@ void lar_core_solver::init_costs(bool first_time) {
// if (!(first_time || inf >= this->m_infeasibility)) {
// LP_OUT(this->m_settings, "iter = " << this->total_iterations() << std::endl);
// LP_OUT(this->m_settings, "inf was " << T_to_string(inf) << " and now " << T_to_string(this->m_infeasibility) << std::endl);
// SASSERT(false);
// lp_assert(false);
// }
// if (inf == this->m_infeasibility)
// this->m_iters_with_no_cost_growing++;
@ -135,7 +135,7 @@ void lar_core_solver::init_cost_for_column(unsigned j) {
this->m_costs[j] = numeric_traits<T>::zero();
break;
default:
SASSERT(false);
lp_assert(false);
break;
}*/
}
@ -168,7 +168,7 @@ int lar_core_solver::column_is_out_of_bounds(unsigned j) {
return 0;
break;
}*/
SASSERT(false);
lp_assert(false);
return true;
}
@ -222,7 +222,7 @@ void lar_core_solver::calculate_pivot_row(unsigned i) {
}
void lar_core_solver::fill_not_improvable_zero_sum_from_inf_row() {
SASSERT(m_r_solver.A_mult_x_is_off() == false);
lp_assert(m_r_solver.A_mult_x_is_off() == false);
unsigned bj = m_r_basis[m_r_solver.m_inf_row_index_for_tableau];
m_infeasible_sum_sign = m_r_solver.inf_sign_of_column(bj);
m_infeasible_linear_combination.clear();
@ -257,15 +257,15 @@ void lar_core_solver::fill_not_improvable_zero_sum() {
void lar_core_solver::solve() {
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
SASSERT(m_r_solver.inf_set_is_correct());
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
lp_assert(m_r_solver.inf_set_is_correct());
if (m_r_solver.current_x_is_feasible() && m_r_solver.m_look_for_feasible_solution_only) {
m_r_solver.set_status(OPTIMAL);
return;
}
++settings().st().m_need_to_solve_inf;
SASSERT(!m_r_solver.A_mult_x_is_off());
SASSERT((!settings().use_tableau()) || r_basis_is_OK());
lp_assert(!m_r_solver.A_mult_x_is_off());
lp_assert((!settings().use_tableau()) || r_basis_is_OK());
if (need_to_presolve_with_double_solver()) {
prefix_d();
lar_solution_signature solution_signature;
@ -278,11 +278,11 @@ void lar_core_solver::solve() {
solve_on_signature_tableau(solution_signature, changes_of_basis);
else
solve_on_signature(solution_signature, changes_of_basis);
SASSERT(!settings().use_tableau() || r_basis_is_OK());
lp_assert(!settings().use_tableau() || r_basis_is_OK());
} else {
if (!settings().use_tableau()) {
bool snapped = m_r_solver.snap_non_basic_x_to_bound();
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
if (snapped)
m_r_solver.solve_Ax_eq_b();
}
@ -290,16 +290,16 @@ void lar_core_solver::solve() {
m_r_solver.find_feasible_solution();
else
m_r_solver.solve();
SASSERT(!settings().use_tableau() || r_basis_is_OK());
lp_assert(!settings().use_tableau() || r_basis_is_OK());
}
if (m_r_solver.get_status() == INFEASIBLE) {
fill_not_improvable_zero_sum();
} else if (m_r_solver.get_status() != UNBOUNDED) {
m_r_solver.set_status(OPTIMAL);
}
SASSERT(r_basis_is_OK());
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
SASSERT(m_r_solver.inf_set_is_correct());
lp_assert(r_basis_is_OK());
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
lp_assert(m_r_solver.inf_set_is_correct());
}

View file

@ -4,7 +4,7 @@
Author: Lev Nachmanson
*/
namespace lean {
namespace lp {
unsigned lar_solver::constraint_count() const {
return m_constraints.size();
@ -23,7 +23,7 @@ lp_settings & lar_solver::settings() { return m_settings;}
lp_settings const & lar_solver::settings() const { return m_settings;}
void clear() {lean_assert(false); // not implemented
void clear() {lp_assert(false); // not implemented
}
@ -52,7 +52,7 @@ bool lar_solver::is_term(var_index j) const {
}
unsigned lar_solver::adjust_term_index(unsigned j) const {
lean_assert(is_term(j));
lp_assert(is_term(j));
return j - m_terms_start_index;
}
@ -60,10 +60,10 @@ unsigned lar_solver::adjust_term_index(unsigned j) const {
bool lar_solver::use_lu() const { return m_settings.simplex_strategy() == simplex_strategy_enum::lu; }
bool lar_solver::sizes_are_correct() const {
lean_assert(strategy_is_undecided() || !m_mpq_lar_core_solver.need_to_presolve_with_double_solver() || A_r().column_count() == A_d().column_count());
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_column_types.size());
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_x.size());
lp_assert(strategy_is_undecided() || !m_mpq_lar_core_solver.need_to_presolve_with_double_solver() || A_r().column_count() == A_d().column_count());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_column_types.size());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_x.size());
return true;
}
@ -105,7 +105,7 @@ bool lar_solver::implied_bound_is_correctly_explained(implied_bound const & be,
else if (kind == LE || kind == LT) n_of_L++;
rs_of_evidence += coeff*constr.m_right_side;
}
lean_assert(n_of_G == 0 || n_of_L == 0);
lp_assert(n_of_G == 0 || n_of_L == 0);
lconstraint_kind kind = n_of_G ? GE : (n_of_L ? LE : EQ);
if (strict)
kind = static_cast<lconstraint_kind>((static_cast<int>(kind) / 2));
@ -149,7 +149,7 @@ bool lar_solver::implied_bound_is_correctly_explained(implied_bound const & be,
void lar_solver::analyze_new_bounds_on_row(
unsigned row_index,
bound_propagator & bp) {
lean_assert(!use_tableau());
lp_assert(!use_tableau());
iterator_on_pivot_row<mpq> it(m_mpq_lar_core_solver.get_pivot_row(), m_mpq_lar_core_solver.m_r_basis[row_index]);
bound_analyzer_on_row ra_pos(it,
@ -168,7 +168,7 @@ void lar_solver::analyze_new_bounds_on_row_tableau(
if (A_r().m_rows[row_index].size() > settings().max_row_length_for_bound_propagation)
return;
iterator_on_row<mpq> it(A_r().m_rows[row_index]);
lean_assert(use_tableau());
lp_assert(use_tableau());
bound_analyzer_on_row::analyze_row(it,
zero_of_type<numeric_pair<mpq>>(),
row_index,
@ -201,7 +201,7 @@ void lar_solver::calculate_implied_bounds_for_row(unsigned i, bound_propagator &
linear_combination_iterator<mpq> * lar_solver::create_new_iter_from_term(unsigned term_index) const {
lean_assert(false); // not implemented
lp_assert(false); // not implemented
return nullptr;
// new linear_combination_iterator_on_vector<mpq>(m_terms[adjust_term_index(term_index)]->coeffs_as_vector());
}
@ -212,7 +212,7 @@ unsigned lar_solver::adjust_column_index_to_term_index(unsigned j) const {
}
void lar_solver::propagate_bounds_on_a_term(const lar_term& t, bound_propagator & bp, unsigned term_offset) {
lean_assert(false); // not implemented
lp_assert(false); // not implemented
}
@ -223,7 +223,7 @@ void lar_solver::explain_implied_bound(implied_bound & ib, bound_propagator & bp
unsigned m_j = ib.m_j;
if (is_term(m_j)) {
auto it = m_ext_vars_to_columns.find(m_j);
lean_assert(it != m_ext_vars_to_columns.end());
lp_assert(it != m_ext_vars_to_columns.end());
m_j = it->second.ext_j();
}
for (auto const& r : A_r().m_rows[i]) {
@ -232,22 +232,22 @@ void lar_solver::explain_implied_bound(implied_bound & ib, bound_propagator & bp
if (j == m_j) continue;
if (is_term(j)) {
auto it = m_ext_vars_to_columns.find(j);
lean_assert(it != m_ext_vars_to_columns.end());
lp_assert(it != m_ext_vars_to_columns.end());
j = it->second.ext_j();
}
int a_sign = is_pos(a)? 1: -1;
int sign = j_sign * a_sign;
const ul_pair & ul = m_vars_to_ul_pairs[j];
auto witness = sign > 0? ul.upper_bound_witness(): ul.low_bound_witness();
lean_assert(is_valid(witness));
lp_assert(is_valid(witness));
bp.consume(a, witness);
}
// lean_assert(implied_bound_is_correctly_explained(ib, explanation));
// lp_assert(implied_bound_is_correctly_explained(ib, explanation));
}
bool lar_solver::term_is_used_as_row(unsigned term) const {
lean_assert(is_term(term));
lp_assert(is_term(term));
return contains(m_ext_vars_to_columns, term);
}
@ -338,7 +338,7 @@ void lar_solver::push() {
m_constraint_count.push();
}
void lar_solver::clean_large_elements_after_pop(unsigned n, int_set& set) {
void lar_solver::clp_large_elements_after_pop(unsigned n, int_set& set) {
vector<int> to_remove;
for (unsigned j: set.m_index)
if (j >= n)
@ -348,7 +348,7 @@ void lar_solver::clean_large_elements_after_pop(unsigned n, int_set& set) {
}
void lar_solver::shrink_inf_set_after_pop(unsigned n, int_set & set) {
clean_large_elements_after_pop(n, set);
clp_large_elements_after_pop(n, set);
set.resize(n);
}
@ -367,16 +367,16 @@ void lar_solver::pop(unsigned k) {
m_vars_to_ul_pairs.pop(k);
m_mpq_lar_core_solver.pop(k);
clean_large_elements_after_pop(n, m_columns_with_changed_bound);
clp_large_elements_after_pop(n, m_columns_with_changed_bound);
unsigned m = A_r().row_count();
clean_large_elements_after_pop(m, m_rows_with_changed_bounds);
clean_inf_set_of_r_solver_after_pop();
lean_assert(m_settings.simplex_strategy() == simplex_strategy_enum::undecided ||
clp_large_elements_after_pop(m, m_rows_with_changed_bounds);
clp_inf_set_of_r_solver_after_pop();
lp_assert(m_settings.simplex_strategy() == simplex_strategy_enum::undecided ||
(!use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
lean_assert(ax_is_correct());
lean_assert(m_mpq_lar_core_solver.m_r_solver.inf_set_is_correct());
lp_assert(ax_is_correct());
lp_assert(m_mpq_lar_core_solver.m_r_solver.inf_set_is_correct());
m_constraint_count.pop(k);
for (unsigned i = m_constraint_count; i < m_constraints.size(); i++)
delete m_constraints[i];
@ -389,8 +389,8 @@ void lar_solver::pop(unsigned k) {
m_terms.resize(m_term_count);
m_simplex_strategy.pop(k);
m_settings.simplex_strategy() = m_simplex_strategy;
lean_assert(sizes_are_correct());
lean_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
lp_assert(sizes_are_correct());
lp_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
}
vector<constraint_index> lar_solver::get_all_constraint_indices() const {
@ -419,13 +419,13 @@ bool lar_solver::maximize_term_on_tableau(const vector<std::pair<mpq, var_index>
bool lar_solver::costs_are_zeros_for_r_solver() const {
for (unsigned j = 0; j < m_mpq_lar_core_solver.m_r_solver.m_costs.size(); j++) {
lean_assert(is_zero(m_mpq_lar_core_solver.m_r_solver.m_costs[j]));
lp_assert(is_zero(m_mpq_lar_core_solver.m_r_solver.m_costs[j]));
}
return true;
}
bool lar_solver::reduced_costs_are_zeroes_for_r_solver() const {
for (unsigned j = 0; j < m_mpq_lar_core_solver.m_r_solver.m_d.size(); j++) {
lean_assert(is_zero(m_mpq_lar_core_solver.m_r_solver.m_d[j]));
lp_assert(is_zero(m_mpq_lar_core_solver.m_r_solver.m_d[j]));
}
return true;
}
@ -433,7 +433,7 @@ bool lar_solver::reduced_costs_are_zeroes_for_r_solver() const {
void lar_solver::set_costs_to_zero(const vector<std::pair<mpq, var_index>> & term) {
auto & rslv = m_mpq_lar_core_solver.m_r_solver;
auto & jset = m_mpq_lar_core_solver.m_r_solver.m_inf_set; // hijack this set that should be empty right now
lean_assert(jset.m_index.size()==0);
lp_assert(jset.m_index.size()==0);
for (auto & p : term) {
unsigned j = p.second;
@ -452,16 +452,16 @@ void lar_solver::set_costs_to_zero(const vector<std::pair<mpq, var_index>> & ter
jset.clear();
lean_assert(reduced_costs_are_zeroes_for_r_solver());
lean_assert(costs_are_zeros_for_r_solver());
lp_assert(reduced_costs_are_zeroes_for_r_solver());
lp_assert(costs_are_zeros_for_r_solver());
}
void lar_solver::prepare_costs_for_r_solver(const vector<std::pair<mpq, var_index>> & term) {
auto & rslv = m_mpq_lar_core_solver.m_r_solver;
rslv.m_using_infeas_costs = false;
lean_assert(costs_are_zeros_for_r_solver());
lean_assert(reduced_costs_are_zeroes_for_r_solver());
lp_assert(costs_are_zeros_for_r_solver());
lp_assert(reduced_costs_are_zeroes_for_r_solver());
rslv.m_costs.resize(A_r().column_count(), zero_of_type<mpq>());
for (auto & p : term) {
unsigned j = p.second;
@ -471,7 +471,7 @@ void lar_solver::prepare_costs_for_r_solver(const vector<std::pair<mpq, var_inde
else
rslv.update_reduced_cost_for_basic_column_cost_change(- p.first, j);
}
lean_assert(rslv.reduced_costs_are_correct_tableau());
lp_assert(rslv.reduced_costs_are_correct_tableau());
}
bool lar_solver::maximize_term_on_corrected_r_solver(const vector<std::pair<mpq, var_index>> & term,
@ -498,10 +498,10 @@ bool lar_solver::maximize_term_on_corrected_r_solver(const vector<std::pair<mpq,
}
case simplex_strategy_enum::lu:
lean_assert(false); // not implemented
lp_assert(false); // not implemented
return false;
default:
lean_unreachable(); // wrong mode
lp_unreachable(); // wrong mode
}
return false;
}
@ -509,7 +509,7 @@ bool lar_solver::maximize_term_on_corrected_r_solver(const vector<std::pair<mpq,
// return true if found and false if unbounded
bool lar_solver::maximize_term(const vector<std::pair<mpq, var_index>> & term,
impq &term_max) {
lean_assert(m_mpq_lar_core_solver.m_r_solver.current_x_is_feasible());
lp_assert(m_mpq_lar_core_solver.m_r_solver.current_x_is_feasible());
m_mpq_lar_core_solver.m_r_solver.m_look_for_feasible_solution_only = false;
return maximize_term_on_corrected_r_solver(term, term_max);
}
@ -517,7 +517,7 @@ bool lar_solver::maximize_term(const vector<std::pair<mpq, var_index>> & term,
const lar_term & lar_solver::get_term(unsigned j) const {
lean_assert(j >= m_terms_start_index);
lp_assert(j >= m_terms_start_index);
return *m_terms[j - m_terms_start_index];
}
@ -579,7 +579,7 @@ void lar_solver::detect_rows_of_bound_change_column_for_nbasic_column(unsigned j
m_column_buffer.resize(A_r().row_count());
else
m_column_buffer.clear();
lean_assert(m_column_buffer.size() == 0 && m_column_buffer.is_OK());
lp_assert(m_column_buffer.size() == 0 && m_column_buffer.is_OK());
m_mpq_lar_core_solver.m_r_solver.solve_Bd(j, m_column_buffer);
for (unsigned i : m_column_buffer.m_index)
@ -613,7 +613,7 @@ void lar_solver::detect_rows_of_column_with_bound_change(unsigned j) {
}
void lar_solver::adjust_x_of_column(unsigned j) {
lean_assert(false);
lp_assert(false);
}
bool lar_solver::row_is_correct(unsigned i) const {
@ -706,14 +706,14 @@ void lar_solver::update_x_and_inf_costs_for_columns_with_changed_bounds() {
}
void lar_solver::update_x_and_inf_costs_for_columns_with_changed_bounds_tableau() {
lean_assert(ax_is_correct());
lp_assert(ax_is_correct());
for (auto j : m_columns_with_changed_bound.m_index)
update_x_and_inf_costs_for_column_with_changed_bounds(j);
if (tableau_with_costs()) {
for (unsigned j : m_basic_columns_with_changed_cost.m_index)
m_mpq_lar_core_solver.m_r_solver.update_inf_cost_for_column_tableau(j);
lean_assert(m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
lp_assert(m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
}
}
@ -735,7 +735,7 @@ void lar_solver::solve_with_core_solver() {
update_x_and_inf_costs_for_columns_with_changed_bounds();
m_mpq_lar_core_solver.solve();
set_status(m_mpq_lar_core_solver.m_r_solver.get_status());
lean_assert(m_status != OPTIMAL || all_constraints_hold());
lp_assert(m_status != OPTIMAL || all_constraints_hold());
}
@ -760,7 +760,7 @@ numeric_pair<mpq> lar_solver::get_basic_var_value_from_row(unsigned i) {
numeric_pair<mpq> r = zero_of_type<numeric_pair<mpq>>();
m_mpq_lar_core_solver.calculate_pivot_row(i);
for (unsigned j : m_mpq_lar_core_solver.m_r_solver.m_pivot_row.m_index) {
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_basis_heading[j] < 0);
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_basis_heading[j] < 0);
r -= m_mpq_lar_core_solver.m_r_solver.m_pivot_row.m_data[j] * m_mpq_lar_core_solver.m_r_x[j];
}
return r;
@ -824,12 +824,12 @@ unsigned lar_solver::constraint_stack_size() const {
}
void lar_solver::fill_last_row_of_A_r(static_matrix<mpq, numeric_pair<mpq>> & A, const lar_term * ls) {
lean_assert(A.row_count() > 0);
lean_assert(A.column_count() > 0);
lp_assert(A.row_count() > 0);
lp_assert(A.column_count() > 0);
unsigned last_row = A.row_count() - 1;
lean_assert(A.m_rows[last_row].size() == 0);
lp_assert(A.m_rows[last_row].size() == 0);
for (auto & t : ls->m_coeffs) {
lean_assert(!is_zero(t.second));
lp_assert(!is_zero(t.second));
var_index j = t.first;
A.set(last_row, j, - t.second);
}
@ -839,7 +839,7 @@ void lar_solver::fill_last_row_of_A_r(static_matrix<mpq, numeric_pair<mpq>> & A,
template <typename U, typename V>
void lar_solver::create_matrix_A(static_matrix<U, V> & matr) {
lean_assert(false); // not implemented
lp_assert(false); // not implemented
/*
unsigned m = number_or_nontrivial_left_sides();
unsigned n = m_vec_of_canonic_left_sides.size();
@ -920,7 +920,7 @@ bool lar_solver::constraint_holds(const lar_base_constraint & constr, std::unord
case GT: return left_side_val > constr.m_right_side;
case EQ: return left_side_val == constr.m_right_side;
default:
lean_unreachable();
lp_unreachable();
}
return false; // it is unreachable
}
@ -965,7 +965,7 @@ bool lar_solver::the_left_sides_sum_to_zero(const vector<std::pair<mpq, unsigned
for (auto & it : evidence) {
mpq coeff = it.first;
constraint_index con_ind = it.second;
lean_assert(con_ind < m_constraints.size());
lp_assert(con_ind < m_constraints.size());
register_in_map(coeff_map, *m_constraints[con_ind], coeff);
}
@ -988,7 +988,7 @@ bool lar_solver::the_right_sides_do_not_sum_to_zero(const vector<std::pair<mpq,
for (auto & it : evidence) {
mpq coeff = it.first;
constraint_index con_ind = it.second;
lean_assert(con_ind < m_constraints.size());
lp_assert(con_ind < m_constraints.size());
const lar_constraint & constr = *m_constraints[con_ind];
ret += constr.m_right_side * coeff;
}
@ -998,22 +998,22 @@ bool lar_solver::the_right_sides_do_not_sum_to_zero(const vector<std::pair<mpq,
bool lar_solver::explanation_is_correct(const vector<std::pair<mpq, unsigned>>& explanation) const {
#ifdef LEAN_DEBUG
lconstraint_kind kind;
lean_assert(the_relations_are_of_same_type(explanation, kind));
lean_assert(the_left_sides_sum_to_zero(explanation));
lp_assert(the_relations_are_of_same_type(explanation, kind));
lp_assert(the_left_sides_sum_to_zero(explanation));
mpq rs = sum_of_right_sides_of_explanation(explanation);
switch (kind) {
case LE: lean_assert(rs < zero_of_type<mpq>());
case LE: lp_assert(rs < zero_of_type<mpq>());
break;
case LT: lean_assert(rs <= zero_of_type<mpq>());
case LT: lp_assert(rs <= zero_of_type<mpq>());
break;
case GE: lean_assert(rs > zero_of_type<mpq>());
case GE: lp_assert(rs > zero_of_type<mpq>());
break;
case GT: lean_assert(rs >= zero_of_type<mpq>());
case GT: lp_assert(rs >= zero_of_type<mpq>());
break;
case EQ: lean_assert(rs != zero_of_type<mpq>());
case EQ: lp_assert(rs != zero_of_type<mpq>());
break;
default:
lean_assert(false);
lp_assert(false);
return false;
}
#endif
@ -1034,7 +1034,7 @@ mpq lar_solver::sum_of_right_sides_of_explanation(const vector<std::pair<mpq, un
for (auto & it : explanation) {
mpq coeff = it.first;
constraint_index con_ind = it.second;
lean_assert(con_ind < m_constraints.size());
lp_assert(con_ind < m_constraints.size());
ret += (m_constraints[con_ind]->m_right_side - m_constraints[con_ind]->get_free_coeff_of_left_side()) * coeff;
}
return ret;
@ -1091,7 +1091,7 @@ void lar_solver::get_infeasibility_explanation(vector<std::pair<mpq, constraint_
int inf_sign;
auto inf_row = m_mpq_lar_core_solver.get_infeasibility_info(inf_sign);
get_infeasibility_explanation_for_inf_sign(explanation, inf_row, inf_sign);
lean_assert(explanation_is_correct(explanation));
lp_assert(explanation_is_correct(explanation));
}
@ -1109,14 +1109,14 @@ void lar_solver::get_infeasibility_explanation_for_inf_sign(
const ul_pair & ul = m_vars_to_ul_pairs[j];
constraint_index bound_constr_i = adj_sign < 0 ? ul.upper_bound_witness() : ul.low_bound_witness();
lean_assert(bound_constr_i < m_constraints.size());
lp_assert(bound_constr_i < m_constraints.size());
explanation.push_back(std::make_pair(coeff, bound_constr_i));
}
}
void lar_solver::get_model(std::unordered_map<var_index, mpq> & variable_values) const {
mpq delta = mpq(1, 2); // start from 0.5 to have less clashes
lean_assert(m_status == OPTIMAL);
lp_assert(m_status == OPTIMAL);
unsigned i;
do {
@ -1188,7 +1188,7 @@ mpq lar_solver::get_left_side_val(const lar_base_constraint & cns, const std::u
for (auto & it : cns.get_left_side_coefficients()) {
var_index j = it.second;
auto vi = var_map.find(j);
lean_assert(vi != var_map.end());
lp_assert(vi != var_map.end());
ret += it.first * vi->second;
}
return ret;
@ -1234,7 +1234,7 @@ bool lar_solver::column_represents_row_in_tableau(unsigned j) {
void lar_solver::make_sure_that_the_bottom_right_elem_not_zero_in_tableau(unsigned i, unsigned j) {
// i, j - is the indices of the bottom-right element of the tableau
lean_assert(A_r().row_count() == i + 1 && A_r().column_count() == j + 1);
lp_assert(A_r().row_count() == i + 1 && A_r().column_count() == j + 1);
auto & last_column = A_r().m_columns[j];
int non_zero_column_cell_index = -1;
for (unsigned k = last_column.size(); k-- > 0;){
@ -1244,13 +1244,13 @@ void lar_solver::make_sure_that_the_bottom_right_elem_not_zero_in_tableau(unsign
non_zero_column_cell_index = k;
}
lean_assert(non_zero_column_cell_index != -1);
lean_assert(static_cast<unsigned>(non_zero_column_cell_index) != i);
lp_assert(non_zero_column_cell_index != -1);
lp_assert(static_cast<unsigned>(non_zero_column_cell_index) != i);
m_mpq_lar_core_solver.m_r_solver.transpose_rows_tableau(last_column[non_zero_column_cell_index].m_i, i);
}
void lar_solver::remove_last_row_and_column_from_tableau(unsigned j) {
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
auto & slv = m_mpq_lar_core_solver.m_r_solver;
unsigned i = A_r().row_count() - 1; //last row index
make_sure_that_the_bottom_right_elem_not_zero_in_tableau(i, j);
@ -1269,17 +1269,17 @@ void lar_solver::remove_last_row_and_column_from_tableau(unsigned j) {
A_r().remove_element(last_row, rc);
}
lean_assert(last_row.size() == 0);
lean_assert(A_r().m_columns[j].size() == 0);
lp_assert(last_row.size() == 0);
lp_assert(A_r().m_columns[j].size() == 0);
A_r().m_rows.pop_back();
A_r().m_columns.pop_back();
slv.m_b.pop_back();
}
void lar_solver::remove_last_column_from_tableau(unsigned j) {
lean_assert(j == A_r().column_count() - 1);
lp_assert(j == A_r().column_count() - 1);
// the last column has to be empty
lean_assert(A_r().m_columns[j].size() == 0);
lp_assert(A_r().m_columns[j].size() == 0);
A_r().m_columns.pop_back();
}
@ -1288,7 +1288,7 @@ void lar_solver::remove_last_column_from_basis_tableau(unsigned j) {
int i = rslv.m_basis_heading[j];
if (i >= 0) { // j is a basic var
int last_pos = static_cast<int>(rslv.m_basis.size()) - 1;
lean_assert(last_pos >= 0);
lp_assert(last_pos >= 0);
if (i != last_pos) {
unsigned j_at_last_pos = rslv.m_basis[last_pos];
rslv.m_basis[i] = j_at_last_pos;
@ -1297,7 +1297,7 @@ void lar_solver::remove_last_column_from_basis_tableau(unsigned j) {
rslv.m_basis.pop_back(); // remove j from the basis
} else {
int last_pos = static_cast<int>(rslv.m_nbasis.size()) - 1;
lean_assert(last_pos >= 0);
lp_assert(last_pos >= 0);
i = - 1 - i;
if (i != last_pos) {
unsigned j_at_last_pos = rslv.m_nbasis[last_pos];
@ -1307,14 +1307,14 @@ void lar_solver::remove_last_column_from_basis_tableau(unsigned j) {
rslv.m_nbasis.pop_back(); // remove j from the basis
}
rslv.m_basis_heading.pop_back();
lean_assert(rslv.m_basis.size() == A_r().row_count());
lean_assert(rslv.basis_heading_is_correct());
lp_assert(rslv.m_basis.size() == A_r().row_count());
lp_assert(rslv.basis_heading_is_correct());
}
void lar_solver::remove_column_from_tableau(unsigned j) {
auto& rslv = m_mpq_lar_core_solver.m_r_solver;
lean_assert(j == A_r().column_count() - 1);
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lp_assert(j == A_r().column_count() - 1);
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
if (column_represents_row_in_tableau(j)) {
remove_last_row_and_column_from_tableau(j);
if (rslv.m_basis_heading[j] < 0)
@ -1328,27 +1328,27 @@ void lar_solver::remove_column_from_tableau(unsigned j) {
rslv.m_costs.pop_back();
remove_last_column_from_basis_tableau(j);
lean_assert(m_mpq_lar_core_solver.r_basis_is_OK());
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lp_assert(m_mpq_lar_core_solver.r_basis_is_OK());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
}
void lar_solver::pop_tableau() {
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_costs.size() == A_r().column_count());
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_costs.size() == A_r().column_count());
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_basis.size() == A_r().row_count());
lean_assert(m_mpq_lar_core_solver.m_r_solver.basis_heading_is_correct());
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_basis.size() == A_r().row_count());
lp_assert(m_mpq_lar_core_solver.m_r_solver.basis_heading_is_correct());
// We remove last variables starting from m_column_names.size() to m_vec_of_canonic_left_sides.size().
// At this moment m_column_names is already popped
for (unsigned j = A_r().column_count(); j-- > m_columns_to_ext_vars_or_term_indices.size();)
remove_column_from_tableau(j);
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_costs.size() == A_r().column_count());
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_basis.size() == A_r().row_count());
lean_assert(m_mpq_lar_core_solver.m_r_solver.basis_heading_is_correct());
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_costs.size() == A_r().column_count());
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_basis.size() == A_r().row_count());
lp_assert(m_mpq_lar_core_solver.m_r_solver.basis_heading_is_correct());
}
void lar_solver::clean_inf_set_of_r_solver_after_pop() {
void lar_solver::clp_inf_set_of_r_solver_after_pop() {
vector<unsigned> became_feas;
clean_large_elements_after_pop(A_r().column_count(), m_mpq_lar_core_solver.m_r_solver.m_inf_set);
clp_large_elements_after_pop(A_r().column_count(), m_mpq_lar_core_solver.m_r_solver.m_inf_set);
std::unordered_set<unsigned> basic_columns_with_changed_cost;
auto inf_index_copy = m_mpq_lar_core_solver.m_r_solver.m_inf_set.m_index;
for (auto j: inf_index_copy) {
@ -1363,14 +1363,14 @@ void lar_solver::clean_inf_set_of_r_solver_after_pop() {
}
for (unsigned j : became_feas) {
lean_assert(m_mpq_lar_core_solver.m_r_solver.m_basis_heading[j] < 0);
lp_assert(m_mpq_lar_core_solver.m_r_solver.m_basis_heading[j] < 0);
m_mpq_lar_core_solver.m_r_solver.m_d[j] -= m_mpq_lar_core_solver.m_r_solver.m_costs[j];
m_mpq_lar_core_solver.m_r_solver.m_costs[j] = zero_of_type<mpq>();
m_mpq_lar_core_solver.m_r_solver.m_inf_set.erase(j);
}
became_feas.clear();
for (unsigned j : m_mpq_lar_core_solver.m_r_solver.m_inf_set.m_index) {
lean_assert(m_mpq_lar_core_solver.m_r_heading[j] >= 0);
lp_assert(m_mpq_lar_core_solver.m_r_heading[j] >= 0);
if (m_mpq_lar_core_solver.m_r_solver.column_is_feasible(j))
became_feas.push_back(j);
}
@ -1383,14 +1383,14 @@ void lar_solver::clean_inf_set_of_r_solver_after_pop() {
m_mpq_lar_core_solver.m_r_solver.update_inf_cost_for_column_tableau(j);
for (unsigned j : basic_columns_with_changed_cost)
m_mpq_lar_core_solver.m_r_solver.update_inf_cost_for_column_tableau(j);
lean_assert(m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
lp_assert(m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
}
}
void lar_solver::shrink_explanation_to_minimum(vector<std::pair<mpq, constraint_index>> & explanation) const {
// implementing quickXplain
quick_xplain::run(explanation, *this);
lean_assert(this->explanation_is_correct(explanation));
lp_assert(this->explanation_is_correct(explanation));
}
bool lar_solver::model_is_int_feasible() const {
@ -1421,7 +1421,7 @@ bool lar_solver::var_is_int(var_index v) const {
bool lar_solver::column_is_int(unsigned j) const {
unsigned ext_var = m_columns_to_ext_vars_or_term_indices[j];
lean_assert(contains(m_ext_vars_to_columns, ext_var));
lp_assert(contains(m_ext_vars_to_columns, ext_var));
return m_ext_vars_to_columns.find(ext_var)->second.is_integer();
}
@ -1432,7 +1432,7 @@ bool lar_solver::column_is_fixed(unsigned j) const {
bool lar_solver::ext_var_is_int(var_index ext_var) const {
auto it = m_ext_vars_to_columns.find(ext_var);
lean_assert(it != m_ext_vars_to_columns.end());
lp_assert(it != m_ext_vars_to_columns.end());
return it == m_ext_vars_to_columns.end() || it->second.is_integer();
}
@ -1445,7 +1445,7 @@ bool lar_solver::strategy_is_undecided() const {
var_index lar_solver::add_var(unsigned ext_j, bool is_int) {
TRACE("add_var", tout << "adding var " << ext_j << (is_int? " int" : " nonint") << std::endl;);
var_index i;
lean_assert(ext_j < m_terms_start_index);
lp_assert(ext_j < m_terms_start_index);
if (ext_j >= m_terms_start_index)
throw 0; // todo : what is the right way to exit?
@ -1453,19 +1453,19 @@ var_index lar_solver::add_var(unsigned ext_j, bool is_int) {
if (it != m_ext_vars_to_columns.end()) {
return it->second.ext_j();
}
lean_assert(m_vars_to_ul_pairs.size() == A_r().column_count());
lp_assert(m_vars_to_ul_pairs.size() == A_r().column_count());
i = A_r().column_count();
m_vars_to_ul_pairs.push_back(ul_pair(static_cast<unsigned>(-1)));
add_non_basic_var_to_core_fields(ext_j, is_int);
lean_assert(sizes_are_correct());
lp_assert(sizes_are_correct());
return i;
}
void lar_solver::register_new_ext_var_index(unsigned ext_v, bool is_int) {
lean_assert(!contains(m_ext_vars_to_columns, ext_v));
lp_assert(!contains(m_ext_vars_to_columns, ext_v));
unsigned j = static_cast<unsigned>(m_ext_vars_to_columns.size());
m_ext_vars_to_columns.insert(std::make_pair(ext_v, ext_var_info(j, is_int)));
lean_assert(m_columns_to_ext_vars_or_term_indices.size() == j);
lp_assert(m_columns_to_ext_vars_or_term_indices.size() == j);
m_columns_to_ext_vars_or_term_indices.push_back(ext_v);
}
@ -1481,12 +1481,12 @@ void lar_solver::add_non_basic_var_to_core_fields(unsigned ext_j, bool is_int) {
void lar_solver::add_new_var_to_core_fields_for_doubles(bool register_in_basis) {
unsigned j = A_d().column_count();
A_d().add_column();
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
lp_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
// lp_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
m_mpq_lar_core_solver.m_d_x.resize(j + 1);
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
lp_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
if (register_in_basis) {
A_d().add_row();
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
@ -1501,15 +1501,15 @@ void lar_solver::add_new_var_to_core_fields_for_doubles(bool register_in_basis)
void lar_solver::add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
unsigned j = A_r().column_count();
A_r().add_column();
lean_assert(m_mpq_lar_core_solver.m_r_x.size() == j);
// lean_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
lp_assert(m_mpq_lar_core_solver.m_r_x.size() == j);
// lp_assert(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
m_mpq_lar_core_solver.m_r_x.resize(j + 1);
m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one();
m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one();
m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one();
m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1);
m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1);
lean_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
lp_assert(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
if (register_in_basis) {
A_r().add_row();
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
@ -1544,14 +1544,14 @@ var_index lar_solver::add_term(const vector<std::pair<mpq, var_index>> & coeffs,
if (m_settings.bound_propagation())
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
}
lean_assert(m_ext_vars_to_columns.size() == A_r().column_count());
lp_assert(m_ext_vars_to_columns.size() == A_r().column_count());
return ret;
}
void lar_solver::add_row_for_term(const lar_term * term, unsigned term_ext_index) {
lean_assert(sizes_are_correct());
lp_assert(sizes_are_correct());
add_row_from_term_no_constraint(term, term_ext_index);
lean_assert(sizes_are_correct());
lp_assert(sizes_are_correct());
}
void lar_solver::add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) {
@ -1577,7 +1577,7 @@ void lar_solver::add_row_from_term_no_constraint(const lar_term * term, unsigned
void lar_solver::add_basic_var_to_core_fields() {
bool use_lu = m_mpq_lar_core_solver.need_to_presolve_with_double_solver();
lean_assert(!use_lu || A_r().column_count() == A_d().column_count());
lp_assert(!use_lu || A_r().column_count() == A_d().column_count());
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
m_columns_with_changed_bound.increase_size_by_one();
m_rows_with_changed_bounds.increase_size_by_one();
@ -1595,7 +1595,7 @@ bool lar_solver::bound_is_integer_if_needed(unsigned j, const mpq & right_side)
constraint_index lar_solver::add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) {
constraint_index ci = m_constraints.size();
if (!is_term(j)) { // j is a var
lean_assert(bound_is_integer_if_needed(j, right_side));
lp_assert(bound_is_integer_if_needed(j, right_side));
auto vc = new lar_var_constraint(j, kind, right_side);
m_constraints.push_back(vc);
update_column_type_and_bound(j, kind, right_side, ci);
@ -1603,7 +1603,7 @@ constraint_index lar_solver::add_var_bound(var_index j, lconstraint_kind kind, c
else {
add_var_bound_on_constraint_for_term(j, kind, right_side, ci);
}
lean_assert(sizes_are_correct());
lp_assert(sizes_are_correct());
return ci;
}
@ -1625,14 +1625,14 @@ void lar_solver::update_column_type_and_bound(var_index j, lconstraint_kind kind
update_fixed_column_type_and_bound(j, kind, right_side, constr_index);
break;
default:
lean_assert(false); // cannot be here
lp_assert(false); // cannot be here
}
}
void lar_solver::add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
lean_assert(is_term(j));
lp_assert(is_term(j));
unsigned adjusted_term_index = adjust_term_index(j);
lean_assert(!term_is_int(m_terms[adjusted_term_index]) || right_side.is_int());
lp_assert(!term_is_int(m_terms[adjusted_term_index]) || right_side.is_int());
auto it = m_ext_vars_to_columns.find(j);
if (it != m_ext_vars_to_columns.end()) {
unsigned term_j = it->second.ext_j();
@ -1662,11 +1662,11 @@ void lar_solver::add_constraint_from_term_and_create_new_column_row(unsigned ter
unsigned j = A_r().column_count() - 1;
update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
lean_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
lp_assert(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
}
void lar_solver::decide_on_strategy_and_adjust_initial_state() {
lean_assert(strategy_is_undecided());
lp_assert(strategy_is_undecided());
if (m_vars_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
m_settings.simplex_strategy() = simplex_strategy_enum::lu;
}
@ -1685,7 +1685,7 @@ void lar_solver::adjust_initial_state() {
adjust_initial_state_for_tableau_rows();
break;
case simplex_strategy_enum::tableau_costs:
lean_assert(false); // not implemented
lp_assert(false); // not implemented
case simplex_strategy_enum::undecided:
adjust_initial_state_for_tableau_rows();
break;
@ -1704,12 +1704,12 @@ void lar_solver::adjust_initial_state_for_lu() {
/*
unsigned j = A_d().column_count();
A_d().add_column();
lean_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
// lean_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
lp_assert(m_mpq_lar_core_solver.m_d_x.size() == j);
// lp_assert(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
lean_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
lp_assert(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
if (register_in_basis) {
A_d().add_row();
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
@ -1730,13 +1730,13 @@ void lar_solver::adjust_initial_state_for_tableau_rows() {
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
void lar_solver::fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls) {
lean_assert(A.row_count() > 0);
lean_assert(A.column_count() > 0);
lp_assert(A.row_count() > 0);
lp_assert(A.column_count() > 0);
unsigned last_row = A.row_count() - 1;
lean_assert(A.m_rows[last_row].empty());
lp_assert(A.m_rows[last_row].empty());
for (auto & t : ls->m_coeffs) {
lean_assert(!is_zero(t.second));
lp_assert(!is_zero(t.second));
var_index j = t.first;
A.set(last_row, j, -t.second.get_double());
}
@ -1752,8 +1752,8 @@ void lar_solver::update_free_column_type_and_bound(var_index j, lconstraint_kind
y_of_bound = -1;
case LE:
m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound;
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
lp_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
lp_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
{
auto up = numeric_pair<mpq>(right_side, y_of_bound);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
@ -1764,7 +1764,7 @@ void lar_solver::update_free_column_type_and_bound(var_index j, lconstraint_kind
y_of_bound = 1;
case GE:
m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound;
lean_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
lp_assert(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
{
auto low = numeric_pair<mpq>(right_side, y_of_bound);
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
@ -1779,14 +1779,14 @@ void lar_solver::update_free_column_type_and_bound(var_index j, lconstraint_kind
break;
default:
lean_unreachable();
lp_unreachable();
}
m_columns_with_changed_bound.insert(j);
}
void lar_solver::update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
lp_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
mpq y_of_bound(0);
switch (kind) {
case LT:
@ -1839,13 +1839,13 @@ void lar_solver::update_upper_bound_column_type_and_bound(var_index j, lconstrai
break;
default:
lean_unreachable();
lp_unreachable();
}
}
void lar_solver::update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
lp_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
mpq y_of_bound(0);
switch (kind) {
case LT:
@ -1861,7 +1861,7 @@ void lar_solver::update_boxed_column_type_and_bound(var_index j, lconstraint_kin
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
m_status = INFEASIBLE;
lean_assert(false);
lp_assert(false);
m_infeasible_column_index = j;
}
else {
@ -1914,12 +1914,12 @@ void lar_solver::update_boxed_column_type_and_bound(var_index j, lconstraint_kin
}
default:
lean_unreachable();
lp_unreachable();
}
}
void lar_solver::update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
lean_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
lp_assert(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
mpq y_of_bound(0);
switch (kind) {
case LT:
@ -1971,14 +1971,14 @@ void lar_solver::update_low_bound_column_type_and_bound(var_index j, lconstraint
}
default:
lean_unreachable();
lp_unreachable();
}
}
void lar_solver::update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
lean_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
lp_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
lp_assert(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
auto v = numeric_pair<mpq>(right_side, mpq(0));
mpq y_of_bound(0);
@ -2033,12 +2033,12 @@ void lar_solver::update_fixed_column_type_and_bound(var_index j, lconstraint_kin
}
default:
lean_unreachable();
lp_unreachable();
}
}
} // namespace lean
} // namespace lp

View file

@ -462,7 +462,7 @@ public:
vector<unsigned> get_list_of_all_var_indices() const;
void push();
static void clean_large_elements_after_pop(unsigned n, int_set& set);
static void clp_large_elements_after_pop(unsigned n, int_set& set);
static void shrink_inf_set_after_pop(unsigned n, int_set & set);
@ -1275,7 +1275,7 @@ public:
void remove_last_column_from_basis_tableau(unsigned j);
void remove_column_from_tableau(unsigned j);
void pop_tableau();
void clean_inf_set_of_r_solver_after_pop();
void clp_inf_set_of_r_solver_after_pop();
void shrink_explanation_to_minimum(vector<std::pair<mpq, constraint_index>> & explanation) const;
bool column_represents_row_in_tableau(unsigned j) {

View file

@ -5,7 +5,7 @@
#include "util/lp/lar_solver.cpp"
template void lean::lar_solver::copy_from_mpq_matrix<double,double>(class lean::static_matrix<double,double> &);
template void lp::lar_solver::copy_from_mpq_matrix<double,double>(class lp::static_matrix<double,double> &);

View file

@ -28,6 +28,9 @@ Revision History:
#include "util/lp/lu.h"
#include "util/lp/permutation_matrix.h"
#include "util/lp/column_namer.h"
#include "util/lp/iterator_on_row.h"
#include "util/lp/iterator_on_pivot_row.h"
namespace lp {
template <typename T, typename X> // X represents the type of the x variable and the bounds
@ -197,11 +200,11 @@ public:
bool need_to_pivot_to_basis_tableau() const {
SASSERT(m_A.is_correct());
lp_assert(m_A.is_correct());
unsigned m = m_A.row_count();
for (unsigned i = 0; i < m; i++) {
unsigned bj = m_basis[i];
SASSERT(m_A.m_columns[bj].size() > 0);
lp_assert(m_A.m_columns[bj].size() > 0);
if (m_A.m_columns[bj].size() > 1 || m_A.get_val(m_A.m_columns[bj][0]) != one_of_type<mpq>()) return true;
}
return false;
@ -210,7 +213,7 @@ public:
bool reduced_costs_are_correct_tableau() const {
if (m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
return true;
SASSERT(m_A.is_correct());
lp_assert(m_A.is_correct());
if (m_using_infeas_costs) {
if (infeasibility_costs_are_correct() == false) {
std::cout << "infeasibility_costs_are_correct() does not hold" << std::endl;
@ -385,11 +388,11 @@ public:
}
bool make_column_feasible(unsigned j, numeric_pair<mpq> & delta) {
SASSERT(m_basis_heading[j] < 0);
lp_assert(m_basis_heading[j] < 0);
auto & x = m_x[j];
switch (m_column_types[j]) {
case column_type::fixed:
SASSERT(m_low_bounds[j] == m_upper_bounds[j]);
lp_assert(m_low_bounds[j] == m_upper_bounds[j]);
if (x != m_low_bounds[j]) {
delta = m_low_bounds[j] - x;
x = m_low_bounds[j];
@ -425,7 +428,7 @@ public:
case column_type::free_column:
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
return false;
@ -474,7 +477,7 @@ public:
}
void change_basis_unconditionally(unsigned entering, unsigned leaving) {
SASSERT(m_basis_heading[entering] < 0);
lp_assert(m_basis_heading[entering] < 0);
int place_in_non_basis = -1 - m_basis_heading[entering];
if (static_cast<unsigned>(place_in_non_basis) >= m_nbasis.size()) {
// entering variable in not in m_nbasis, we need to put it back;
@ -493,8 +496,8 @@ public:
}
void change_basis(unsigned entering, unsigned leaving) {
SASSERT(m_basis_heading[entering] < 0);
lp_assert(m_basis_heading[entering] < 0);
lp_assert(m_basis_heading[leaving] >= 0);
int place_in_basis = m_basis_heading[leaving];
int place_in_non_basis = - m_basis_heading[entering] - 1;
@ -535,7 +538,7 @@ public:
case column_type::free_column:
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
return true;
@ -583,7 +586,7 @@ public:
case column_type::free_column:
break;
default:
SASSERT(false);
lp_assert(false);
}
out << "basis heading = " << m_basis_heading[j] << std::endl;
out << "x = " << m_x[j] << std::endl;
@ -682,17 +685,17 @@ public:
}
void insert_column_into_inf_set(unsigned j) {
m_inf_set.insert(j);
SASSERT(!column_is_feasible(j));
lp_assert(!column_is_feasible(j));
}
void remove_column_from_inf_set(unsigned j) {
m_inf_set.erase(j);
SASSERT(column_is_feasible(j));
lp_assert(column_is_feasible(j));
}
bool costs_on_nbasis_are_zeros() const {
SASSERT(this->basis_heading_is_correct());
lp_assert(this->basis_heading_is_correct());
for (unsigned j = 0; j < this->m_n(); j++) {
if (this->m_basis_heading[j] < 0)
SASSERT(is_zero(this->m_costs[j]));
lp_assert(is_zero(this->m_costs[j]));
}
return true;
}

View file

@ -68,7 +68,7 @@ lp_core_solver_base(static_matrix<T, X> & A,
m_tracing_basis_changes(false),
m_pivoted_rows(nullptr),
m_look_for_feasible_solution_only(false) {
SASSERT(bounds_for_boxed_are_set_correctly());
lp_assert(bounds_for_boxed_are_set_correctly());
init();
init_basis_heading_and_non_basic_columns_vector();
}
@ -76,7 +76,7 @@ lp_core_solver_base(static_matrix<T, X> & A,
template <typename T, typename X> void lp_core_solver_base<T, X>::
allocate_basis_heading() { // the rest of initilization will be handled by the factorization class
init_basis_heading_and_non_basic_columns_vector();
SASSERT(basis_heading_is_correct());
lp_assert(basis_heading_is_correct());
}
template <typename T, typename X> void lp_core_solver_base<T, X>::
init() {
@ -142,7 +142,7 @@ solve_yB(vector<T> & y) {
// }
// }
template <typename T, typename X> void lp_core_solver_base<T, X>::solve_Bd(unsigned entering, indexed_vector<T> & column) {
SASSERT(!m_settings.use_tableau());
lp_assert(!m_settings.use_tableau());
if (m_factorization == nullptr) {
init_factorization(m_factorization, m_A, m_basis, m_settings);
}
@ -152,19 +152,19 @@ template <typename T, typename X> void lp_core_solver_base<T, X>::solve_Bd(unsig
template <typename T, typename X> void lp_core_solver_base<T, X>::
solve_Bd(unsigned entering) {
SASSERT(m_ed.is_OK());
lp_assert(m_ed.is_OK());
m_factorization->solve_Bd(entering, m_ed, m_w);
if (this->precise())
m_columns_nz[entering] = m_ed.m_index.size();
SASSERT(m_ed.is_OK());
SASSERT(m_w.is_OK());
#ifdef Z3DEBUG
lp_assert(m_ed.is_OK());
lp_assert(m_w.is_OK());
#ifdef LEAN_DEBUG
// auto B = get_B(*m_factorization, m_basis);
// vector<T> a(m_m());
// m_A.copy_column_to_vector(entering, a);
// vector<T> cd(m_ed.m_data);
// B.apply_from_left(cd, m_settings);
// SASSERT(vectors_are_equal(cd , a));
// lp_assert(vectors_are_equal(cd , a));
#endif
}
@ -223,7 +223,7 @@ restore_m_ed(T * buffer) {
template <typename T, typename X> bool lp_core_solver_base<T, X>::
A_mult_x_is_off() const {
SASSERT(m_x.size() == m_A.column_count());
lp_assert(m_x.size() == m_A.column_count());
if (numeric_traits<T>::precise()) {
for (unsigned i = 0; i < m_m(); i++) {
X delta = m_b[i] - m_A.dot_product_with_row(i, m_x);
@ -259,7 +259,7 @@ A_mult_x_is_off() const {
}
template <typename T, typename X> bool lp_core_solver_base<T, X>::
A_mult_x_is_off_on_index(const vector<unsigned> & index) const {
SASSERT(m_x.size() == m_A.column_count());
lp_assert(m_x.size() == m_A.column_count());
if (numeric_traits<T>::precise()) return false;
#if RUN_A_MULT_X_IS_OFF_FOR_PRECESE
for (unsigned i : index) {
@ -299,13 +299,13 @@ A_mult_x_is_off_on_index(const vector<unsigned> & index) const {
// from page 182 of Istvan Maros's book
template <typename T, typename X> void lp_core_solver_base<T, X>::
calculate_pivot_row_of_B_1(unsigned pivot_row) {
SASSERT(! use_tableau());
SASSERT(m_pivot_row_of_B_1.is_OK());
lp_assert(! use_tableau());
lp_assert(m_pivot_row_of_B_1.is_OK());
m_pivot_row_of_B_1.clear();
m_pivot_row_of_B_1.set_value(numeric_traits<T>::one(), pivot_row);
SASSERT(m_pivot_row_of_B_1.is_OK());
lp_assert(m_pivot_row_of_B_1.is_OK());
m_factorization->solve_yB_with_error_check_indexed(m_pivot_row_of_B_1, m_basis_heading, m_basis, m_settings);
SASSERT(m_pivot_row_of_B_1.is_OK());
lp_assert(m_pivot_row_of_B_1.is_OK());
}
@ -395,11 +395,11 @@ set_non_basic_x_to_correct_bounds() {
break;
case column_type::low_bound:
m_x[j] = m_low_bounds[j];
SASSERT(column_is_dual_feasible(j));
lp_assert(column_is_dual_feasible(j));
break;
case column_type::upper_bound:
m_x[j] = m_upper_bounds[j];
SASSERT(column_is_dual_feasible(j));
lp_assert(column_is_dual_feasible(j));
break;
default:
break;
@ -417,15 +417,15 @@ column_is_dual_feasible(unsigned j) const {
return x_is_at_low_bound(j) && d_is_not_negative(j);
case column_type::upper_bound:
LP_OUT(m_settings, "upper_bound type should be switched to low_bound" << std::endl);
SASSERT(false); // impossible case
lp_assert(false); // impossible case
case column_type::free_column:
return numeric_traits<X>::is_zero(m_d[j]);
default:
LP_OUT(m_settings, "column = " << j << std::endl);
LP_OUT(m_settings, "unexpected column type = " << column_type_to_string(m_column_types[j]) << std::endl);
SASSERT(false);
lp_unreachable();
}
SASSERT(false);
lp_unreachable();
return false;
}
template <typename T, typename X> bool lp_core_solver_base<T, X>::
@ -508,7 +508,7 @@ template <typename T, typename X> bool lp_core_solver_base<T, X>::column_is_feas
return true;
break;
default:
SASSERT(false);
lp_unreachable();
}
return false; // it is unreachable
}
@ -590,7 +590,7 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
restore_x_and_refactor(entering, leaving, tt);
if (m_status == FLOATING_POINT_ERROR)
return false;
SASSERT(!A_mult_x_is_off());
lp_assert(!A_mult_x_is_off());
m_iters_with_no_cost_growing++;
// LP_OUT(m_settings, "rolled back after failing of init_factorization()" << std::endl);
m_status = UNSTABLE;
@ -602,7 +602,7 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
template <typename T, typename X> bool lp_core_solver_base<T, X>::
divide_row_by_pivot(unsigned pivot_row, unsigned pivot_col) {
SASSERT(numeric_traits<T>::precise());
lp_assert(numeric_traits<T>::precise());
int pivot_index = -1;
auto & row = m_A.m_rows[pivot_row];
unsigned size = row.size();
@ -643,7 +643,7 @@ pivot_column_tableau(unsigned j, unsigned piv_row_index) {
return false;
if (pivot_col_cell_index != 0) {
SASSERT(column.size() > 1);
lp_assert(column.size() > 1);
// swap the pivot column cell with the head cell
auto c = column[0];
column[0] = column[pivot_col_cell_index];
@ -654,7 +654,7 @@ pivot_column_tableau(unsigned j, unsigned piv_row_index) {
}
while (column.size() > 1) {
auto & c = column.back();
SASSERT(c.m_i != piv_row_index);
lp_assert(c.m_i != piv_row_index);
if(! m_A.pivot_row_to_row_given_cell(piv_row_index, c, j)) {
return false;
}
@ -702,7 +702,7 @@ non_basis_is_correctly_represented_in_heading() const {
}
for (unsigned j = 0; j < m_A.column_count(); j++) {
if (m_basis_heading[j] >= 0) {
SASSERT(static_cast<unsigned>(m_basis_heading[j]) < m_A.row_count() && m_basis[m_basis_heading[j]] == j);
lp_assert(static_cast<unsigned>(m_basis_heading[j]) < m_A.row_count() && m_basis[m_basis_heading[j]] == j);
}
}
return true;
@ -710,9 +710,9 @@ non_basis_is_correctly_represented_in_heading() const {
template <typename T, typename X> bool lp_core_solver_base<T, X>::
basis_heading_is_correct() const {
SASSERT(m_basis_heading.size() == m_A.column_count());
SASSERT(m_basis.size() == m_A.row_count());
SASSERT(m_nbasis.size() <= m_A.column_count() - m_A.row_count()); // for the dual the size of non basis can be smaller
lp_assert(m_basis_heading.size() == m_A.column_count());
lp_assert(m_basis.size() == m_A.row_count());
lp_assert(m_nbasis.size() <= m_A.column_count() - m_A.row_count()); // for the dual the size of non basis can be smaller
if (!basis_has_no_doubles()) {
// std::cout << "basis_has_no_doubles" << std::endl;
return false;
@ -856,7 +856,7 @@ solve_Ax_eq_b() {
template <typename T, typename X> void lp_core_solver_base<T, X>::
snap_non_basic_x_to_bound_and_free_to_zeroes() {
for (unsigned j : non_basis()) {
SASSERT(j < m_x.size());
lp_assert(j < m_x.size());
switch (m_column_types[j]) {
case column_type::fixed:
case column_type::boxed:
@ -907,9 +907,9 @@ get_non_basic_column_value_position(unsigned j) const {
case column_type::upper_bound:
return x_is_at_upper_bound(j)? at_upper_bound : not_at_bound;
default:
SASSERT(false);
lp_unreachable();
}
SASSERT(false);
lp_unreachable();
return at_low_bound;
}
@ -940,8 +940,8 @@ template <typename T, typename X> void lp_core_solver_base<T, X>::transpose_row
}
// j is the new basic column, j_basic - the leaving column
template <typename T, typename X> bool lp_core_solver_base<T, X>::pivot_column_general(unsigned j, unsigned j_basic, indexed_vector<T> & w) {
lean_assert(m_basis_heading[j] < 0);
lean_assert(m_basis_heading[j_basic] >= 0);
lp_assert(m_basis_heading[j] < 0);
lp_assert(m_basis_heading[j_basic] >= 0);
unsigned row_index = m_basis_heading[j_basic];
if (m_settings.m_simplex_strategy == simplex_strategy_enum::lu) {
if (m_factorization->need_to_refactor()) {
@ -995,7 +995,7 @@ template <typename T, typename X> bool
lp_core_solver_base<T, X>::infeasibility_costs_are_correct() const {
if (! this->m_using_infeas_costs)
return true;
SASSERT(costs_on_nbasis_are_zeros());
lp_assert(costs_on_nbasis_are_zeros());
for (unsigned j :this->m_basis) {
if (!infeasibility_cost_is_correct_for_column(j)) {
std::cout << "infeasibility_cost_is_correct_for_column does not hold\n";
@ -1040,15 +1040,15 @@ lp_core_solver_base<T, X>::infeasibility_cost_is_correct_for_column(unsigned j)
case column_type::free_column:
return is_zero(this->m_costs[j]);
default:
SASSERT(false);
lp_assert(false);
return true;
}
}
template <typename T, typename X>
void lp_core_solver_base<T, X>::calculate_pivot_row(unsigned i) {
lean_assert(!use_tableau());
lean_assert(m_pivot_row.is_OK());
lp_assert(!use_tableau());
lp_assert(m_pivot_row.is_OK());
m_pivot_row_of_B_1.clear();
m_pivot_row_of_B_1.resize(m_m());
m_pivot_row.clear();

View file

@ -144,3 +144,4 @@ template bool lp::lp_core_solver_base<lp::mpq, lp::mpq>::inf_set_is_correct() co
template bool lp::lp_core_solver_base<lp::mpq, lp::numeric_pair<lp::mpq> >::infeasibility_costs_are_correct() const;
template bool lp::lp_core_solver_base<lp::mpq, lp::mpq >::infeasibility_costs_are_correct() const;
template bool lp::lp_core_solver_base<double, double >::infeasibility_costs_are_correct() const;
template void lp::lp_core_solver_base<lp::mpq, lp::numeric_pair<lp::mpq> >::calculate_pivot_row(unsigned int);

View file

@ -38,7 +38,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_non_ba
while (j--) {
if (this->m_basis_heading[j] >= 0 ) continue;
if (m_can_enter_basis[j]) {
SASSERT(std::find(nb.begin(), nb.end(), j) == nb.end());
lp_assert(std::find(nb.begin(), nb.end(), j) == nb.end());
nb.push_back(j);
this->m_basis_heading[j] = - static_cast<int>(nb.size());
}
@ -108,14 +108,14 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::done() {
}
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_low_bound(unsigned p) {
SASSERT(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
lp_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
T del = this->m_x[p] - this->m_low_bounds[p];
del *= del;
return del / this->m_betas[this->m_basis_heading[p]];
}
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_upper_bound(unsigned p) {
SASSERT(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
lp_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
T del = this->m_x[p] - this->m_upper_bounds[p];
del *= del;
return del / this->m_betas[this->m_basis_heading[p]];
@ -150,12 +150,12 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(u
return numeric_traits<T>::zero();
break;
case column_type::free_column:
SASSERT(numeric_traits<T>::is_zero(this->m_d[p]));
lp_assert(numeric_traits<T>::is_zero(this->m_d[p]));
return numeric_traits<T>::zero();
default:
SASSERT(false);
lp_unreachable();
}
SASSERT(false);
lp_unreachable();
return numeric_traits<T>::zero();
}
@ -224,9 +224,9 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::advance_on_kno
int pivot_compare_result = this->pivots_in_column_and_row_are_different(m_q, m_p);
if (!pivot_compare_result){;}
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
SASSERT(false); // not implemented yet
lp_unreachable(); // not implemented yet
} else {
SASSERT(pivot_compare_result == 1);
lp_assert(pivot_compare_result == 1);
this->init_lu();
}
DSE_FTran();
@ -243,21 +243,21 @@ template <typename T, typename X> int lp_dual_core_solver<T, X>::define_sign_of_
if (this->x_above_upper_bound(m_p)) {
return 1;
}
SASSERT(false);
lp_unreachable();
case column_type::low_bound:
if (this->x_below_low_bound(m_p)) {
return -1;
}
SASSERT(false);
lp_unreachable();
case column_type::upper_bound:
if (this->x_above_upper_bound(m_p)) {
return 1;
}
SASSERT(false);
lp_unreachable();
default:
SASSERT(false);
lp_unreachable();
}
SASSERT(false);
lp_unreachable();
return 0;
}
@ -265,10 +265,10 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::can_be_breakpo
if (this->pivot_row_element_is_too_small_for_ratio_test(j)) return false;
switch (this->m_column_types[j]) {
case column_type::low_bound:
SASSERT(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_low_bounds[j]));
lp_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_low_bounds[j]));
return m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
case column_type::upper_bound:
SASSERT(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
lp_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
return m_sign_of_alpha_r * this->m_pivot_row[j] < 0;
case column_type::boxed:
{
@ -307,23 +307,23 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::get_delta() {
if (this->x_above_upper_bound(m_p)) {
return this->m_x[m_p] - this->m_upper_bounds[m_p];
}
SASSERT(false);
lp_unreachable();
case column_type::low_bound:
if (this->x_below_low_bound(m_p)) {
return this->m_x[m_p] - this->m_low_bounds[m_p];
}
SASSERT(false);
lp_unreachable();
case column_type::upper_bound:
if (this->x_above_upper_bound(m_p)) {
return get_edge_steepness_for_upper_bound(m_p);
}
SASSERT(false);
lp_unreachable();
case column_type::fixed:
return this->m_x[m_p] - this->m_upper_bounds[m_p];
default:
SASSERT(false);
lp_unreachable();
}
SASSERT(false);
lp_unreachable();
return zero_of_type<T>();
}
@ -370,7 +370,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::update_betas()
template <typename T, typename X> void lp_dual_core_solver<T, X>::apply_flips() {
for (unsigned j : m_flipped_boxed) {
SASSERT(this->x_is_at_bound(j));
lp_assert(this->x_is_at_bound(j));
if (this->x_is_at_low_bound(j)) {
this->m_x[j] = this->m_upper_bounds[j];
} else {
@ -400,7 +400,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_column
case column_type::free_column:
break;
default:
SASSERT(false);
lp_unreachable();
}
}
@ -456,7 +456,7 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_a
return false;
}
SASSERT(d_is_correct());
lp_assert(d_is_correct());
return true;
}
@ -472,7 +472,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::recover_leavin
case free_of_bounds:
this->m_x[m_q] = zero_of_type<X>();
default:
SASSERT(false);
lp_unreachable();
}
}
@ -599,7 +599,7 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::tight_breakpoi
template <typename T, typename X> T lp_dual_core_solver<T, X>::calculate_harris_delta_on_breakpoint_set() {
bool first_time = true;
T ret = zero_of_type<T>();
SASSERT(m_breakpoint_set.size() > 0);
lp_assert(m_breakpoint_set.size() > 0);
for (auto j : m_breakpoint_set) {
T t;
if (this->x_is_at_low_bound(j)) {
@ -648,7 +648,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_on_tigh
}
}
m_tight_set.erase(m_q);
SASSERT(m_q != -1);
lp_assert(m_q != -1);
}
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_and_tight_set() {
@ -737,13 +737,13 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration(
this->set_status(FEASIBLE);
}
pricing_loop(number_of_rows_to_try, offset_in_rows);
SASSERT(problem_is_dual_feasible());
lp_assert(problem_is_dual_feasible());
}
template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // see the page 35
SASSERT(d_is_correct());
SASSERT(problem_is_dual_feasible());
SASSERT(this->basis_heading_is_correct());
lp_assert(d_is_correct());
lp_assert(problem_is_dual_feasible());
lp_assert(this->basis_heading_is_correct());
this->set_total_iterations(0);
this->iters_with_no_cost_growing() = 0;
do {

View file

@ -30,7 +30,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_a
}
break;
case DUAL_UNBOUNDED:
SASSERT(false);
lp_unreachable();
case ITERATIONS_EXHAUSTED:
this->m_status = ITERATIONS_EXHAUSTED;
break;
@ -41,12 +41,12 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_a
this->m_status = FLOATING_POINT_ERROR;
break;
default:
SASSERT(false);
lp_unreachable();
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
SASSERT(j >= this->number_of_core_structurals());
lp_assert(j >= this->number_of_core_structurals());
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
case column_type::low_bound:
m_low_bounds[j] = numeric_traits<T>::zero();
@ -59,7 +59,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_st
m_can_enter_basis[j] = false;
break;
default:
SASSERT(false);
lp_unreachable();
}
}
@ -73,7 +73,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for
break;
case column_type::fixed:
case column_type::upper_bound:
SASSERT(false);
lp_unreachable();
case column_type::boxed:
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
m_low_bounds[j] = numeric_traits<T>::zero();
@ -85,7 +85,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for
m_column_types_of_core_solver[j] = column_type::free_column;
break;
default:
SASSERT(false);
lp_unreachable();
}
// T cost_was = this->m_costs[j];
this->set_scaled_cost(j);
@ -130,7 +130,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2()
this->m_status = FLOATING_POINT_ERROR;
break;
default:
SASSERT(false);
lp_unreachable();
}
this->m_second_stage_iterations = m_core_solver->total_iterations();
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
@ -144,7 +144,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros(
}
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
SASSERT(m_core_solver == nullptr);
lp_assert(m_core_solver == nullptr);
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
if (this->m_settings.get_message_ostream() != nullptr)
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
@ -192,7 +192,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_s
}
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
SASSERT(j < this->m_A->column_count());
lp_assert(j < this->m_A->column_count());
if (j >= this->number_of_core_structurals()) {
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
}
@ -201,12 +201,12 @@ template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
// see 4.7 in the dissertation of Achim Koberstein
SASSERT(this->m_core_solver_columns_to_external_columns.find(j) !=
lp_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
this->m_core_solver_columns_to_external_columns.end());
T free_bound = T(1e4); // see 4.8
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
SASSERT(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
lp_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
switch (ci->get_column_type()) {
case column_type::upper_bound: {
@ -236,14 +236,14 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_
this->m_upper_bounds[j] = this->m_low_bounds[j] = numeric_traits<T>::zero(); // is it needed?
break;
default:
SASSERT(false);
lp_unreachable();
}
m_column_types_of_core_solver[j] = column_type::boxed;
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
this->m_costs[j] = 0;
SASSERT(get_column_type(j) != column_type::upper_bound);
lp_assert(get_column_type(j) != column_type::upper_bound);
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::low_bound))) {
m_column_types_of_core_solver[j] = column_type::boxed;
this->m_low_bounds[j] = numeric_traits<T>::zero();
@ -269,7 +269,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bou
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
unsigned & slack_var,
unsigned & artificial) {
SASSERT(row < this->row_count());
lp_assert(row < this->row_count());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
// we need to bring the program to the form Ax = b
T rs = this->m_b[row];
@ -350,7 +350,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solut
this->flip_costs(); // do it for now, todo ( remove the flipping)
this->cleanup();
this->clpup();
if (this->m_status == INFEASIBLE) {
return;
}

View file

@ -85,7 +85,7 @@ public:
// unsigned len = 100000000;
// for (unsigned j : this->m_inf_set.m_index) {
// int i = this->m_basis_heading[j];
// SASSERT(i >= 0);
// lp_assert(i >= 0);
// unsigned row_len = this->m_A.m_rows[i].size();
// if (row_len < len) {
// choices.clear();
@ -113,8 +113,8 @@ public:
bool column_is_benefitial_for_entering_basis_on_sign_row_strategy(unsigned j, int sign) const {
// sign = 1 means the x of the basis column of the row has to grow to become feasible, when the coeff before j is neg, or x - has to diminish when the coeff is pos
// we have xbj = -aj * xj
SASSERT(this->m_basis_heading[j] < 0);
SASSERT(this->column_is_feasible(j));
lp_assert(this->m_basis_heading[j] < 0);
lp_assert(this->column_is_feasible(j));
switch (this->m_column_types[j]) {
case column_type::free_column: return true;
case column_type::fixed: return false;
@ -132,13 +132,13 @@ public:
return !this->x_is_at_upper_bound(j);
}
SASSERT(false); // cannot be here
lp_assert(false); // cannot be here
return false;
}
bool needs_to_grow(unsigned bj) const {
SASSERT(!this->column_is_feasible(bj));
lp_assert(!this->column_is_feasible(bj));
switch(this->m_column_types[bj]) {
case column_type::free_column:
return false;
@ -149,12 +149,12 @@ public:
default:
return false;
}
SASSERT(false); // unreachable
lp_assert(false); // unreachable
return false;
}
int inf_sign_of_column(unsigned bj) const {
SASSERT(!this->column_is_feasible(bj));
lp_assert(!this->column_is_feasible(bj));
switch(this->m_column_types[bj]) {
case column_type::free_column:
return 0;
@ -166,7 +166,7 @@ public:
default:
return -1;
}
SASSERT(false); // unreachable
lp_assert(false); // unreachable
return 0;
}
@ -174,7 +174,7 @@ public:
bool monoid_can_decrease(const row_cell<T> & rc) const {
unsigned j = rc.m_j;
SASSERT(this->column_is_feasible(j));
lp_assert(this->column_is_feasible(j));
switch (this->m_column_types[j]) {
case column_type::free_column:
return true;
@ -201,13 +201,13 @@ public:
default:
return false;
}
SASSERT(false); // unreachable
lp_assert(false); // unreachable
return false;
}
bool monoid_can_increase(const row_cell<T> & rc) const {
unsigned j = rc.m_j;
SASSERT(this->column_is_feasible(j));
lp_assert(this->column_is_feasible(j));
switch (this->m_column_types[j]) {
case column_type::free_column:
return true;
@ -234,7 +234,7 @@ public:
default:
return false;
}
SASSERT(false); // unreachable
lp_assert(false); // unreachable
return false;
}
@ -344,24 +344,24 @@ public:
}
void limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m < 0 && this->m_column_types[j] == column_type::upper_bound);
lp_assert(m < 0 && this->m_column_types[j] == column_type::upper_bound);
limit_inf_on_upper_bound_m_neg(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
}
void limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m < 0 && this->m_column_types[j] == column_type::low_bound);
lp_assert(m < 0 && this->m_column_types[j] == column_type::low_bound);
limit_inf_on_bound_m_neg(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
}
void limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m > 0 && this->m_column_types[j] == column_type::low_bound);
lp_assert(m > 0 && this->m_column_types[j] == column_type::low_bound);
limit_inf_on_low_bound_m_pos(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
}
void limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m > 0 && this->m_column_types[j] == column_type::upper_bound);
lp_assert(m > 0 && this->m_column_types[j] == column_type::upper_bound);
limit_inf_on_bound_m_pos(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
};
@ -403,7 +403,7 @@ public:
bool need_to_switch_costs() const {
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
return false;
// SASSERT(calc_current_x_is_feasible() == current_x_is_feasible());
// lp_assert(calc_current_x_is_feasible() == current_x_is_feasible());
return this->current_x_is_feasible() == this->m_using_infeas_costs;
}
@ -458,7 +458,7 @@ public:
if (j == -1)
return -1;
SASSERT(!this->column_is_feasible(j));
lp_assert(!this->column_is_feasible(j));
switch (this->m_column_types[j]) {
case column_type::fixed:
case column_type::upper_bound:
@ -474,7 +474,7 @@ public:
new_val_for_leaving = this->m_low_bounds[j];
break;
default:
SASSERT(false);
lp_assert(false);
new_val_for_leaving = numeric_traits<T>::zero(); // does not matter
}
return j;
@ -505,7 +505,7 @@ public:
}
X theta = (this->m_x[leaving] - new_val_for_leaving) / a_ent;
advance_on_entering_and_leaving_tableau_rows(entering, leaving, theta );
SASSERT(this->m_x[leaving] == new_val_for_leaving);
lp_assert(this->m_x[leaving] == new_val_for_leaving);
if (this->current_x_is_feasible())
this->set_status(OPTIMAL);
}
@ -522,13 +522,13 @@ public:
void update_basis_and_x_with_comparison(unsigned entering, unsigned leaving, X delta);
void decide_on_status_when_cannot_find_entering() {
SASSERT(!need_to_switch_costs());
lp_assert(!need_to_switch_costs());
this->set_status(this->current_x_is_feasible()? OPTIMAL: INFEASIBLE);
}
// void limit_theta_on_basis_column_for_feas_case_m_neg(unsigned j, const T & m, X & theta) {
// SASSERT(m < 0);
// SASSERT(this->m_column_type[j] == low_bound || this->m_column_type[j] == boxed);
// lp_assert(m < 0);
// lp_assert(this->m_column_type[j] == low_bound || this->m_column_type[j] == boxed);
// const X & eps = harris_eps_for_bound(this->m_low_bounds[j]);
// if (this->above_bound(this->m_x[j], this->m_low_bounds[j])) {
// theta = std::min((this->m_low_bounds[j] -this->m_x[j] - eps) / m, theta);
@ -537,7 +537,7 @@ public:
// }
void limit_theta_on_basis_column_for_feas_case_m_neg_no_check(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m < 0);
lp_assert(m < 0);
const X& eps = harris_eps_for_bound(this->m_low_bounds[j]);
limit_theta((this->m_low_bounds[j] - this->m_x[j] - eps) / m, theta, unlimited);
if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
@ -545,7 +545,7 @@ public:
bool limit_inf_on_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
// x gets smaller
SASSERT(m < 0);
lp_assert(m < 0);
if (numeric_traits<T>::precise()) {
if (this->below_bound(x, bound)) return false;
if (this->above_bound(x, bound)) {
@ -569,7 +569,7 @@ public:
bool limit_inf_on_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
// x gets larger
SASSERT(m > 0);
lp_assert(m > 0);
if (numeric_traits<T>::precise()) {
if (this->above_bound(x, bound)) return false;
if (this->below_bound(x, bound)) {
@ -594,14 +594,14 @@ public:
void limit_inf_on_low_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
if (numeric_traits<T>::precise()) {
// x gets larger
SASSERT(m > 0);
lp_assert(m > 0);
if (this->below_bound(x, bound)) {
limit_theta((bound - x) / m, theta, unlimited);
}
}
else {
// x gets larger
SASSERT(m > 0);
lp_assert(m > 0);
const X& eps = harris_eps_for_bound(bound);
if (this->below_bound(x, bound)) {
limit_theta((bound - x + eps) / m, theta, unlimited);
@ -611,7 +611,7 @@ public:
void limit_inf_on_upper_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
// x gets smaller
SASSERT(m < 0);
lp_assert(m < 0);
const X& eps = harris_eps_for_bound(bound);
if (this->above_bound(x, bound)) {
limit_theta((bound - x - eps) / m, theta, unlimited);
@ -619,7 +619,7 @@ public:
}
void limit_theta_on_basis_column_for_inf_case_m_pos_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
// SASSERT(m > 0 && this->m_column_type[j] == column_type::boxed);
// lp_assert(m > 0 && this->m_column_type[j] == column_type::boxed);
const X & x = this->m_x[j];
const X & lbound = this->m_low_bounds[j];
@ -639,7 +639,7 @@ public:
}
void limit_theta_on_basis_column_for_inf_case_m_neg_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
// SASSERT(m < 0 && this->m_column_type[j] == column_type::boxed);
// lp_assert(m < 0 && this->m_column_type[j] == column_type::boxed);
const X & x = this->m_x[j];
const X & ubound = this->m_upper_bounds[j];
if (this->above_bound(x, ubound)) {
@ -657,7 +657,7 @@ public:
}
}
void limit_theta_on_basis_column_for_feas_case_m_pos(unsigned j, const T & m, X & theta, bool & unlimited) {
SASSERT(m > 0);
lp_assert(m > 0);
const T& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
if (this->below_bound(this->m_x[j], this->m_upper_bounds[j])) {
limit_theta((this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
@ -669,7 +669,7 @@ public:
}
void limit_theta_on_basis_column_for_feas_case_m_pos_no_check(unsigned j, const T & m, X & theta, bool & unlimited ) {
SASSERT(m > 0);
lp_assert(m > 0);
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
limit_theta( (this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
if (theta < zero_of_type<X>()) {
@ -735,7 +735,7 @@ public:
break;
default:
SASSERT(false);
lp_unreachable();
}
if (!unlimited && theta < zero_of_type<X>()) {
theta = zero_of_type<X>();
@ -818,7 +818,7 @@ public:
case column_type::free_column:
return 0;
default:
SASSERT(false);
lp_assert(false);
}
return 0;
}
@ -853,7 +853,7 @@ public:
return -1;
break;
default:
SASSERT(false);
lp_assert(false);
}
return 0;
@ -879,7 +879,7 @@ public:
// the delta is between the old and the new cost (old - new)
void update_reduced_cost_for_basic_column_cost_change(const T & delta, unsigned j) {
SASSERT(this->m_basis_heading[j] >= 0);
lp_assert(this->m_basis_heading[j] >= 0);
unsigned i = static_cast<unsigned>(this->m_basis_heading[j]);
for (const row_cell<T> & rc : this->m_A.m_rows[i]) {
unsigned k = rc.m_j;
@ -958,7 +958,7 @@ public:
upper_bound_values),
m_beta(A.row_count()),
m_converted_harris_eps(convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance)) {
SASSERT(initial_x_is_correct());
lp_assert(initial_x_is_correct());
m_low_bounds_dummy.resize(A.column_count(), zero_of_type<T>());
m_enter_price_eps = numeric_traits<T>::precise() ? numeric_traits<T>::zero() : T(1e-5);
#ifdef Z3DEBUG

View file

@ -30,7 +30,7 @@ namespace lp {
template <typename T, typename X>
void lp_primal_core_solver<T, X>::sort_non_basis_rational() {
SASSERT(numeric_traits<T>::precise());
lp_assert(numeric_traits<T>::precise());
if (this->m_settings.use_tableau()) {
std::sort(this->m_nbasis.begin(), this->m_nbasis.end(), [this](unsigned a, unsigned b) {
unsigned ca = this->m_A.number_of_non_zeroes_in_column(a);
@ -85,11 +85,11 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_on_breakpoin
const T & d = this->m_d[j];
switch (this->m_column_types[j]) {
case column_type::low_bound:
SASSERT(this->x_is_at_low_bound(j));
lp_assert(this->x_is_at_low_bound(j));
ret = d < -m_epsilon_of_reduced_cost;
break;
case column_type::upper_bound:
SASSERT(this->x_is_at_upper_bound(j));
lp_assert(this->x_is_at_upper_bound(j));
ret = d > m_epsilon_of_reduced_cost;
break;
case column_type::fixed:
@ -98,7 +98,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_on_breakpoin
case column_type::boxed:
{
bool low_bound = this->x_is_at_low_bound(j);
SASSERT(low_bound || this->x_is_at_upper_bound(j));
lp_assert(low_bound || this->x_is_at_upper_bound(j));
ret = (low_bound && d < -m_epsilon_of_reduced_cost) || ((!low_bound) && d > m_epsilon_of_reduced_cost);
}
break;
@ -106,7 +106,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_on_breakpoin
ret = d > m_epsilon_of_reduced_cost || d < - m_epsilon_of_reduced_cost;
break;
default:
SASSERT(false);
lp_unreachable();
ret = false;
break;
}
@ -142,14 +142,14 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis(unsign
}
break;
default:
SASSERT(false);
lp_unreachable();
break;
}
return false;
}
template <typename T, typename X>
bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precise(unsigned j) const {
SASSERT (numeric_traits<T>::precise());
lp_assert (numeric_traits<T>::precise());
if (this->m_using_infeas_costs && this->m_settings.use_breakpoints_in_feasibility_search)
return column_is_benefitial_for_entering_on_breakpoints(j);
const T& dj = this->m_d[j];
@ -182,7 +182,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precis
}
break;
default:
SASSERT(false);
lp_unreachable();
break;
}
return false;
@ -190,7 +190,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precis
template <typename T, typename X>
int lp_primal_core_solver<T, X>::choose_entering_column_presize(unsigned number_of_benefitial_columns_to_go_over) { // at this moment m_y = cB * B(-1)
SASSERT(numeric_traits<T>::precise());
lp_assert(numeric_traits<T>::precise());
if (number_of_benefitial_columns_to_go_over == 0)
return -1;
if (this->m_basis_sort_counter == 0) {
@ -274,7 +274,7 @@ int lp_primal_core_solver<T, X>::choose_entering_column(unsigned number_of_benef
template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_sorted_breakpoints(unsigned entering, X &t) {
T slope_at_entering = this->m_d[entering];
breakpoint<X> * last_bp = nullptr;
SASSERT(m_breakpoint_indices_queue.is_empty()==false);
lp_assert(m_breakpoint_indices_queue.is_empty()==false);
while (m_breakpoint_indices_queue.is_empty() == false) {
unsigned bi = m_breakpoint_indices_queue.dequeue();
breakpoint<X> *b = &m_breakpoints[bi];
@ -289,7 +289,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
}
}
}
SASSERT (last_bp != nullptr);
lp_assert (last_bp != nullptr);
t = last_bp->m_delta;
return last_bp->m_j;
}
@ -297,13 +297,13 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
template <typename T, typename X> int
lp_primal_core_solver<T, X>::find_leaving_and_t_with_breakpoints(unsigned entering, X & t){
SASSERT(this->precise() == false);
lp_assert(this->precise() == false);
fill_breakpoints_array(entering);
return advance_on_sorted_breakpoints(entering, t);
}
template <typename T, typename X> bool lp_primal_core_solver<T, X>::get_harris_theta(X & theta) {
SASSERT(this->m_ed.is_OK());
lp_assert(this->m_ed.is_OK());
bool unlimited = true;
for (unsigned i : this->m_ed.m_index) {
if (this->m_settings.abs_val_is_smaller_than_pivot_tolerance(this->m_ed[i])) continue;
@ -360,13 +360,13 @@ template <typename T, typename X> bool lp_primal_core_solver<T, X>::try_jump_to_
if (m_sign_of_entering_delta > 0) {
t = this->m_upper_bounds[entering] - this->m_x[entering];
if (unlimited || t <= theta){
SASSERT(t >= zero_of_type<X>());
lp_assert(t >= zero_of_type<X>());
return true;
}
} else { // m_sign_of_entering_delta == -1
t = this->m_x[entering] - this->m_low_bounds[entering];
if (unlimited || t <= theta) {
SASSERT(t >= zero_of_type<X>());
lp_assert(t >= zero_of_type<X>());
return true;
}
}
@ -375,7 +375,7 @@ template <typename T, typename X> bool lp_primal_core_solver<T, X>::try_jump_to_
if (m_sign_of_entering_delta > 0) {
t = this->m_upper_bounds[entering] - this->m_x[entering];
if (unlimited || t <= theta){
SASSERT(t >= zero_of_type<X>());
lp_assert(t >= zero_of_type<X>());
return true;
}
}
@ -384,7 +384,7 @@ template <typename T, typename X> bool lp_primal_core_solver<T, X>::try_jump_to_
if (m_sign_of_entering_delta < 0) {
t = this->m_x[entering] - this->m_low_bounds[entering];
if (unlimited || t <= theta) {
SASSERT(t >= zero_of_type<X>());
lp_assert(t >= zero_of_type<X>());
return true;
}
}
@ -420,7 +420,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
do {
unsigned i = this->m_ed.m_index[k];
const T & ed = this->m_ed[i];
SASSERT(!numeric_traits<T>::is_zero(ed));
lp_assert(!numeric_traits<T>::is_zero(ed));
unsigned j = this->m_basis[i];
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
if (!unlimited) {
@ -439,7 +439,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
while (k != initial_k) {
unsigned i = this->m_ed.m_index[k];
const T & ed = this->m_ed[i];
SASSERT(!numeric_traits<T>::is_zero(ed));
lp_assert(!numeric_traits<T>::is_zero(ed));
unsigned j = this->m_basis[i];
unlimited = true;
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
@ -479,7 +479,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leavi
return find_leaving_and_t_with_breakpoints(entering, t);
X theta;
bool unlimited = get_harris_theta(theta);
SASSERT(unlimited || theta >= zero_of_type<X>());
lp_assert(unlimited || theta >= zero_of_type<X>());
if (try_jump_to_another_bound_on_entering(entering, theta, t, unlimited)) return entering;
if (unlimited)
return -1;
@ -548,7 +548,7 @@ template <typename T, typename X> X lp_primal_core_solver<T, X>::get_max_boun
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_Ax_equal_b() {
dense_matrix<T, X> d(this->m_A);
T * ls = d.apply_from_left_with_different_dims(this->m_x);
SASSERT(vectors_are_equal<T>(ls, this->m_b, this->m_m()));
lp_assert(vectors_are_equal<T>(ls, this->m_b, this->m_m()));
delete [] ls;
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_the_bounds() {
@ -558,8 +558,8 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::check_the
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_bound(unsigned i) {
SASSERT (!(this->column_has_low_bound(i) && (numeric_traits<T>::zero() > this->m_x[i])));
SASSERT (!(this->column_has_upper_bound(i) && (this->m_upper_bounds[i] < this->m_x[i])));
lp_assert (!(this->column_has_low_bound(i) && (numeric_traits<T>::zero() > this->m_x[i])));
lp_assert (!(this->column_has_upper_bound(i) && (this->m_upper_bounds[i] < this->m_x[i])));
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_correctness() {
@ -575,8 +575,8 @@ void lp_primal_core_solver<T, X>::update_reduced_costs_from_pivot_row(unsigned e
// the basis heading has changed already
#ifdef Z3DEBUG
auto & basis_heading = this->m_basis_heading;
SASSERT(basis_heading[entering] >= 0 && static_cast<unsigned>(basis_heading[entering]) < this->m_m());
SASSERT(basis_heading[leaving] < 0);
lp_assert(basis_heading[entering] >= 0 && static_cast<unsigned>(basis_heading[entering]) < this->m_m());
lp_assert(basis_heading[leaving] < 0);
#endif
T pivot = this->m_pivot_row[entering];
T dq = this->m_d[entering]/pivot;
@ -599,7 +599,7 @@ void lp_primal_core_solver<T, X>::update_reduced_costs_from_pivot_row(unsigned e
template <typename T, typename X> int lp_primal_core_solver<T, X>::refresh_reduced_cost_at_entering_and_check_that_it_is_off(unsigned entering) {
if (numeric_traits<T>::precise()) return 0;
T reduced_at_entering_was = this->m_d[entering]; // can benefit from going over non-zeros of m_ed
SASSERT(abs(reduced_at_entering_was) > m_epsilon_of_reduced_cost);
lp_assert(abs(reduced_at_entering_was) > m_epsilon_of_reduced_cost);
T refreshed_cost = this->m_costs[entering];
unsigned i = this->m_m();
while (i--) refreshed_cost -= this->m_costs[this->m_basis[i]] * this->m_ed[i];
@ -634,7 +634,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::backup_an
m_costs_backup = this->m_costs;
} else {
T cost_max = std::max(max_abs_in_vector(this->m_costs), T(1));
SASSERT(m_costs_backup.size() == 0);
lp_assert(m_costs_backup.size() == 0);
for (unsigned j = 0; j < this->m_costs.size(); j++)
m_costs_backup.push_back(this->m_costs[j] /= cost_max);
}
@ -664,16 +664,16 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run(
template <typename T, typename X> void lp_primal_core_solver<T, X>::calc_working_vector_beta_for_column_norms(){
SASSERT(numeric_traits<T>::precise() == false);
SASSERT(this->m_ed.is_OK());
SASSERT(m_beta.is_OK());
lp_assert(numeric_traits<T>::precise() == false);
lp_assert(this->m_ed.is_OK());
lp_assert(m_beta.is_OK());
m_beta = this->m_ed;
this->m_factorization->solve_yB_with_error_check_indexed(m_beta, this->m_basis_heading, this->m_basis, this->m_settings);
}
template <typename T, typename X>
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering, X & t) {
SASSERT(!this->A_mult_x_is_off() );
lp_assert(!this->A_mult_x_is_off() );
this->update_x(entering, t * m_sign_of_entering_delta);
if (this->A_mult_x_is_off_on_index(this->m_ed.m_index) && !this->find_x_by_solving()) {
this->init_lu();
@ -685,7 +685,7 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
}
}
if (this->m_using_infeas_costs) {
SASSERT(is_zero(this->m_costs[entering]));
lp_assert(is_zero(this->m_costs[entering]));
init_infeasibility_costs_for_changed_basis_only();
}
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
@ -698,10 +698,10 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
}
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving(int entering, int leaving, X & t) {
SASSERT(entering >= 0 && m_non_basis_list.back() == static_cast<unsigned>(entering));
SASSERT(this->m_using_infeas_costs || t >= zero_of_type<X>());
SASSERT(leaving >= 0 && entering >= 0);
SASSERT(entering != leaving || !is_zero(t)); // otherwise nothing changes
lp_assert(entering >= 0 && m_non_basis_list.back() == static_cast<unsigned>(entering));
lp_assert(this->m_using_infeas_costs || t >= zero_of_type<X>());
lp_assert(leaving >= 0 && entering >= 0);
lp_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
if (entering == leaving) {
advance_on_entering_equal_leaving(entering, t);
return;
@ -717,7 +717,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
this->iters_with_no_cost_growing()++;
return;
} else {
SASSERT(pivot_compare_result == 1);
lp_assert(pivot_compare_result == 1);
this->init_lu();
if (this->m_factorization == nullptr || this->m_factorization->get_status() != LU_status::OK) {
this->set_status(UNSTABLE);
@ -761,7 +761,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
} else {
update_reduced_costs_from_pivot_row(entering, leaving);
}
SASSERT(!need_to_switch_costs());
lp_assert(!need_to_switch_costs());
std::list<unsigned>::iterator it = m_non_basis_list.end();
it--;
* it = static_cast<unsigned>(leaving);
@ -769,8 +769,8 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_precise(int entering) {
SASSERT(numeric_traits<T>::precise());
SASSERT(entering > -1);
lp_assert(numeric_traits<T>::precise());
lp_assert(entering > -1);
this->solve_Bd(entering);
X t;
int leaving = find_leaving_and_t_precise(entering, t);
@ -786,7 +786,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
advance_on_entering_precise(entering);
return;
}
SASSERT(entering > -1);
lp_assert(entering > -1);
this->solve_Bd(entering);
int refresh_result = refresh_reduced_cost_at_entering_and_check_that_it_is_off(entering);
if (refresh_result) {
@ -806,7 +806,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
int leaving = find_leaving_and_t(entering, t);
if (leaving == -1){
if (!this->current_x_is_feasible()) {
SASSERT(!numeric_traits<T>::precise()); // we cannot have unbounded with inf costs
lp_assert(!numeric_traits<T>::precise()); // we cannot have unbounded with inf costs
// if (m_look_for_feasible_solution_only) {
// this->m_status = INFEASIBLE;
@ -880,7 +880,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
return this->total_iterations();
}
one_iteration();
SASSERT(!this->m_using_infeas_costs || this->costs_on_nbasis_are_zeros());
lp_assert(!this->m_using_infeas_costs || this->costs_on_nbasis_are_zeros());
switch (this->get_status()) {
case OPTIMAL: // double check that we are at optimum
case INFEASIBLE:
@ -929,7 +929,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
break;
case UNSTABLE:
SASSERT(! (numeric_traits<T>::precise()));
lp_assert(! (numeric_traits<T>::precise()));
this->init_lu();
if (this->m_factorization->get_status() != LU_status::OK) {
this->set_status(FLOATING_POINT_ERROR);
@ -955,7 +955,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
&&
!(this->current_x_is_feasible() && this->m_look_for_feasible_solution_only));
SASSERT(this->get_status() == FLOATING_POINT_ERROR
lp_assert(this->get_status() == FLOATING_POINT_ERROR
||
this->current_x_is_feasible() == false
||
@ -972,7 +972,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::delete_fa
// according to Swietanowski, " A new steepest edge approximation for the simplex method for linear programming"
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_norms() {
SASSERT(numeric_traits<T>::precise() == false);
lp_assert(numeric_traits<T>::precise() == false);
for (unsigned j = 0; j < this->m_n(); j++) {
this->m_column_norms[j] = T(static_cast<int>(this->m_A.m_columns[j].size() + 1))
@ -982,7 +982,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_
// debug only
template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_column_norm_exactly(unsigned j) {
SASSERT(numeric_traits<T>::precise() == false);
lp_assert(numeric_traits<T>::precise() == false);
indexed_vector<T> w(this->m_m());
this->m_A.copy_column_to_vector(j, w);
vector<T> d(this->m_m());
@ -994,8 +994,8 @@ template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_colum
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::update_or_init_column_norms(unsigned entering, unsigned leaving) {
SASSERT(numeric_traits<T>::precise() == false);
SASSERT(m_column_norm_update_counter <= this->m_settings.column_norms_update_frequency);
lp_assert(numeric_traits<T>::precise() == false);
lp_assert(m_column_norm_update_counter <= this->m_settings.column_norms_update_frequency);
if (m_column_norm_update_counter == this->m_settings.column_norms_update_frequency) {
m_column_norm_update_counter = 0;
init_column_norms();
@ -1007,7 +1007,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::update_or
// following Swietanowski - A new steepest ...
template <typename T, typename X> void lp_primal_core_solver<T, X>::update_column_norms(unsigned entering, unsigned leaving) {
SASSERT(numeric_traits<T>::precise() == false);
lp_assert(numeric_traits<T>::precise() == false);
T pivot = this->m_pivot_row[entering];
T g_ent = calculate_norm_of_entering_exactly() / pivot / pivot;
if (!numeric_traits<T>::precise()) {
@ -1042,7 +1042,7 @@ template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_no
// calling it stage1 is too cryptic
template <typename T, typename X> void lp_primal_core_solver<T, X>::find_feasible_solution() {
this->m_look_for_feasible_solution_only = true;
SASSERT(this->non_basic_columns_are_set_correctly());
lp_assert(this->non_basic_columns_are_set_correctly());
this->set_status(UNKNOWN);
solve();
}
@ -1110,8 +1110,8 @@ void lp_primal_core_solver<T, X>::init_infeasibility_costs_for_changed_basis_onl
template <typename T, typename X>
void lp_primal_core_solver<T, X>::init_infeasibility_costs() {
SASSERT(this->m_x.size() >= this->m_n());
SASSERT(this->m_column_types.size() >= this->m_n());
lp_assert(this->m_x.size() >= this->m_n());
lp_assert(this->m_column_types.size() >= this->m_n());
for (unsigned j = this->m_n(); j--;)
init_infeasibility_cost_for_column(j);
this->m_using_infeas_costs = true;
@ -1153,7 +1153,7 @@ lp_primal_core_solver<T, X>::get_infeasibility_cost_for_column(unsigned j) const
ret = numeric_traits<T>::zero();
break;
default:
SASSERT(false);
lp_assert(false);
ret = numeric_traits<T>::zero(); // does not matter
break;
}
@ -1207,7 +1207,7 @@ lp_primal_core_solver<T, X>::init_infeasibility_cost_for_column(unsigned j) {
this->m_costs[j] = numeric_traits<T>::zero();
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
@ -1238,7 +1238,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column
case column_type::free_column:
out << "( _" << this->m_x[j] << "_)" << std::endl;
default:
SASSERT(false);
lp_unreachable();
}
}
@ -1277,7 +1277,7 @@ template <typename T, typename X> std::string lp_primal_core_solver<T, X>::break
case upper_break: return "upper_break";
case fixed_break: return "fixed_break";
default:
SASSERT(false);
lp_assert(false);
break;
}
return "type is not found";
@ -1290,7 +1290,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_breakp
template <typename T, typename X>
void lp_primal_core_solver<T, X>::init_reduced_costs() {
SASSERT(!this->use_tableau());
lp_assert(!this->use_tableau());
if (this->current_x_is_infeasible() && !this->m_using_infeas_costs) {
init_infeasibility_costs();
} else if (this->current_x_is_feasible() && this->m_using_infeas_costs) {
@ -1305,12 +1305,12 @@ void lp_primal_core_solver<T, X>::init_reduced_costs() {
template <typename T, typename X> void lp_primal_core_solver<T, X>::change_slope_on_breakpoint(unsigned entering, breakpoint<X> * b, T & slope_at_entering) {
if (b->m_j == entering) {
SASSERT(b->m_type != fixed_break && (!is_zero(b->m_delta)));
lp_assert(b->m_type != fixed_break && (!is_zero(b->m_delta)));
slope_at_entering += m_sign_of_entering_delta;
return;
}
SASSERT(this->m_basis_heading[b->m_j] >= 0);
lp_assert(this->m_basis_heading[b->m_j] >= 0);
unsigned i_row = this->m_basis_heading[b->m_j];
const T & d = - this->m_ed[i_row];
if (numeric_traits<T>::is_zero(d)) return;
@ -1329,13 +1329,13 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::change_sl
slope_at_entering += delta;
break;
default:
SASSERT(false);
lp_assert(false);
}
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::try_add_breakpoint_in_row(unsigned i) {
SASSERT(i < this->m_m());
lp_assert(i < this->m_m());
const T & d = this->m_ed[i]; // the coefficient before m_entering in the i-th row
if (d == 0) return; // the change of x[m_entering] will not change the corresponding basis x
unsigned j = this->m_basis[i];
@ -1357,7 +1357,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::try_add_b
case column_type::free_column:
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
}
@ -1381,7 +1381,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_bound_
out << "inf, inf" << std::endl;
break;
default:
SASSERT(false);
lp_assert(false);
break;
}
}

View file

@ -24,7 +24,7 @@ Revision History:
#include <functional>
#include "util/lp/lar_solver.h"
#include "util/lp/lp_primal_core_solver.hpp"
#include "util/lp/lp_primal_core_solver_tableau.h"
#include "util/lp/lp_primal_core_solver_tableau.hpp"
namespace lp {
template void lp_primal_core_solver<double, double>::find_feasible_solution();

View file

@ -28,7 +28,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::one_iteratio
else {
advance_on_entering_tableau(entering);
}
SASSERT(this->inf_set_is_correct());
lp_assert(this->inf_set_is_correct());
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_tableau(int entering) {
@ -52,7 +52,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_enteri
//this moment m_y = cB * B(-1)
unsigned number_of_benefitial_columns_to_go_over = get_number_of_non_basic_column_to_try_for_enter();
SASSERT(numeric_traits<T>::precise());
lp_assert(numeric_traits<T>::precise());
if (number_of_benefitial_columns_to_go_over == 0)
return -1;
if (this->m_basis_sort_counter == 0) {
@ -164,7 +164,7 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
break;
case UNSTABLE:
SASSERT(! (numeric_traits<T>::precise()));
lp_assert(! (numeric_traits<T>::precise()));
this->init_lu();
if (this->m_factorization->get_status() != LU_status::OK) {
this->set_status(FLOATING_POINT_ERROR);
@ -196,25 +196,22 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
this->set_status(CANCELLED);
}
SASSERT(
this->get_status() == FLOATING_POINT_ERROR
||
this->get_status() == CANCELLED
||
this->current_x_is_feasible() == false
||
this->calc_current_x_is_feasible_include_non_basis());
lp_assert(this->get_status() == FLOATING_POINT_ERROR
||
this->current_x_is_feasible() == false
||
this->calc_current_x_is_feasible_include_non_basis());
return this->total_iterations();
}
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t) {
SASSERT(this->A_mult_x_is_off() == false);
SASSERT(leaving >= 0 && entering >= 0);
SASSERT((this->m_settings.simplex_strategy() ==
lp_assert(this->A_mult_x_is_off() == false);
lp_assert(leaving >= 0 && entering >= 0);
lp_assert((this->m_settings.simplex_strategy() ==
simplex_strategy_enum::tableau_rows) ||
m_non_basis_list.back() == static_cast<unsigned>(entering));
SASSERT(this->m_using_infeas_costs || !is_neg(t));
SASSERT(entering != leaving || !is_zero(t)); // otherwise nothing changes
lp_assert(this->m_using_infeas_costs || !is_neg(t));
lp_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
if (entering == leaving) {
advance_on_entering_equal_leaving_tableau(entering, t);
return;
@ -225,7 +222,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
t = -t;
}
this->update_basis_and_x_tableau(entering, leaving, t);
SASSERT(this->A_mult_x_is_off() == false);
lp_assert(this->A_mult_x_is_off() == false);
this->iters_with_no_cost_growing() = 0;
} else {
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
@ -240,7 +237,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
this->init_reduced_costs_tableau();
}
SASSERT(!need_to_switch_costs());
lp_assert(!need_to_switch_costs());
std::list<unsigned>::iterator it = m_non_basis_list.end();
it--;
* it = static_cast<unsigned>(leaving);
@ -249,7 +246,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
template <typename T, typename X>
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving_tableau(int entering, X & t) {
SASSERT(!this->A_mult_x_is_off() );
lp_assert(!this->A_mult_x_is_off() );
this->update_x_tableau(entering, t * m_sign_of_entering_delta);
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
return;
@ -270,7 +267,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
const column_cell & c = col[k];
unsigned i = c.m_i;
const T & ed = this->m_A.get_val(c);
SASSERT(!numeric_traits<T>::is_zero(ed));
lp_assert(!numeric_traits<T>::is_zero(ed));
unsigned j = this->m_basis[i];
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
if (!unlimited) {
@ -289,7 +286,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
const column_cell & c = col[k];
unsigned i = c.m_i;
const T & ed = this->m_A.get_val(c);
SASSERT(!numeric_traits<T>::is_zero(ed));
lp_assert(!numeric_traits<T>::is_zero(ed));
unsigned j = this->m_basis[i];
unlimited = true;
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
@ -322,12 +319,12 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
// print_matrix(&(this->m_A), std::cout);
SASSERT(this->A_mult_x_is_off() == false);
SASSERT(basis_columns_are_set_correctly());
lp_assert(this->A_mult_x_is_off() == false);
lp_assert(basis_columns_are_set_correctly());
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
this->set_total_iterations(0);
this->iters_with_no_cost_growing() = 0;
SASSERT(this->inf_set_is_correct());
lp_assert(this->inf_set_is_correct());
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
return;
if (this->m_settings.backup_costs)
@ -341,13 +338,13 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tab
}
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
init_tableau_rows();
SASSERT(this->reduced_costs_are_correct_tableau());
SASSERT(!this->need_to_pivot_to_basis_tableau());
lp_assert(this->reduced_costs_are_correct_tableau());
lp_assert(!this->need_to_pivot_to_basis_tableau());
}
template <typename T, typename X> bool lp_primal_core_solver<T, X>::
update_basis_and_x_tableau(int entering, int leaving, X const & tt) {
SASSERT(this->use_tableau());
lp_assert(this->use_tableau());
update_x_tableau(entering, tt);
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
this->change_basis(entering, leaving);
@ -364,8 +361,8 @@ update_x_tableau(unsigned entering, const X& delta) {
}
} else { // m_using_infeas_costs == true
this->m_x[entering] += delta;
SASSERT(this->column_is_feasible(entering));
SASSERT(this->m_costs[entering] == zero_of_type<T>());
lp_assert(this->column_is_feasible(entering));
lp_assert(this->m_costs[entering] == zero_of_type<T>());
// m_d[entering] can change because of the cost change for basic columns.
for (const auto & c : this->m_A.m_columns[entering]) {
unsigned i = c.m_i;
@ -378,13 +375,13 @@ update_x_tableau(unsigned entering, const X& delta) {
this->m_inf_set.insert(j);
}
}
SASSERT(this->A_mult_x_is_off() == false);
lp_assert(this->A_mult_x_is_off() == false);
}
template <typename T, typename X> void lp_primal_core_solver<T, X>::
update_inf_cost_for_column_tableau(unsigned j) {
SASSERT(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
SASSERT(this->m_using_infeas_costs);
lp_assert(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
lp_assert(this->m_using_infeas_costs);
T new_cost = get_infeasibility_cost_for_column(j);
T delta = this->m_costs[j] - new_cost;
if (is_zero(delta))

View file

@ -76,7 +76,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
int row,
unsigned & slack_var,
unsigned & artificial) {
SASSERT(row >= 0 && row < this->row_count());
lp_assert(row >= 0 && row < this->row_count());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
// we need to bring the program to the form Ax = b
T rs = this->m_b[row];
@ -101,7 +101,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
if (rs > 0) {
SASSERT(numeric_traits<T>::is_zero(this->m_x[slack_var]));
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
// adding one artificial
this->m_column_types[artificial] = column_type::low_bound;
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
@ -123,7 +123,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
if (rs < 0) {
// adding one artificial
SASSERT(numeric_traits<T>::is_zero(this->m_x[slack_var]));
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
this->m_column_types[artificial] = column_type::low_bound;
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
this->m_costs[artificial] = artificial_cost;
@ -172,7 +172,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::find_maximal_sol
return;
}
this->cleanup();
this->clpup();
this->fill_matrix_A_and_init_right_side();
if (this->m_status == lp_status::INFEASIBLE) {
return;
@ -192,12 +192,12 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_bas
}
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row) {
SASSERT(row < this->row_count());
lp_assert(row < this->row_count());
auto ext_row_it = this->m_core_solver_rows_to_external_rows.find(row);
SASSERT(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
lp_assert(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
unsigned ext_row = ext_row_it->second;
auto constr_it = this->m_constraints.find(ext_row);
SASSERT(constr_it != this->m_constraints.end());
lp_assert(constr_it != this->m_constraints.end());
auto & constraint = constr_it->second;
unsigned j = this->m_A->column_count(); // j is a slack variable
this->m_A->add_column();
@ -224,7 +224,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_bas
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
break;
default:
SASSERT(false);
lp_unreachable();
}
}
@ -296,10 +296,10 @@ template <typename T, typename X> T lp_primal_simplex<T, X>::get_row_value(unsig
T ret = numeric_traits<T>::zero();
for (auto & pair : it->second) {
auto cit = this->m_map_from_var_index_to_column_info.find(pair.first);
SASSERT(cit != this->m_map_from_var_index_to_column_info.end());
lp_assert(cit != this->m_map_from_var_index_to_column_info.end());
column_info<T> * ci = cit->second;
auto sol_it = solution.find(ci->get_name());
SASSERT(sol_it != solution.end());
lp_assert(sol_it != solution.end());
T column_val = sol_it->second;
if (out != nullptr) {
(*out) << pair.second << "(" << ci->get_name() << "=" << column_val << ") ";
@ -344,7 +344,7 @@ template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraint_h
}
return true;;
}
SASSERT(false);
lp_unreachable();
return false; // it is unreachable
}

View file

@ -390,7 +390,7 @@ inline void print_blanks(int n, std::ostream & out) {
// after a push of the last element we ensure that the vector increases
// we also suppose that before the last push the vector was increasing
inline void ensure_increasing(vector<unsigned> & v) {
SASSERT(v.size() > 0);
lp_assert(v.size() > 0);
unsigned j = v.size() - 1;
for (; j > 0; j-- )
if (v[j] <= v[j - 1]) {

View file

@ -29,7 +29,7 @@ std::string column_type_to_string(column_type t) {
case column_type::low_bound: return "low_bound";
case column_type::upper_bound: return "upper_bound";
case column_type::free_column: return "free_column";
default: SASSERT(false);
default: lp_unreachable();
}
return "unknown"; // it is unreachable
}
@ -49,7 +49,7 @@ const char* lp_status_to_string(lp_status status) {
case EMPTY: return "EMPTY";
case UNSTABLE: return "UNSTABLE";
default:
SASSERT(false);
lp_unreachable();
}
return "UNKNOWN"; // it is unreachable
}
@ -64,7 +64,7 @@ lp_status lp_status_from_string(std::string status) {
if (status == "TIME_EXHAUSTED") return lp_status::TIME_EXHAUSTED;
if (status == "ITERATIONS_EXHAUSTED") return lp_status::ITERATIONS_EXHAUSTED;
if (status == "EMPTY") return lp_status::EMPTY;
SASSERT(false);
lp_unreachable();
return lp_status::UNKNOWN; // it is unreachable
}

View file

@ -220,7 +220,7 @@ protected:
unsigned try_to_remove_some_rows();
void cleanup();
void clpup();
void map_external_rows_to_core_solver_rows();

View file

@ -47,7 +47,7 @@ template <typename T, typename X> T lp_solver<T, X>::get_column_cost_value(unsig
return ci->get_cost() * get_column_value(j);
}
template <typename T, typename X> void lp_solver<T, X>::add_constraint(lp_relation relation, T right_side, unsigned row_index) {
SASSERT(m_constraints.find(row_index) == m_constraints.end());
lp_assert(m_constraints.find(row_index) == m_constraints.end());
lp_constraint<T, X> cs(right_side, relation);
m_constraints[row_index] = cs;
}
@ -173,10 +173,10 @@ template <typename T, typename X> void lp_solver<T, X>::pin_vars_on_row_with_sig
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
T a = t.second;
if (a * sign > numeric_traits<T>::zero()) {
SASSERT(ci->upper_bound_is_set());
lp_assert(ci->upper_bound_is_set());
ci->set_fixed_value(ci->get_upper_bound());
} else {
SASSERT(ci->low_bound_is_set());
lp_assert(ci->low_bound_is_set());
ci->set_fixed_value(ci->get_low_bound());
}
}
@ -343,7 +343,7 @@ template <typename T, typename X> bool lp_solver<T, X>::row_is_obsolete(std::
case lp_relation::Less_or_equal:
return row_le_is_obsolete(row, row_index);
}
SASSERT(false);
lp_unreachable();
return false; // it is unreachable
}
@ -358,7 +358,7 @@ template <typename T, typename X> void lp_solver<T, X>::remove_fixed_or_zero_col
vector<unsigned> removed;
for (auto & col : row) {
unsigned j = col.first;
SASSERT(m_map_from_var_index_to_column_info.find(j) != m_map_from_var_index_to_column_info.end());
lp_assert(m_map_from_var_index_to_column_info.find(j) != m_map_from_var_index_to_column_info.end());
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
if (ci->is_fixed()) {
removed.push_back(j);
@ -396,7 +396,7 @@ template <typename T, typename X> unsigned lp_solver<T, X>::try_to_remove_some_r
return static_cast<unsigned>(rows_to_delete.size());
}
template <typename T, typename X> void lp_solver<T, X>::cleanup() {
template <typename T, typename X> void lp_solver<T, X>::clpup() {
int n = 0; // number of deleted rows
int d;
while ((d = try_to_remove_some_rows() > 0))
@ -427,7 +427,7 @@ template <typename T, typename X> void lp_solver<T, X>::map_external_columns_to_
}
unsigned j = col.first;
auto column_info_it = m_map_from_var_index_to_column_info.find(j);
SASSERT(column_info_it != m_map_from_var_index_to_column_info.end());
lp_assert(column_info_it != m_map_from_var_index_to_column_info.end());
auto j_column = column_info_it->second->get_column_index();
if (!is_valid(j_column)) { // j is a newcomer
@ -450,14 +450,14 @@ template <typename T, typename X> void lp_solver<T, X>::fill_A_from_A_values() {
m_A = new static_matrix<T, X>(static_cast<unsigned>(m_A_values.size()), number_of_core_structurals());
for (auto & t : m_A_values) {
auto row_it = m_external_rows_to_core_solver_rows.find(t.first);
SASSERT(row_it != m_external_rows_to_core_solver_rows.end());
lp_assert(row_it != m_external_rows_to_core_solver_rows.end());
unsigned row = row_it->second;
for (auto k : t.second) {
auto column_info_it = m_map_from_var_index_to_column_info.find(k.first);
SASSERT(column_info_it != m_map_from_var_index_to_column_info.end());
lp_assert(column_info_it != m_map_from_var_index_to_column_info.end());
column_info<T> *ci = column_info_it->second;
unsigned col = ci->get_column_index();
SASSERT(is_valid(col));
lp_assert(is_valid(col));
bool col_is_flipped = m_map_from_var_index_to_column_info[k.first]->is_flipped();
if (!col_is_flipped) {
(*m_A)(row, col) = k.second;
@ -471,7 +471,7 @@ template <typename T, typename X> void lp_solver<T, X>::fill_A_from_A_values() {
template <typename T, typename X> void lp_solver<T, X>::fill_matrix_A_and_init_right_side() {
map_external_rows_to_core_solver_rows();
map_external_columns_to_core_solver_columns();
SASSERT(m_A == nullptr);
lp_assert(m_A == nullptr);
fill_A_from_A_values();
m_b.resize(m_A->row_count());
}
@ -483,7 +483,7 @@ template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artific
}
template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artificials_for_row(unsigned i) {
SASSERT(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
lp_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[i]];
switch (constraint.m_relation) {
case Equal:
@ -519,7 +519,7 @@ template <typename T, typename X> T lp_solver<T, X>::low_bound_shift_for_row(
template <typename T, typename X> void lp_solver<T, X>::fill_m_b() {
for (int i = this->row_count() - 1; i >= 0; i--) {
SASSERT(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
lp_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
unsigned external_i = this->m_core_solver_rows_to_external_rows[i];
auto & constraint = this->m_constraints[external_i];
this->m_b[i] = constraint.m_rs - low_bound_shift_for_row(external_i);
@ -557,13 +557,13 @@ template <typename T, typename X> T lp_solver<T, X>::get_column_value_with_core_
template <typename T, typename X> void lp_solver<T, X>::set_scaled_cost(unsigned j) {
// grab original costs but modify it with the column scales
SASSERT(j < this->m_column_scale.size());
lp_assert(j < this->m_column_scale.size());
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
T cost = ci->get_cost();
if (ci->is_flipped()){
cost *= -1;
}
SASSERT(ci->is_fixed() == false);
lp_assert(ci->is_fixed() == false);
this->m_costs[j] = cost * this->m_column_scale[j];
}
}

View file

@ -20,7 +20,7 @@ Revision History:
#include <string>
#include "util/lp/lp_solver.hpp"
template void lp::lp_solver<double, double>::add_constraint(lp::lp_relation, double, unsigned int);
template void lp::lp_solver<double, double>::cleanup();
template void lp::lp_solver<double, double>::clpup();
template void lp::lp_solver<double, double>::count_slacks_and_artificials();
template void lp::lp_solver<double, double>::fill_m_b();
template void lp::lp_solver<double, double>::fill_matrix_A_and_init_right_side();
@ -34,10 +34,9 @@ template void lp::lp_solver<double, double>::print_statistics_on_A(std::ostream
template bool lp::lp_solver<double, double>::problem_is_empty();
template void lp::lp_solver<double, double>::scale();
template void lp::lp_solver<double, double>::set_scaled_cost(unsigned int);
template std::string lp::lp_solver<double, double>::get_column_name(unsigned int) const;
template lp::lp_solver<double, double>::~lp_solver();
template void lp::lp_solver<lp::mpq, lp::mpq>::add_constraint(lp::lp_relation, lp::mpq, unsigned int);
template void lp::lp_solver<lp::mpq, lp::mpq>::cleanup();
template void lp::lp_solver<lp::mpq, lp::mpq>::clpup();
template void lp::lp_solver<lp::mpq, lp::mpq>::count_slacks_and_artificials();
template void lp::lp_solver<lp::mpq, lp::mpq>::fill_m_b();
template void lp::lp_solver<lp::mpq, lp::mpq>::fill_matrix_A_and_init_right_side();
@ -54,4 +53,3 @@ template void lp::lp_solver<lp::mpq, lp::mpq>::scale();
template void lp::lp_solver<lp::mpq, lp::mpq>::set_scaled_cost(unsigned int);
template lp::lp_solver<lp::mpq, lp::mpq>::~lp_solver();
template double lp::lp_solver<double, double>::get_column_value_by_name(std::string) const;
template std::string lp::lp_solver<lp::mpq, lp::mpq>::get_column_name(unsigned int) const;

View file

@ -18,7 +18,7 @@ Revision History:
--*/
#include "util/lp/lp_utils.h"
#ifdef lp_for_z3
namespace lp {
double numeric_traits<double>::g_zero = 0.0;
double numeric_traits<double>::g_one = 1.0;

View file

@ -35,12 +35,20 @@ bool contains(const std::unordered_map<A, B> & map, const A& key) {
return map.find(key) != map.end();
}
#ifdef lp_for_z3
#ifdef Z3DEBUG
#define LEAN_DEBUG 1
#endif
namespace lp {
inline void throw_exception(const std::string & str) {
throw default_exception(str);
}
typedef z3_exception exception;
#define lp_assert(_x_) { SASSERT(_x_); }
inline void lp_unreachable() { lp_assert(false); }
template <typename X> inline X zero_of_type() { return numeric_traits<X>::zero(); }
template <typename X> inline X one_of_type() { return numeric_traits<X>::one(); }
template <typename X> inline bool is_zero(const X & v) { return numeric_traits<X>::is_zero(v); }
@ -84,3 +92,64 @@ struct hash<lp::numeric_pair<lp::mpq>> {
};
}
#else // else of #if lp_for_z3
#include <utility>
#include <functional>
//include "util/numerics/mpq.h"
//include "util/numerics/numeric_traits.h"
//include "util/numerics/double.h"
#ifdef __CLANG__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
namespace std {
template<>
struct hash<lp::mpq> {
inline size_t operator()(const lp::mpq & v) const {
return v.hash();
}
};
}
namespace lp {
template <typename X> inline bool precise() { return numeric_traits<X>::precise();}
template <typename X> inline X one_of_type() { return numeric_traits<X>::one(); }
template <typename X> inline bool is_zero(const X & v) { return numeric_traits<X>::is_zero(v); }
template <typename X> inline double get_double(const X & v) { return numeric_traits<X>::get_double(v); }
template <typename T> inline T zero_of_type() {return numeric_traits<T>::zero();}
inline void throw_exception(std::string str) { throw exception(str); }
template <typename T> inline T from_string(std::string const & ) { lp_unreachable();}
template <> double inline from_string<double>(std::string const & str) { return atof(str.c_str());}
template <> mpq inline from_string<mpq>(std::string const & str) {
return mpq(atof(str.c_str()));
}
} // closing lp
template <class T>
inline void hash_combine(std::size_t & seed, const T & v) {
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
namespace std {
template<typename S, typename T> struct hash<pair<S, T>> {
inline size_t operator()(const pair<S, T> & v) const {
size_t seed = 0;
hash_combine(seed, v.first);
hash_combine(seed, v.second);
return seed;
}
};
template<>
struct hash<lp::numeric_pair<lp::mpq>> {
inline size_t operator()(const lp::numeric_pair<lp::mpq> & v) const {
size_t seed = 0;
hash_combine(seed, v.x);
hash_combine(seed, v.y);
return seed;
}
};
} // std
#ifdef __CLANG__
#pragma clang diagnostic pop
#endif
#endif

View file

@ -34,7 +34,7 @@ Revision History:
#include "util/lp/square_dense_submatrix.h"
#include "util/lp/dense_matrix.h"
namespace lp {
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
template <typename T, typename X> // print the nr x nc submatrix at the top left corner
void print_submatrix(sparse_matrix<T, X> & m, unsigned mr, unsigned nc);
@ -47,7 +47,7 @@ void print_matrix(sparse_matrix<T, X>& m, std::ostream & out);
template <typename T, typename X>
X dot_product(const vector<T> & a, const vector<X> & b) {
SASSERT(a.size() == b.size());
lp_assert(a.size() == b.size());
auto r = zero_of_type<X>();
for (unsigned i = 0; i < a.size(); i++) {
r += a[i] * b[i];
@ -113,8 +113,8 @@ public:
#endif
m_i = p.apply_reverse(m_i);
#ifdef Z3DEBUG
// SASSERT(*this == deb);
#ifdef LEAN_DEBUG
// lp_assert(*this == deb);
#endif
}
}; // end of one_elem_on_diag
@ -306,7 +306,7 @@ public:
bool need_to_refactor() { return m_refactor_counter >= 200; }
void adjust_dimension_with_matrix_A() {
SASSERT(m_A.row_count() >= m_dim);
lp_assert(m_A.row_count() >= m_dim);
m_dim = m_A.row_count();
m_U.resize(m_dim);
m_Q.resize(m_dim);
@ -320,7 +320,7 @@ public:
unsigned m = m_A.row_count();
unsigned m_prev = m_U.dimension();
SASSERT(m_A.column_count() == heading.size());
lp_assert(m_A.column_count() == heading.size());
for (unsigned i = m_prev; i < m; i++) {
for (const row_cell<T> & c : m_A.m_rows[i]) {
@ -336,14 +336,14 @@ public:
void add_last_rows_to_B(const vector<int> & heading, const std::unordered_set<unsigned> & columns_to_replace) {
unsigned m = m_A.row_count();
SASSERT(m_A.column_count() == heading.size());
lp_assert(m_A.column_count() == heading.size());
adjust_dimension_with_matrix_A();
m_w_for_extension.resize(m);
// At this moment the LU is correct
// for B extended by only by ones at the diagonal in the lower right corner
for (unsigned j :columns_to_replace) {
SASSERT(heading[j] >= 0);
lp_assert(heading[j] >= 0);
replace_column_with_only_change_at_last_rows(j, heading[j]);
if (get_status() == LU_status::Degenerated)
break;

View file

@ -25,7 +25,7 @@ Revision History:
#include "util/debug.h"
#include "util/lp/lu.h"
namespace lp {
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
template <typename T, typename X> // print the nr x nc submatrix at the top left corner
void print_submatrix(sparse_matrix<T, X> & m, unsigned mr, unsigned nc, std::ostream & out) {
vector<vector<std::string>> A;
@ -137,29 +137,29 @@ lu<T, X>::lu(static_matrix<T, X> const & A,
m_failure(false),
m_row_eta_work_vector(A.row_count()),
m_refactor_counter(0) {
SASSERT(!(numeric_traits<T>::precise() && settings.use_tableau()));
#ifdef Z3DEBUG
lp_assert(!(numeric_traits<T>::precise() && settings.use_tableau()));
#ifdef LEAN_DEBUG
debug_test_of_basis(A, basis);
#endif
++m_settings.st().m_num_factorizations;
create_initial_factorization();
#ifdef Z3DEBUG
// SASSERT(check_correctness());
#ifdef LEAN_DEBUG
// lp_assert(check_correctness());
#endif
}
template <typename T, typename X>
void lu<T, X>::debug_test_of_basis(static_matrix<T, X> const & A, vector<unsigned> & basis) {
std::set<unsigned> set;
for (unsigned i = 0; i < A.row_count(); i++) {
SASSERT(basis[i]< A.column_count());
lp_assert(basis[i]< A.column_count());
set.insert(basis[i]);
}
SASSERT(set.size() == A.row_count());
lp_assert(set.size() == A.row_count());
}
template <typename T, typename X>
void lu<T, X>::solve_By(indexed_vector<X> & y) {
SASSERT(false); // not implemented
lp_assert(false); // not implemented
// init_vector_y(y);
// solve_By_when_y_is_ready(y);
}
@ -292,20 +292,20 @@ void lu<T, X>::solve_yB(vector<T>& y) {
template <typename T, typename X>
void lu<T, X>::solve_yB_indexed(indexed_vector<T>& y) {
SASSERT(y.is_OK());
lp_assert(y.is_OK());
// first solve yU = cb*R(-1)
m_R.apply_reverse_from_right_to_T(y); // got y = cb*R(-1)
SASSERT(y.is_OK());
lp_assert(y.is_OK());
m_U.solve_y_U_indexed(y, m_settings); // got y*U=cb*R(-1)
SASSERT(y.is_OK());
lp_assert(y.is_OK());
m_Q.apply_reverse_from_right_to_T(y);
SASSERT(y.is_OK());
lp_assert(y.is_OK());
for (auto e = m_tail.rbegin(); e != m_tail.rend(); ++e) {
#ifdef Z3DEBUG
(*e)->set_number_of_columns(m_dim);
#endif
(*e)->apply_from_right(y);
SASSERT(y.is_OK());
lp_assert(y.is_OK());
}
}
@ -319,8 +319,8 @@ void lu<T, X>::add_delta_to_solution(const vector<T>& yc, vector<T>& y){
template <typename T, typename X>
void lu<T, X>::add_delta_to_solution_indexed(indexed_vector<T>& y) {
// the delta sits in m_y_copy, put result into y
SASSERT(y.is_OK());
SASSERT(m_y_copy.is_OK());
lp_assert(y.is_OK());
lp_assert(m_y_copy.is_OK());
m_ii.clear();
m_ii.resize(y.data_size());
for (unsigned i : y.m_index)
@ -330,7 +330,7 @@ void lu<T, X>::add_delta_to_solution_indexed(indexed_vector<T>& y) {
if (m_ii[i] == 0)
m_ii.set_value(1, i);
}
SASSERT(m_ii.is_OK());
lp_assert(m_ii.is_OK());
y.m_index.clear();
for (unsigned i : m_ii.m_index) {
@ -341,7 +341,7 @@ void lu<T, X>::add_delta_to_solution_indexed(indexed_vector<T>& y) {
v = zero_of_type<T>();
}
SASSERT(y.is_OK());
lp_assert(y.is_OK());
}
template <typename T, typename X>
@ -358,7 +358,7 @@ void lu<T, X>::find_error_of_yB_indexed(const indexed_vector<T>& y, const vector
// it is a non efficient version
indexed_vector<T> yc = m_y_copy;
yc.m_index.clear();
SASSERT(!numeric_traits<T>::precise());
lp_assert(!numeric_traits<T>::precise());
{
vector<unsigned> d_basis(y.m_data.size());
@ -379,10 +379,10 @@ void lu<T, X>::find_error_of_yB_indexed(const indexed_vector<T>& y, const vector
}
}
#endif
SASSERT(m_ii.is_OK());
lp_assert(m_ii.is_OK());
m_ii.clear();
m_ii.resize(y.data_size());
SASSERT(m_y_copy.is_OK());
lp_assert(m_y_copy.is_OK());
// put the error into m_y_copy
for (auto k : y.m_index) {
auto & row = m_A.m_rows[k];
@ -414,7 +414,7 @@ void lu<T, X>::find_error_of_yB_indexed(const indexed_vector<T>& y, const vector
m_y_copy.set_value(v, k);
}
}
SASSERT(m_y_copy.is_OK());
lp_assert(m_y_copy.is_OK());
}
@ -430,31 +430,31 @@ void lu<T, X>::solve_yB_with_error_check_indexed(indexed_vector<T> & y, const ve
solve_yB_indexed(y);
} else {
solve_yB(y.m_data);
y.restore_index_and_clean_from_data();
y.restore_index_and_clp_from_data();
}
return;
}
SASSERT(m_y_copy.is_OK());
SASSERT(y.is_OK());
lp_assert(m_y_copy.is_OK());
lp_assert(y.is_OK());
if (y.m_index.size() * ratio_of_index_size_to_all_size<T>() < m_A.column_count()) {
m_y_copy = y;
solve_yB_indexed(y);
SASSERT(y.is_OK());
lp_assert(y.is_OK());
if (y.m_index.size() * ratio_of_index_size_to_all_size<T>() >= m_A.column_count()) {
find_error_of_yB(m_y_copy.m_data, y.m_data, basis);
solve_yB(m_y_copy.m_data);
add_delta_to_solution(m_y_copy.m_data, y.m_data);
y.restore_index_and_clean_from_data();
y.restore_index_and_clp_from_data();
m_y_copy.clear_all();
} else {
find_error_of_yB_indexed(y, heading, settings); // this works with m_y_copy
solve_yB_indexed(m_y_copy);
add_delta_to_solution_indexed(y);
}
SASSERT(m_y_copy.is_OK());
lp_assert(m_y_copy.is_OK());
} else {
solve_yB_with_error_check(y.m_data, basis);
y.restore_index_and_clean_from_data();
y.restore_index_and_clp_from_data();
}
}
@ -504,7 +504,7 @@ template <typename T, typename X>
void lu<T, X>::perform_transformations_on_w(indexed_vector<T>& w) {
apply_lp_list_to_w(w);
m_Q.apply_reverse_from_left(w);
// TBD does not compile: SASSERT(numeric_traits<T>::precise() || check_vector_for_small_values(w, m_settings));
// TBD does not compile: lp_assert(numeric_traits<T>::precise() || check_vector_for_small_values(w, m_settings));
}
// see Chvatal 24.3
@ -518,7 +518,7 @@ template <typename T, typename X>
void lu<T, X>::apply_lp_list_to_w(indexed_vector<T> & w) {
for (unsigned i = 0; i < m_tail.size(); i++) {
m_tail[i]->apply_from_left_to_T(w, m_settings);
// TBD does not compile: SASSERT(check_vector_for_small_values(w, m_settings));
// TBD does not compile: lp_assert(check_vector_for_small_values(w, m_settings));
}
}
template <typename T, typename X>
@ -610,7 +610,7 @@ void lu<T, X>::check_apply_lp_lists_to_w(T * w) {
permutation_matrix<T, X> qr = m_Q.get_reverse();
apply_to_vector(qr, w);
for (int i = m_dim - 1; i >= 0; i--) {
SASSERT(abs(w[i] - w[i]) < 0.0000001);
lp_assert(abs(w[i] - w[i]) < 0.0000001);
}
}
@ -655,7 +655,7 @@ bool lu<T, X>::is_correct(const vector<unsigned>& basis) {
#ifdef Z3DEBUG
template <typename T, typename X>
dense_matrix<T, X> lu<T, X>::tail_product() {
SASSERT(tail_size() > 0);
lp_assert(tail_size() > 0);
dense_matrix<T, X> left_side = permutation_matrix<T, X>(m_dim);
for (unsigned i = 0; i < tail_size(); i++) {
matrix<T, X>* lp = get_lp_matrix(i);
@ -705,8 +705,8 @@ template <typename T, typename X>
bool lu<T, X>::all_columns_and_rows_are_active() {
unsigned i = m_dim;
while (i--) {
SASSERT(m_U.col_is_active(i));
SASSERT(m_U.row_is_active(i));
lp_assert(m_U.col_is_active(i));
lp_assert(m_U.row_is_active(i));
}
return true;
}
@ -748,9 +748,9 @@ void lu<T, X>::create_initial_factorization(){
}
}
if (j == m_dim) {
// TBD does not compile: SASSERT(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// SASSERT(is_correct());
// SASSERT(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// TBD does not compile: lp_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// lp_assert(is_correct());
// lp_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
return;
}
j++;
@ -763,12 +763,12 @@ void lu<T, X>::create_initial_factorization(){
}
}
m_dense_LU->update_parent_matrix(m_settings);
SASSERT(m_dense_LU->is_L_matrix());
lp_assert(m_dense_LU->is_L_matrix());
m_dense_LU->conjugate_by_permutation(m_Q);
push_matrix_to_tail(m_dense_LU);
m_refactor_counter = 0;
// SASSERT(is_correct());
// SASSERT(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// lp_assert(is_correct());
// lp_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
}
template <typename T, typename X>
@ -795,7 +795,7 @@ void lu<T, X>::scan_last_row_to_work_vector(unsigned lowest_row_of_the_bump) {
vector<indexed_value<T>> & last_row_vec = m_U.get_row_values(m_U.adjust_row(lowest_row_of_the_bump));
for (auto & iv : last_row_vec) {
if (is_zero(iv.m_value)) continue;
SASSERT(!m_settings.abs_val_is_smaller_than_drop_tolerance(iv.m_value));
lp_assert(!m_settings.abs_val_is_smaller_than_drop_tolerance(iv.m_value));
unsigned adjusted_col = m_U.adjust_column_inverse(iv.m_index);
if (adjusted_col < lowest_row_of_the_bump) {
m_row_eta_work_vector.set_value(-iv.m_value, adjusted_col);
@ -816,14 +816,14 @@ void lu<T, X>::pivot_and_solve_the_system(unsigned replaced_column, unsigned low
vector<indexed_value<T>> & row = m_U.get_row_values(aj);
for (auto & iv : row) {
unsigned col = m_U.adjust_column_inverse(iv.m_index);
SASSERT(col >= j || numeric_traits<T>::is_zero(iv.m_value));
lp_assert(col >= j || numeric_traits<T>::is_zero(iv.m_value));
if (col == j) continue;
if (numeric_traits<T>::is_zero(iv.m_value)) {
continue;
}
// the -v is for solving the system ( to zero the last row), and +v is for pivoting
T delta = col < lowest_row_of_the_bump? -v * iv.m_value: v * iv.m_value;
SASSERT(numeric_traits<T>::is_zero(delta) == false);
lp_assert(numeric_traits<T>::is_zero(delta) == false);
@ -900,16 +900,16 @@ void lu<T, X>::replace_column(T pivot_elem_for_checking, indexed_vector<T> & w,
push_matrix_to_tail(row_eta);
}
calculate_Lwave_Pwave_for_bump(replaced_column, lowest_row_of_the_bump);
// SASSERT(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// SASSERT(w.is_OK() && m_row_eta_work_vector.is_OK());
// lp_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// lp_assert(w.is_OK() && m_row_eta_work_vector.is_OK());
}
template <typename T, typename X>
void lu<T, X>::calculate_Lwave_Pwave_for_bump(unsigned replaced_column, unsigned lowest_row_of_the_bump){
T diagonal_elem;
if (replaced_column < lowest_row_of_the_bump) {
diagonal_elem = m_row_eta_work_vector[lowest_row_of_the_bump];
// SASSERT(m_row_eta_work_vector.is_OK());
m_U.set_row_from_work_vector_and_clean_work_vector_not_adjusted(m_U.adjust_row(lowest_row_of_the_bump), m_row_eta_work_vector, m_settings);
// lp_assert(m_row_eta_work_vector.is_OK());
m_U.set_row_from_work_vector_and_clp_work_vector_not_adjusted(m_U.adjust_row(lowest_row_of_the_bump), m_row_eta_work_vector, m_settings);
} else {
diagonal_elem = m_U(lowest_row_of_the_bump, lowest_row_of_the_bump); // todo - get it more efficiently
}
@ -919,7 +919,7 @@ void lu<T, X>::calculate_Lwave_Pwave_for_bump(unsigned replaced_column, unsigned
}
calculate_Lwave_Pwave_for_last_row(lowest_row_of_the_bump, diagonal_elem);
// SASSERT(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
// lp_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
}
template <typename T, typename X>
@ -945,8 +945,8 @@ void init_factorization(lu<T, X>* & factorization, static_matrix<T, X> & m_A, ve
#ifdef Z3DEBUG
template <typename T, typename X>
dense_matrix<T, X> get_B(lu<T, X>& f, const vector<unsigned>& basis) {
SASSERT(basis.size() == f.dimension());
SASSERT(basis.size() == f.m_U.dimension());
lp_assert(basis.size() == f.dimension());
lp_assert(basis.size() == f.m_U.dimension());
dense_matrix<T, X> B(f.dimension(), f.dimension());
for (unsigned i = 0; i < f.dimension(); i++)
for (unsigned j = 0; j < f.dimension(); j++)

View file

@ -39,7 +39,7 @@ template lp::mpq lp::dot_product<lp::mpq, lp::mpq>(vector<lp::mpq > const&, vect
template void lp::init_factorization<double, double>(lp::lu<double, double>*&, lp::static_matrix<double, double>&, vector<unsigned int>&, lp::lp_settings&);
template void lp::init_factorization<lp::mpq, lp::mpq>(lp::lu<lp::mpq, lp::mpq>*&, lp::static_matrix<lp::mpq, lp::mpq>&, vector<unsigned int>&, lp::lp_settings&);
template void lp::init_factorization<lp::mpq, lp::numeric_pair<lp::mpq> >(lp::lu<lp::mpq, lp::numeric_pair<lp::mpq> >*&, lp::static_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&, vector<unsigned int>&, lp::lp_settings&);
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
template void lp::print_matrix<double, double>(lp::sparse_matrix<double, double>&, std::ostream & out);
template void lp::print_matrix<lp::mpq, lp::mpq>(lp::static_matrix<lp::mpq, lp::mpq>&, std::ostream&);
template void lp::print_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >(lp::static_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&, std::ostream&);

View file

@ -175,9 +175,9 @@ class mps_reader {
if (m_line[i] == ' ')
break;
}
SASSERT(m_line.size() >= offset);
SASSERT(m_line.size() >> i);
SASSERT(i >= offset);
lp_assert(m_line.size() >= offset);
lp_assert(m_line.size() >> i);
lp_assert(i >= offset);
return m_line.substr(offset, i - offset);
}
@ -512,7 +512,7 @@ class mps_reader {
void create_or_update_bound() {
const unsigned name_offset = 14;
SASSERT(m_line.size() >= 14);
lp_assert(m_line.size() >= 14);
vector<std::string> bound_string = split_and_trim(m_line.substr(name_offset, m_line.size()));
if (bound_string.size() == 0) {
@ -618,7 +618,7 @@ class mps_reader {
}
for (auto s : row_with_range->m_row_columns) {
SASSERT(m_columns.find(s.first) != m_columns.end());
lp_assert(m_columns.find(s.first) != m_columns.end());
other_bound_range_row->m_row_columns[s.first] = s.second;
}
}
@ -694,7 +694,7 @@ class mps_reader {
if (row->m_name != m_cost_row_name) {
solver->add_constraint(get_relation_from_row(row->m_type), row->m_right_side, row->m_index);
for (auto s : row->m_row_columns) {
SASSERT(m_columns.find(s.first) != m_columns.end());
lp_assert(m_columns.find(s.first) != m_columns.end());
solver->set_row_column_coefficient(row->m_index, m_columns[s.first]->m_index, s.second);
}
} else {
@ -729,7 +729,7 @@ class mps_reader {
void set_solver_cost(row * row, lp_solver<T, X> *solver) {
for (auto s : row->m_row_columns) {
std::string name = s.first;
SASSERT(m_columns.find(name) != m_columns.end());
lp_assert(m_columns.find(name) != m_columns.end());
mps_reader::column * col = m_columns[name];
solver->set_cost_for_column(col->m_index, s.second);
}
@ -738,7 +738,7 @@ class mps_reader {
public:
void set_message_stream(std::ostream * o) {
SASSERT(o != nullptr);
lp_assert(o != nullptr);
m_message_stream = o;
}
vector<std::string> column_names() {

View file

@ -14,23 +14,23 @@
namespace nra {
struct mon_eq {
mon_eq(lean::var_index v, unsigned sz, lean::var_index const* vs):
mon_eq(lp::var_index v, unsigned sz, lp::var_index const* vs):
m_v(v), m_vs(sz, vs) {}
lean::var_index m_v;
svector<lean::var_index> m_vs;
lp::var_index m_v;
svector<lp::var_index> m_vs;
};
struct solver::imp {
lean::lar_solver& s;
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
vector<mon_eq> m_monomials;
unsigned_vector m_monomials_lim;
mutable std::unordered_map<lean::var_index, rational> m_variable_values; // current model
mutable std::unordered_map<lp::var_index, rational> m_variable_values; // current model
imp(lean::lar_solver& s, reslimit& lim, params_ref const& p):
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p):
s(s),
m_limit(lim),
m_params(p) {
@ -40,7 +40,7 @@ namespace nra {
return !m_monomials.empty() && !check_assignments();
}
void add(lean::var_index v, unsigned sz, lean::var_index const* vs) {
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_monomials.push_back(mon_eq(v, sz, vs));
}
@ -87,7 +87,7 @@ namespace nra {
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check(lean::explanation_t& ex) {
lbool check(lp::explanation_t& ex) {
SASSERT(need_check());
m_nlsat = alloc(nlsat::solver, m_limit, m_params);
m_lp2nl.reset();
@ -168,31 +168,31 @@ namespace nra {
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lean::lconstraint_kind::LE:
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GE:
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::LT:
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GT:
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::EQ:
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
}
m_nlsat->mk_clause(1, &lit, a);
}
bool is_int(lean::var_index v) {
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lean::var_index v) {
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
@ -201,7 +201,7 @@ namespace nra {
return r;
}
nlsat::anum const& value(lean::var_index v) const {
nlsat::anum const& value(lp::var_index v) const {
return m_nlsat->value(m_lp2nl.find(v));
}
@ -221,7 +221,7 @@ namespace nra {
}
};
solver::solver(lean::lar_solver& s, reslimit& lim, params_ref const& p) {
solver::solver(lp::lar_solver& s, reslimit& lim, params_ref const& p) {
m_imp = alloc(imp, s, lim, p);
}
@ -229,11 +229,11 @@ namespace nra {
dealloc(m_imp);
}
void solver::add_monomial(lean::var_index v, unsigned sz, lean::var_index const* vs) {
void solver::add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_imp->add(v, sz, vs);
}
lbool solver::check(lean::explanation_t& ex) {
lbool solver::check(lp::explanation_t& ex) {
return m_imp->check(ex);
}
@ -253,7 +253,7 @@ namespace nra {
return m_imp->display(out);
}
nlsat::anum const& solver::value(lean::var_index v) const {
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}

View file

@ -10,7 +10,7 @@
#include "util/params.h"
#include "nlsat/nlsat_solver.h"
namespace lean {
namespace lp {
class lar_solver;
}
@ -25,7 +25,7 @@ namespace nra {
public:
solver(lean::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
solver(lp::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
~solver();
@ -33,13 +33,13 @@ namespace nra {
\brief Add a definition v = vs[0]*vs[1]*...*vs[sz-1]
The variable v is equal to the product of variables vs.
*/
void add_monomial(lean::var_index v, unsigned sz, lean::var_index const* vs);
void add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs);
/*
\brief Check feasiblity of linear constraints augmented by polynomial definitions
that are added.
*/
lbool check(lean::explanation_t& ex);
lbool check(lp::explanation_t& ex);
/*
\brief determine whether nra check is needed.
@ -49,7 +49,7 @@ namespace nra {
/*
\brief Access model.
*/
nlsat::anum const& value(lean::var_index v) const;
nlsat::anum const& value(lp::var_index v) const;
nlsat::anum_manager& am();

View file

@ -26,8 +26,16 @@ Revision History:
#include "../sstream.h"
#include "../z3_exception.h"
#else
// include "util/numerics/mpq.h"
// include "util/numerics/numeric_traits.h"
#endif
namespace lp {
typedef rational mpq; // rename rationals
#ifdef lp_for_z3 // rename rationals
typedef rational mpq;
#else
typedef lp::mpq mpq;
#endif
template <typename T>
@ -77,8 +85,8 @@ template <typename X, typename Y>
struct convert_struct {
static X convert(const Y & y){ return X(y);}
static bool is_epsilon_small(const X & x, const double & y) { return std::abs(numeric_traits<X>::get_double(x)) < y; }
static bool below_bound_numeric(const X &, const X &, const Y &) { /*SASSERT(false);*/ return false;}
static bool above_bound_numeric(const X &, const X &, const Y &) { /*SASSERT(false);*/ return false; }
static bool below_bound_numeric(const X &, const X &, const Y &) { /*lp_unreachable();*/ return false;}
static bool above_bound_numeric(const X &, const X &, const Y &) { /*lp_unreachable();*/ return false; }
};
@ -148,7 +156,7 @@ struct numeric_pair {
}
numeric_pair operator/(const numeric_pair &) const {
// SASSERT(false);
// lp_unreachable();
}
@ -157,7 +165,7 @@ struct numeric_pair {
}
numeric_pair operator*(const numeric_pair & /*a*/) const {
// SASSERT(false);
// lp_unreachable();
}
numeric_pair& operator+=(const numeric_pair & a) {
@ -234,7 +242,7 @@ numeric_pair<T> operator/(const numeric_pair<T> & r, const X & a) {
}
// template <numeric_pair, typename T> bool precise() { return numeric_traits<T>::precise();}
template <typename T> double get_double(const lp::numeric_pair<T> & ) { /* SASSERT(false); */ return 0;}
template <typename T> double get_double(const lp::numeric_pair<T> & ) { /* lp_unreachable(); */ return 0;}
template <typename T>
class numeric_traits<lp::numeric_pair<T>> {
public:
@ -242,7 +250,7 @@ class numeric_traits<lp::numeric_pair<T>> {
static lp::numeric_pair<T> zero() { return lp::numeric_pair<T>(numeric_traits<T>::zero(), numeric_traits<T>::zero()); }
static bool is_zero(const lp::numeric_pair<T> & v) { return numeric_traits<T>::is_zero(v.x) && numeric_traits<T>::is_zero(v.y); }
static double get_double(const lp::numeric_pair<T> & v){ return numeric_traits<T>::get_double(v.x); } // just return the double of the first coordinate
static double one() { /*SASSERT(false);*/ return 0;}
static double one() { /*lp_unreachable();*/ return 0;}
static bool is_pos(const numeric_pair<T> &p) {
return numeric_traits<T>::is_pos(p.x) ||
(numeric_traits<T>::is_zero(p.x) && numeric_traits<T>::is_pos(p.y));
@ -272,11 +280,11 @@ struct convert_struct<numeric_pair<T>, double> {
return convert_struct<T, double>::is_epsilon_small(p.x, eps) && convert_struct<T, double>::is_epsilon_small(p.y, eps);
}
static bool below_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
// SASSERT(false);
// lp_unreachable();
return false;
}
static bool above_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
// SASSERT(false);
// lp_unreachable();
return false;
}
};

View file

@ -28,7 +28,7 @@ Revision History:
#include "util/lp/matrix.h"
#include "util/lp/tail_matrix.h"
namespace lp {
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
inline bool is_even(int k) { return (k/2)*2 == k; }
#endif
@ -101,7 +101,7 @@ class permutation_matrix : public tail_matrix<T, X> {
void apply_reverse_from_right_to_X(vector<X> & w);
void set_val(unsigned i, unsigned pi) {
SASSERT(i < size() && pi < size()); m_permutation[i] = pi; m_rev[pi] = i; }
lp_assert(i < size() && pi < size()); m_permutation[i] = pi; m_rev[pi] = i; }
void transpose_from_left(unsigned i, unsigned j);

View file

@ -65,7 +65,7 @@ void permutation_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
// deb.apply_from_left(deb_w);
#endif
// std::cout << " apply_from_left " << std::endl;
SASSERT(m_X_buffer.size() == w.size());
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[i] = w[m_permutation[i]];
@ -74,8 +74,8 @@ void permutation_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
while (i-- > 0) {
w[i] = m_X_buffer[i];
}
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal<L>(deb_w, w, row_count()));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<L>(deb_w, w, row_count()));
// delete [] deb_w;
#endif
}
@ -101,7 +101,7 @@ template <typename T, typename X> void permutation_matrix<T, X>::apply_from_righ
// T * deb_w = clone_vector<T>(w, row_count());
// deb.apply_from_right(deb_w);
#endif
SASSERT(m_T_buffer.size() == w.size());
lp_assert(m_T_buffer.size() == w.size());
for (unsigned i = 0; i < size(); i++) {
m_T_buffer[i] = w[m_rev[i]];
}
@ -109,8 +109,8 @@ template <typename T, typename X> void permutation_matrix<T, X>::apply_from_righ
for (unsigned i = 0; i < size(); i++) {
w[i] = m_T_buffer[i];
}
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal<T>(deb_w, w, row_count()));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<T>(deb_w, w, row_count()));
// delete [] deb_w;
#endif
}
@ -132,9 +132,9 @@ template <typename T, typename X> void permutation_matrix<T, X>::apply_from_righ
unsigned pj = m_permutation[j];
w.set_value(buffer[i], pj);
}
SASSERT(w.is_OK());
#ifdef Z3DEBUG
SASSERT(vectors_are_equal(wcopy, w.m_data));
lp_assert(w.is_OK());
#ifdef LEAN_DEBUG
lp_assert(vectors_are_equal(wcopy, w.m_data));
#endif
}
@ -180,8 +180,8 @@ void permutation_matrix<T, X>::apply_reverse_from_left(indexed_vector<L> & w) {
w[j] = t[i];
w.m_index[i] = j;
}
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal<L>(deb_w, w.m_data, row_count()));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<L>(deb_w, w.m_data, row_count()));
// delete [] deb_w;
#endif
}
@ -189,7 +189,7 @@ void permutation_matrix<T, X>::apply_reverse_from_left(indexed_vector<L> & w) {
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_left_to_T(vector<T> & w) {
// the result will be w = p(-1) * w
SASSERT(m_T_buffer.size() == w.size());
lp_assert(m_T_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_T_buffer[m_permutation[i]] = w[i];
@ -202,7 +202,7 @@ void permutation_matrix<T, X>::apply_reverse_from_left_to_T(vector<T> & w) {
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_left_to_X(vector<X> & w) {
// the result will be w = p(-1) * w
SASSERT(m_X_buffer.size() == w.size());
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[m_permutation[i]] = w[i];
@ -216,7 +216,7 @@ void permutation_matrix<T, X>::apply_reverse_from_left_to_X(vector<X> & w) {
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_right_to_T(vector<T> & w) {
// the result will be w = w * p(-1)
SASSERT(m_T_buffer.size() == w.size());
lp_assert(m_T_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_T_buffer[i] = w[m_permutation[i]];
@ -234,7 +234,7 @@ void permutation_matrix<T, X>::apply_reverse_from_right_to_T(indexed_vector<T> &
// vector<T> wcopy(w.m_data);
// apply_reverse_from_right_to_T(wcopy);
#endif
SASSERT(w.is_OK());
lp_assert(w.is_OK());
vector<T> tmp;
vector<unsigned> tmp_index(w.m_index);
for (auto i : w.m_index) {
@ -247,15 +247,15 @@ void permutation_matrix<T, X>::apply_reverse_from_right_to_T(indexed_vector<T> &
w.set_value(tmp[k], m_rev[j]);
}
// SASSERT(w.is_OK());
// SASSERT(vectors_are_equal(w.m_data, wcopy));
// lp_assert(w.is_OK());
// lp_assert(vectors_are_equal(w.m_data, wcopy));
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_right_to_X(vector<X> & w) {
// the result will be w = w * p(-1)
SASSERT(m_X_buffer.size() == w.size());
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[i] = w[m_permutation[i]];
@ -268,7 +268,7 @@ void permutation_matrix<T, X>::apply_reverse_from_right_to_X(vector<X> & w) {
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_left(unsigned i, unsigned j) {
// the result will be this = (i,j)*this
SASSERT(i < size() && j < size() && i != j);
lp_assert(i < size() && j < size() && i != j);
auto pi = m_rev[i];
auto pj = m_rev[j];
set_val(pi, j);
@ -277,7 +277,7 @@ template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_right(unsigned i, unsigned j) {
// the result will be this = this * (i,j)
SASSERT(i < size() && j < size() && i != j);
lp_assert(i < size() && j < size() && i != j);
auto pi = m_permutation[i];
auto pj = m_permutation[j];
set_val(i, pj);
@ -286,7 +286,7 @@ template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_left(permutation_matrix<T, X> & p) {
m_work_array = m_permutation;
SASSERT(p.size() == size());
lp_assert(p.size() == size());
unsigned i = size();
while (i-- > 0) {
set_val(i, m_work_array[p[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
@ -296,7 +296,7 @@ template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_per
// this is multiplication in the matrix sense
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_right(permutation_matrix<T, X> & p) {
m_work_array = m_permutation;
SASSERT(p.size() == size());
lp_assert(p.size() == size());
unsigned i = size();
while (i-- > 0)
set_val(i, p[m_work_array[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
@ -304,7 +304,7 @@ template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_per
}
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_reverse_from_right(permutation_matrix<T, X> & q){ // todo : condensed permutations ?
SASSERT(q.size() == size());
lp_assert(q.size() == size());
m_work_array = m_permutation;
// the result is this = this*q(-1)
unsigned i = size();

View file

@ -71,7 +71,7 @@ void quick_xplain::minimize(const vector<unsigned>& u) {
}
}
if (m > 0) {
SASSERT(m_qsol.constraint_stack_size() >= initial_stack_size);
lp_assert(m_qsol.constraint_stack_size() >= initial_stack_size);
m_qsol.pop(m_qsol.constraint_stack_size() - initial_stack_size);
for (auto j : m_x)
add_constraint_to_qsol(j);
@ -88,7 +88,7 @@ void quick_xplain::minimize(const vector<unsigned>& u) {
void quick_xplain::run(vector<std::pair<mpq, constraint_index>> & explanation, const lar_solver & ls){
if (explanation.size() <= 2) return;
lar_solver qsol;
SASSERT(ls.explanation_is_correct(explanation));
lp_assert(ls.explanation_is_correct(explanation));
quick_xplain q(explanation, ls, qsol);
q.solve();
}
@ -124,7 +124,7 @@ bool quick_xplain::x_is_minimal() const {
x.push_back(j);
for (unsigned k = 0; k < x.size(); k++) {
SASSERT(is_feasible(x, x[k]));
lp_assert(is_feasible(x, x[k]));
}
return true;
}
@ -132,8 +132,8 @@ bool quick_xplain::x_is_minimal() const {
void quick_xplain::solve() {
copy_constraints_to_local_constraints();
m_qsol.push();
SASSERT(m_qsol.constraint_count() == 0);
vector<unsigned> u;
lp_assert(m_qsol.constraint_count() == 0)
vector<unsigned> u;
for (unsigned k = 0; k < m_constraints_in_local_vars.size(); k++)
u.push_back(k);
minimize(u);
@ -142,10 +142,10 @@ void quick_xplain::solve() {
for (unsigned i : m_x)
add_constraint_to_qsol(i);
m_qsol.solve();
SASSERT(m_qsol.get_status() == INFEASIBLE);
lp_assert(m_qsol.get_status() == INFEASIBLE);
m_qsol.get_infeasibility_explanation(m_explanation);
SASSERT(m_qsol.explanation_is_correct(m_explanation));
SASSERT(x_is_minimal());
lp_assert(m_qsol.explanation_is_correct(m_explanation));
lp_assert(x_is_minimal());
for (auto & p : m_explanation) {
p.second = this->m_local_constraint_offset_to_external_ci[m_local_ci_to_constraint_offsets[p.second]];
}

View file

@ -51,7 +51,7 @@ random_updater::interval random_updater::get_interval_of_non_basic_var(unsigned
ret.set_upper_bound(m_core_solver.m_r_upper_bounds[j]);
break;
default:
SASSERT(false);
lp_assert(false);
}
return ret;
}
@ -59,15 +59,15 @@ random_updater::interval random_updater::get_interval_of_non_basic_var(unsigned
void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, unsigned j,
mpq & a,
interval & r) {
SASSERT(m_core_solver.m_r_heading[j] >= 0);
lp_assert(m_core_solver.m_r_heading[j] >= 0);
numeric_pair<mpq> delta;
SASSERT(a != zero_of_type<mpq>());
lp_assert(a != zero_of_type<mpq>());
switch (m_core_solver.get_column_type(j)) {
case column_type::free_column:
break;
case column_type::low_bound:
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
if (a > 0) {
r.set_upper_bound(nb_x + delta / a);
} else {
@ -76,7 +76,7 @@ void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, un
break;
case column_type::upper_bound:
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
if (a > 0) {
r.set_low_bound(nb_x - delta / a);
} else {
@ -86,17 +86,17 @@ void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, un
case column_type::boxed:
if (a > 0) {
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_upper_bound(nb_x + delta / a);
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_low_bound(nb_x - delta / a);
} else { // a < 0
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_upper_bound(nb_x - delta / a);
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
SASSERT(delta >= zero_of_type<numeric_pair<mpq>>());
lp_assert(delta >= zero_of_type<numeric_pair<mpq>>());
r.set_low_bound(nb_x + delta / a);
}
break;
@ -105,7 +105,7 @@ void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, un
r.set_upper_bound(nb_x);
break;
default:
SASSERT(false);
lp_assert(false);
}
}
@ -128,15 +128,15 @@ random_updater::interval random_updater::find_shift_interval(unsigned j) {
}
void random_updater::shift_var(unsigned j, interval & r) {
SASSERT(r.contains(m_core_solver.m_r_x[j]));
SASSERT(m_core_solver.m_r_solver.column_is_feasible(j));
lp_assert(r.contains(m_core_solver.m_r_x[j]));
lp_assert(m_core_solver.m_r_solver.column_is_feasible(j));
auto old_x = m_core_solver.m_r_x[j];
remove_value(old_x);
auto new_val = m_core_solver.m_r_x[j] = get_random_from_interval(r);
add_value(new_val);
SASSERT(r.contains(m_core_solver.m_r_x[j]));
SASSERT(m_core_solver.m_r_solver.column_is_feasible(j));
lp_assert(r.contains(m_core_solver.m_r_x[j]));
lp_assert(m_core_solver.m_r_solver.column_is_feasible(j));
auto delta = m_core_solver.m_r_x[j] - old_x;
unsigned i;
@ -145,9 +145,9 @@ void random_updater::shift_var(unsigned j, interval & r) {
while(m_column_j->next(a, i)) {
unsigned bj = m_core_solver.m_r_basis[i];
m_core_solver.m_r_x[bj] -= a * delta;
SASSERT(m_core_solver.m_r_solver.column_is_feasible(bj));
lp_assert(m_core_solver.m_r_solver.column_is_feasible(bj));
}
SASSERT(m_core_solver.m_r_solver.A_mult_x_is_off() == false);
lp_assert(m_core_solver.m_r_solver.A_mult_x_is_off() == false);
}
numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
@ -158,7 +158,7 @@ numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
return r.low_bound + numeric_pair<mpq>(rand % range, 0);
if ((!r.low_bound_is_set) && r.upper_bound_is_set)
return r.upper_bound - numeric_pair<mpq>(rand % range, 0);
SASSERT(r.low_bound_is_set && r.upper_bound_is_set);
lp_assert(r.low_bound_is_set && r.upper_bound_is_set);
return r.low_bound + (rand % range) * (r.upper_bound - r.low_bound)/ range;
}
@ -198,7 +198,7 @@ void random_updater::add_value(numeric_pair<mpq>& v) {
void random_updater::remove_value(numeric_pair<mpq>& v) {
std::unordered_map<numeric_pair<mpq>, unsigned>::iterator it = m_values.find(v);
SASSERT(it != m_values.end());
lp_assert(it != m_values.end());
it->second--;
if (it->second == 0)
m_values.erase((std::unordered_map<numeric_pair<mpq>, unsigned>::const_iterator)it);

View file

@ -70,7 +70,7 @@ public:
}
void push_back(unsigned row_index, T val ) {
SASSERT(row_index != m_row);
lp_assert(row_index != m_row);
m_row_vector.push_back(row_index, val);
}

View file

@ -33,8 +33,8 @@ void row_eta_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings &) {
w_at_row += w[it.first] * it.second;
}
// w[m_row] = w_at_row;
// #ifdef Z3DEBUG
// SASSERT(vectors_are_equal<T>(clone_w, w, m_dimension));
// #ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<T>(clone_w, w, m_dimension));
// delete [] clone_w;
// #endif
}
@ -58,7 +58,7 @@ void row_eta_matrix<T, X>::apply_from_left_local_to_T(indexed_vector<T> & w, lp_
auto it = std::find(w.m_index.begin(), w.m_index.end(), m_row);
w.m_index.erase(it);
}
// TBD: SASSERT(check_vector_for_small_values(w, settings));
// TBD: lp_assert(check_vector_for_small_values(w, settings));
}
template <typename T, typename X>
@ -80,7 +80,7 @@ void row_eta_matrix<T, X>::apply_from_left_local_to_X(indexed_vector<X> & w, lp_
auto it = std::find(w.m_index.begin(), w.m_index.end(), m_row);
w.m_index.erase(it);
}
// TBD: does not compile SASSERT(check_vector_for_small_values(w, settings));
// TBD: does not compile lp_assert(check_vector_for_small_values(w, settings));
}
template <typename T, typename X>
@ -95,15 +95,15 @@ void row_eta_matrix<T, X>::apply_from_right(vector<T> & w) {
for (auto & it : m_row_vector.m_data) {
w[it.first] += w_row * it.second;
}
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal<T>(clone_w, w, m_dimension));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal<T>(clone_w, w, m_dimension));
// delete clone_w;
#endif
}
template <typename T, typename X>
void row_eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
SASSERT(w.is_OK());
lp_assert(w.is_OK());
const T & w_row = w[m_row];
if (numeric_traits<T>::is_zero(w_row)) return;
#ifdef Z3DEBUG
@ -144,8 +144,8 @@ void row_eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
}
}
}
#ifdef Z3DEBUG
// SASSERT(vectors_are_equal(wcopy, w.m_data));
#ifdef LEAN_DEBUG
// lp_assert(vectors_are_equal(wcopy, w.m_data));
#endif
}
@ -165,8 +165,8 @@ void row_eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p
columns.push_back(it.first);
for (unsigned i = static_cast<unsigned>(columns.size()); i-- > 0;)
m_row_vector.m_data[i].first = p.get_rev(columns[i]);
#ifdef Z3DEBUG
// SASSERT(deb == *this);
#ifdef LEAN_DEBUG
// lp_assert(deb == *this);
#endif
}
#ifdef Z3DEBUG

View file

@ -46,7 +46,7 @@ public:
m_scaling_maximum(scaling_maximum),
m_column_scale(column_scale),
m_settings(settings) {
SASSERT(m_column_scale.size() == 0);
lp_assert(m_column_scale.size() == 0);
m_column_scale.resize(m_A.column_count(), numeric_traits<T>::one());
}

View file

@ -56,7 +56,7 @@ template <typename T, typename X> T scaler<T, X>::A_max() const {
template <typename T, typename X> T scaler<T, X>::get_A_ratio() const {
T min = A_min();
T max = A_max();
SASSERT(!m_settings.abs_val_is_smaller_than_zero_tolerance(min));
lp_assert(!m_settings.abs_val_is_smaller_than_zero_tolerance(min));
T ratio = max / min;
return ratio;
}
@ -66,7 +66,7 @@ template <typename T, typename X> T scaler<T, X>::get_max_ratio_on_rows() con
unsigned i = m_A.row_count();
while (i--) {
T den = m_A.get_min_abs_in_row(i);
SASSERT(!m_settings.abs_val_is_smaller_than_zero_tolerance(den));
lp_assert(!m_settings.abs_val_is_smaller_than_zero_tolerance(den));
T t = m_A.get_max_abs_in_row(i)/ den;
if (t > ret)
ret = t;
@ -93,7 +93,7 @@ template <typename T, typename X> void scaler<T, X>::scale_rows_with_geometri
while (i--) {
T max = m_A.get_max_abs_in_row(i);
T min = m_A.get_min_abs_in_row(i);
SASSERT(max > zero_of_type<T>() && min > zero_of_type<T>());
lp_assert(max > zero_of_type<T>() && min > zero_of_type<T>());
if (is_zero(max) || is_zero(min))
continue;
T gm = T(sqrt(numeric_traits<T>::get_double(max*min)));

View file

@ -205,13 +205,13 @@ public:
// set the max val as well
// returns false if the resulting row is all zeroes, and true otherwise
bool set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned i0, indexed_vector<T> & work_vec,
bool set_row_from_work_vector_and_clp_work_vector_not_adjusted(unsigned i0, indexed_vector<T> & work_vec,
lp_settings & settings);
// set the max val as well
// returns false if the resulting row is all zeroes, and true otherwise
bool set_row_from_work_vector_and_clean_work_vector(unsigned i0);
bool set_row_from_work_vector_and_clp_work_vector(unsigned i0);
void remove_zero_elements_and_set_data_on_existing_elements(unsigned row);
@ -221,19 +221,19 @@ public:
void multiply_from_right(permutation_matrix<T, X>& p) {
// m_dense = m_dense * p;
m_column_permutation.multiply_by_permutation_from_right(p);
// SASSERT(*this == m_dense);
// lp_assert(*this == m_dense);
}
void multiply_from_left(permutation_matrix<T, X>& p) {
// m_dense = p * m_dense;
m_row_permutation.multiply_by_permutation_from_left(p);
// SASSERT(*this == m_dense);
// lp_assert(*this == m_dense);
}
void multiply_from_left_with_reverse(permutation_matrix<T, X>& p) {
// m_dense = p * m_dense;
m_row_permutation.multiply_by_permutation_reverse_from_left(p);
// SASSERT(*this == m_dense);
// lp_assert(*this == m_dense);
}
// adding delta columns at the end of the matrix
@ -246,13 +246,13 @@ public:
// dense_matrix<T, X> d(*this);
m_column_permutation.transpose_from_left(a, b);
// d.swap_columns(a, b);
// SASSERT(*this == d);
// lp_assert(*this == d);
}
void swap_rows(unsigned a, unsigned b) {
m_row_permutation.transpose_from_right(a, b);
// m_dense.swap_rows(a, b);
// SASSERT(*this == m_dense);
// lp_assert(*this == m_dense);
}
void divide_row_by_constant(unsigned i, const T & t, lp_settings & settings);
@ -408,7 +408,7 @@ public:
void process_index_recursively_for_y_U(unsigned j, vector<unsigned> & sorted_rows);
void resize(unsigned new_dim) {
unsigned old_dim = dimension();
SASSERT(new_dim >= old_dim);
lp_assert(new_dim >= old_dim);
for (unsigned j = old_dim; j < new_dim; j++) {
m_rows.push_back(vector<indexed_value<T>>());
m_columns.push_back(col_header());

View file

@ -97,12 +97,12 @@ void sparse_matrix<T, X>::set_with_no_adjusting(unsigned row, unsigned col, T va
template <typename T, typename X>
void sparse_matrix<T, X>::set(unsigned row, unsigned col, T val) { // should not be used in efficient code
SASSERT(row < dimension() && col < dimension());
lp_assert(row < dimension() && col < dimension());
// m_dense.set_elem(row, col, val);
row = adjust_row(row);
col = adjust_column(col);
set_with_no_adjusting(row, col, val);
// SASSERT(*this == m_dense);
// lp_assert(*this == m_dense);
}
template <typename T, typename X>
@ -276,8 +276,8 @@ vector<T> sparse_matrix<T, X>::get_full_row(unsigned i) const {
// Returns false if the resulting row is all zeroes, and true otherwise
template <typename T, typename X>
bool sparse_matrix<T, X>::pivot_row_to_row(unsigned i, const T& alpha, unsigned i0, lp_settings & settings ) {
SASSERT(i < dimension() && i0 < dimension());
SASSERT(i != i0);
lp_assert(i < dimension() && i0 < dimension());
lp_assert(i != i0);
unsigned pivot_col = adjust_column(i);
i = adjust_row(i);
i0 = adjust_row(i0);
@ -311,7 +311,7 @@ bool sparse_matrix<T, X>::pivot_row_to_row(unsigned i, const T& alpha, unsigned
}
// clean the work vector
// clp the work vector
for (unsigned k = 0; k < prev_size_i0; k++) {
m_work_pivot_vector[i0_row_vals[k].m_index] = -1;
}
@ -334,7 +334,7 @@ bool sparse_matrix<T, X>::pivot_row_to_row(unsigned i, const T& alpha, unsigned
// set the max val as well
// returns false if the resulting row is all zeroes, and true otherwise
template <typename T, typename X>
bool sparse_matrix<T, X>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned i0, indexed_vector<T> & work_vec,
bool sparse_matrix<T, X>::set_row_from_work_vector_and_clp_work_vector_not_adjusted(unsigned i0, indexed_vector<T> & work_vec,
lp_settings & settings) {
remove_zero_elements_and_set_data_on_existing_elements_not_adjusted(i0, work_vec, settings);
// all non-zero elements in m_work_pivot_vector are new
@ -342,7 +342,7 @@ bool sparse_matrix<T, X>::set_row_from_work_vector_and_clean_work_vector_not_adj
if (numeric_traits<T>::is_zero(work_vec[j])) {
continue;
}
SASSERT(!settings.abs_val_is_smaller_than_drop_tolerance(work_vec[j]));
lp_assert(!settings.abs_val_is_smaller_than_drop_tolerance(work_vec[j]));
add_new_element(i0, adjust_column(j), work_vec[j]);
work_vec[j] = numeric_traits<T>::zero();
}
@ -387,7 +387,7 @@ void sparse_matrix<T, X>::remove_zero_elements_and_set_data_on_existing_elements
T val = work_vec[rj];
if (settings.abs_val_is_smaller_than_drop_tolerance(val)) {
remove_element(row_vals, row_el_iv);
SASSERT(numeric_traits<T>::is_zero(val));
lp_assert(numeric_traits<T>::is_zero(val));
} else {
m_columns[j].m_values[row_el_iv.m_other].set_value(row_el_iv.m_value = val);
work_vec[rj] = numeric_traits<T>::zero();
@ -408,7 +408,7 @@ void sparse_matrix<T, X>::add_columns_at_the_end(unsigned delta) {
template <typename T, typename X>
void sparse_matrix<T, X>::delete_column(int i) {
SASSERT(i < dimension());
lp_assert(i < dimension());
for (auto cell = m_columns[i].m_head; cell != nullptr;) {
auto next_cell = cell->m_down;
kill_cell(cell);
@ -418,7 +418,7 @@ void sparse_matrix<T, X>::delete_column(int i) {
template <typename T, typename X>
void sparse_matrix<T, X>::divide_row_by_constant(unsigned i, const T & t, lp_settings & settings) {
SASSERT(!settings.abs_val_is_smaller_than_zero_tolerance(t));
lp_assert(!settings.abs_val_is_smaller_than_zero_tolerance(t));
i = adjust_row(i);
for (auto & iv : m_rows[i]) {
T &v = iv.m_value;
@ -455,7 +455,7 @@ void sparse_matrix<T, X>::solve_y_U(vector<T> & y) const { // works by rows
// dense_matrix<T> deb(*this);
// T * clone_y = clone_vector<T>(y, dimension());
// deb.apply_from_right(clone_y);
// SASSERT(vectors_are_equal(rs, clone_y, dimension()));
// lp_assert(vectors_are_equal(rs, clone_y, dimension()));
// delete [] clone_y;
// delete [] rs;
#endif
@ -489,10 +489,10 @@ void sparse_matrix<T, X>::solve_y_U_indexed(indexed_vector<T> & y, const lp_sett
y.m_data[j] = zero_of_type<T>();
}
SASSERT(y.is_OK());
#if 0 && Z3DEBUG
lp_assert(y.is_OK());
#if 0 && LEAN_DEBUG
if (numeric_traits<T>::precise() == false)
SASSERT(vectors_are_equal(ycopy, y.m_data));
lp_assert(vectors_are_equal(ycopy, y.m_data));
#endif
}
@ -552,8 +552,8 @@ void sparse_matrix<T, X>::add_delta_to_solution(const vector<L>& del, vector<L>
template <typename T, typename X>
template <typename L>
void sparse_matrix<T, X>::add_delta_to_solution(const indexed_vector<L>& del, indexed_vector<L> & y) {
// SASSERT(del.is_OK());
// SASSERT(y.is_OK());
// lp_assert(del.is_OK());
// lp_assert(y.is_OK());
for (auto i : del.m_index) {
y.add_value_at_index(i, del[i]);
}
@ -561,24 +561,24 @@ void sparse_matrix<T, X>::add_delta_to_solution(const indexed_vector<L>& del, in
template <typename T, typename X>
template <typename L>
void sparse_matrix<T, X>::double_solve_U_y(indexed_vector<L>& y, const lp_settings & settings){
SASSERT(y.is_OK());
lp_assert(y.is_OK());
indexed_vector<L> y_orig(y); // copy y aside
vector<unsigned> active_rows;
solve_U_y_indexed_only(y, settings, active_rows);
SASSERT(y.is_OK());
lp_assert(y.is_OK());
find_error_in_solution_U_y_indexed(y_orig, y, active_rows);
// y_orig contains the error now
if (y_orig.m_index.size() * ratio_of_index_size_to_all_size<T>() < 32 * dimension()) {
active_rows.clear();
solve_U_y_indexed_only(y_orig, settings, active_rows);
add_delta_to_solution(y_orig, y);
y.clean_up();
y.clp_up();
} else { // the dense version
solve_U_y(y_orig.m_data);
add_delta_to_solution(y_orig.m_data, y.m_data);
y.restore_index_and_clean_from_data();
y.restore_index_and_clp_from_data();
}
SASSERT(y.is_OK());
lp_assert(y.is_OK());
}
template <typename T, typename X>
template <typename L>
@ -614,12 +614,12 @@ void sparse_matrix<T, X>::solve_U_y(vector<L> & y) { // it is a column wise vers
// dense_matrix<T> deb(*this);
// T * clone_y = clone_vector<T>(y, dimension());
// deb.apply_from_left(clone_y);
// SASSERT(vectors_are_equal(rs, clone_y, dimension()));
// lp_assert(vectors_are_equal(rs, clone_y, dimension()));
#endif
}
template <typename T, typename X>
void sparse_matrix<T, X>::process_index_recursively_for_y_U(unsigned j, vector<unsigned> & sorted_active_rows) {
SASSERT(m_processed[j] == false);
lp_assert(m_processed[j] == false);
m_processed[j]=true;
auto & row = m_rows[adjust_row(j)];
for (auto & c : row) {
@ -634,7 +634,7 @@ void sparse_matrix<T, X>::process_index_recursively_for_y_U(unsigned j, vector<u
template <typename T, typename X>
void sparse_matrix<T, X>::process_column_recursively(unsigned j, vector<unsigned> & sorted_active_rows) {
SASSERT(m_processed[j] == false);
lp_assert(m_processed[j] == false);
auto & mc = m_columns[adjust_column(j)].m_values;
for (auto & iv : mc) {
unsigned i = adjust_row_inverse(iv.m_index);
@ -699,12 +699,12 @@ void sparse_matrix<T, X>::solve_U_y_indexed_only(indexed_vector<L> & y, const lp
y[j] = zero_of_type<L>();
}
SASSERT(y.is_OK());
#ifdef Z3DEBUG
lp_assert(y.is_OK());
#ifdef LEAN_DEBUG
// dense_matrix<T,X> deb(this);
// vector<T> clone_y(y.m_data);
// deb.apply_from_left(clone_y);
// SASSERT(vectors_are_equal(rs, clone_y));
// lp_assert(vectors_are_equal(rs, clone_y));
#endif
}
@ -817,7 +817,7 @@ void sparse_matrix<T, X>::add_new_elements_of_w_and_clear_w(unsigned column_to_r
unsigned ai = adjust_row(i);
add_new_element(ai, column_to_replace, w_at_i);
auto & row_chunk = m_rows[ai];
SASSERT(row_chunk.size() > 0);
lp_assert(row_chunk.size() > 0);
if (abs(w_at_i) > abs(row_chunk[0].m_value))
put_max_index_to_0(row_chunk, static_cast<unsigned>(row_chunk.size()) - 1);
}
@ -848,7 +848,7 @@ unsigned sparse_matrix<T, X>::pivot_score(unsigned i, unsigned j) {
template <typename T, typename X>
void sparse_matrix<T, X>::enqueue_domain_into_pivot_queue() {
SASSERT(m_pivot_queue.size() == 0);
lp_assert(m_pivot_queue.size() == 0);
for (unsigned i = 0; i < dimension(); i++) {
auto & rh = m_rows[i];
unsigned rnz = static_cast<unsigned>(rh.size());
@ -934,7 +934,7 @@ void sparse_matrix<T, X>::update_active_pivots(unsigned row) {
for (const auto & iv : m_rows[arow]) {
col_header & ch = m_columns[iv.m_index];
int cols = static_cast<int>(ch.m_values.size()) - ch.m_shortened_markovitz - 1;
SASSERT(cols >= 0);
lp_assert(cols >= 0);
for (const auto &ivc : ch.m_values) {
unsigned i = ivc.m_index;
if (adjust_row_inverse(i) <= row) continue; // the i is not an active row
@ -960,7 +960,7 @@ bool sparse_matrix<T, X>::shorten_active_matrix(unsigned row, eta_matrix<T, X> *
for (auto & iv : row_values) {
const col_header& ch = m_columns[iv.m_index];
int cnz = static_cast<int>(ch.m_values.size()) - ch.m_shortened_markovitz - 1;
SASSERT(cnz >= 0);
lp_assert(cnz >= 0);
m_pivot_queue.enqueue(row, iv.m_index, rnz * cnz);
}
}
@ -976,7 +976,7 @@ unsigned sparse_matrix<T, X>::pivot_score_without_shortened_counters(unsigned i,
if (adjust_row_inverse(iv.m_index) < k)
cnz--;
}
SASSERT(cnz > 0);
lp_assert(cnz > 0);
return m_rows[i].m_values.size() * (cnz - 1);
}
#ifdef Z3DEBUG
@ -986,15 +986,15 @@ bool sparse_matrix<T, X>::can_improve_score_for_row(unsigned row, unsigned score
auto & row_vals = m_rows[arow].m_values;
auto & begin_iv = row_vals[0];
T row_max = abs(begin_iv.m_value);
SASSERT(adjust_column_inverse(begin_iv.m_index) >= k);
lp_assert(adjust_column_inverse(begin_iv.m_index) >= k);
if (pivot_score_without_shortened_counters(arow, begin_iv.m_index, k) < score) {
print_active_matrix(k);
return true;
}
for (unsigned jj = 1; jj < row_vals.size(); jj++) {
auto & iv = row_vals[jj];
SASSERT(adjust_column_inverse(iv.m_index) >= k);
SASSERT(abs(iv.m_value) <= row_max);
lp_assert(adjust_column_inverse(iv.m_index) >= k);
lp_assert(abs(iv.m_value) <= row_max);
if (c_partial_pivoting * abs(iv.m_value) < row_max) continue;
if (pivot_score_without_shortened_counters(arow, iv.m_index, k) < score) {
print_active_matrix(k);
@ -1008,7 +1008,7 @@ template <typename T, typename X>
bool sparse_matrix<T, X>::really_best_pivot(unsigned i, unsigned j, T const & c_partial_pivoting, unsigned k) {
unsigned queue_pivot_score = pivot_score_without_shortened_counters(i, j, k);
for (unsigned ii = k; ii < dimension(); ii++) {
SASSERT(!can_improve_score_for_row(ii, queue_pivot_score, c_partial_pivoting, k));
lp_assert(!can_improve_score_for_row(ii, queue_pivot_score, c_partial_pivoting, k));
}
return true;
}
@ -1041,7 +1041,7 @@ template <typename T, typename X>
bool sparse_matrix<T, X>::pivot_queue_is_correct_for_row(unsigned i, unsigned k) {
unsigned arow = adjust_row(i);
for (auto & iv : m_rows[arow].m_values) {
SASSERT(pivot_score_without_shortened_counters(arow, iv.m_index, k + 1) ==
lp_assert(pivot_score_without_shortened_counters(arow, iv.m_index, k + 1) ==
m_pivot_queue.get_priority(arow, iv.m_index));
}
return true;
@ -1050,8 +1050,8 @@ bool sparse_matrix<T, X>::pivot_queue_is_correct_for_row(unsigned i, unsigned k)
template <typename T, typename X>
bool sparse_matrix<T, X>::pivot_queue_is_correct_after_pivoting(int k) {
for (unsigned i = k + 1; i < dimension(); i++ )
SASSERT(pivot_queue_is_correct_for_row(i, k));
SASSERT(m_pivot_queue.is_correct());
lp_assert(pivot_queue_is_correct_for_row(i, k));
lp_assert(m_pivot_queue.is_correct());
return true;
}
#endif
@ -1070,7 +1070,7 @@ bool sparse_matrix<T, X>::get_pivot_for_column(unsigned &i, unsigned &j, int c_p
#ifdef Z3DEBUG
// if (!really_best_pivot(i, j, c_partial_pivoting, k)) {
// print_active_matrix(k);
// SASSERT(false);
// lp_assert(false);
// }
#endif
recover_pivot_queue(pivots_candidates_that_are_too_small);
@ -1103,7 +1103,7 @@ bool sparse_matrix<T, X>::shorten_columns_by_pivot_row(unsigned i, unsigned pivo
for (indexed_value<T> & iv : row_chunk) {
unsigned j = iv.m_index;
if (j == pivot_column) {
SASSERT(!col_is_active(j));
lp_assert(!col_is_active(j));
continue;
}
m_columns[j].shorten_markovich_by_one();
@ -1166,11 +1166,11 @@ template <typename T, typename X>
bool sparse_matrix<T, X>::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings & settings) const {
for (unsigned i = 0; i < dimension(); i++) {
vector<indexed_value<T>> const & row_chunk = get_row_values(i);
SASSERT(row_chunk.size());
lp_assert(row_chunk.size());
T const & max = abs(row_chunk[0].m_value);
unsigned ai = adjust_row_inverse(i);
for (auto & iv : row_chunk) {
SASSERT(abs(iv.m_value) <= max);
lp_assert(abs(iv.m_value) <= max);
unsigned aj = adjust_column_inverse(iv.m_index);
if (!(ai <= aj || numeric_traits<T>::is_zero(iv.m_value)))
return false;
@ -1208,18 +1208,18 @@ void sparse_matrix<T, X>::check_column_vs_rows(unsigned col) {
indexed_value<T> & row_iv = column_iv_other(column_iv);
if (row_iv.m_index != col) {
// std::cout << "m_other in row does not belong to column " << col << ", but to column " << row_iv.m_index << std::endl;
SASSERT(false);
lp_assert(false);
}
if (& row_iv_other(row_iv) != &column_iv) {
// std::cout << "row and col do not point to each other" << std::endl;
SASSERT(false);
lp_assert(false);
}
if (row_iv.m_value != column_iv.m_value) {
// std::cout << "the data from col " << col << " for row " << column_iv.m_index << " is different in the column " << std::endl;
// std::cout << "in the col it is " << column_iv.m_value << ", but in the row it is " << row_iv.m_value << std::endl;
SASSERT(false);
lp_assert(false);
}
}
}
@ -1232,18 +1232,18 @@ void sparse_matrix<T, X>::check_row_vs_columns(unsigned row) {
if (column_iv.m_index != row) {
// std::cout << "col_iv does not point to correct row " << row << " but to " << column_iv.m_index << std::endl;
SASSERT(false);
lp_assert(false);
}
if (& row_iv != & column_iv_other(column_iv)) {
// std::cout << "row and col do not point to each other" << std::endl;
SASSERT(false);
lp_assert(false);
}
if (row_iv.m_value != column_iv.m_value) {
// std::cout << "the data from col " << column_iv.m_index << " for row " << row << " is different in the column " << std::endl;
// std::cout << "in the col it is " << column_iv.m_value << ", but in the row it is " << row_iv.m_value << std::endl;
SASSERT(false);
lp_assert(false);
}
}
}

View file

@ -39,7 +39,7 @@ template void sparse_matrix<double, double>::remove_element(vector<indexed_value
template void sparse_matrix<double, double>::replace_column(unsigned int, indexed_vector<double>&, lp_settings&);
template void sparse_matrix<double, double>::set(unsigned int, unsigned int, double);
template void sparse_matrix<double, double>::set_max_in_row(vector<indexed_value<double> >&);
template bool sparse_matrix<double, double>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<double>&, lp_settings&);
template bool sparse_matrix<double, double>::set_row_from_work_vector_and_clp_work_vector_not_adjusted(unsigned int, indexed_vector<double>&, lp_settings&);
template bool sparse_matrix<double, double>::shorten_active_matrix(unsigned int, eta_matrix<double, double>*);
template void sparse_matrix<double, double>::solve_y_U(vector<double>&) const;
template sparse_matrix<double, double>::sparse_matrix(static_matrix<double, double> const&, vector<unsigned int>&);
@ -56,7 +56,7 @@ template void sparse_matrix<mpq, mpq>::prepare_for_factorization();
template void sparse_matrix<mpq, mpq>::remove_element(vector<indexed_value<mpq>> &, indexed_value<mpq>&);
template void sparse_matrix<mpq, mpq>::replace_column(unsigned int, indexed_vector<mpq>&, lp_settings&);
template void sparse_matrix<mpq, mpq>::set_max_in_row(vector<indexed_value<mpq>>&);
template bool sparse_matrix<mpq, mpq>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
template bool sparse_matrix<mpq, mpq>::set_row_from_work_vector_and_clp_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
template bool sparse_matrix<mpq, mpq>::shorten_active_matrix(unsigned int, eta_matrix<mpq, mpq>*);
template void sparse_matrix<mpq, mpq>::solve_y_U(vector<mpq>&) const;
template sparse_matrix<mpq, mpq>::sparse_matrix(static_matrix<mpq, mpq> const&, vector<unsigned int>&);
@ -72,7 +72,7 @@ template void sparse_matrix<mpq, numeric_pair<mpq>>::prepare_for_factorizati
template void sparse_matrix<mpq, numeric_pair<mpq>>::remove_element(vector<indexed_value<mpq>>&, indexed_value<mpq>&);
template void sparse_matrix<mpq, numeric_pair<mpq>>::replace_column(unsigned int, indexed_vector<mpq>&, lp_settings&);
template void sparse_matrix<mpq, numeric_pair<mpq>>::set_max_in_row(vector<indexed_value<mpq>>&);
template bool sparse_matrix<mpq, numeric_pair<mpq>>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
template bool sparse_matrix<mpq, numeric_pair<mpq>>::set_row_from_work_vector_and_clp_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
template bool sparse_matrix<mpq, numeric_pair<mpq>>::shorten_active_matrix(unsigned int, eta_matrix<mpq, numeric_pair<mpq> >*);
template void sparse_matrix<mpq, numeric_pair<mpq>>::solve_y_U(vector<mpq>&) const;
template sparse_matrix<mpq, numeric_pair<mpq>>::sparse_matrix(static_matrix<mpq, numeric_pair<mpq> > const&, vector<unsigned int>&);
@ -82,7 +82,7 @@ template void sparse_matrix<mpq, numeric_pair<mpq>>::double_solve_U_y<mpq>(index
template void sparse_matrix<mpq, numeric_pair<mpq> >::double_solve_U_y<numeric_pair<mpq> >(indexed_vector<numeric_pair<mpq>>&, const lp_settings&);
template void lp::sparse_matrix<double, double>::solve_U_y_indexed_only<double>(lp::indexed_vector<double>&, const lp_settings&, vector<unsigned> &);
template void lp::sparse_matrix<lp::mpq, lp::mpq>::solve_U_y_indexed_only<lp::mpq>(lp::indexed_vector<lp::mpq>&, const lp_settings &, vector<unsigned> &);
#ifdef Z3DEBUG
#ifdef LEAN_DEBUG
template bool sparse_matrix<double, double>::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;
template bool sparse_matrix<mpq, mpq>::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;
template bool sparse_matrix<mpq, numeric_pair<mpq> >::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;

View file

@ -42,7 +42,7 @@ public:
}
#endif
void divide(T const & a) {
SASSERT(!lp_settings::is_eps_small_general(a, 1e-12));
lp_assert(!lp_settings::is_eps_small_general(a, 1e-12));
for (auto & t : m_data) { t.second /= a; }
}

View file

@ -45,11 +45,11 @@ class square_dense_submatrix : public tail_matrix<T, X> {
ref(unsigned i, square_dense_submatrix & s) :
m_i_offset((i - s.m_index_start) * s.m_dim), m_s(s){}
T & operator[] (unsigned j) {
SASSERT(j >= m_s.m_index_start);
lp_assert(j >= m_s.m_index_start);
return m_s.m_v[m_i_offset + m_s.adjust_column(j) - m_s.m_index_start];
}
const T & operator[] (unsigned j) const {
SASSERT(j >= m_s.m_index_start);
lp_assert(j >= m_s.m_index_start);
return m_s.m_v[m_i_offset + m_s.adjust_column(j) - m_s.m_index_start];
}
};
@ -73,8 +73,8 @@ public:
bool is_dense() const override { return true; }
ref operator[] (unsigned i) {
SASSERT(i >= m_index_start);
SASSERT(i < m_parent->dimension());
lp_assert(i >= m_index_start);
lp_assert(i < m_parent->dimension());
return ref(i, *this);
}
@ -163,7 +163,7 @@ public:
}
}
}
SASSERT(wcopy.is_OK());
lp_assert(wcopy.is_OK());
apply_from_right(w.m_data);
w.m_index.clear();
if (numeric_traits<T>::precise()) {
@ -182,11 +182,11 @@ public:
}
}
#else
SASSERT(w.is_OK());
SASSERT(m_work_vector.is_OK());
lp_assert(w.is_OK());
lp_assert(m_work_vector.is_OK());
m_work_vector.resize(w.data_size());
m_work_vector.clear();
SASSERT(m_work_vector.is_OK());
lp_assert(m_work_vector.is_OK());
unsigned end = m_index_start + m_dim;
for (unsigned k : w.m_index) {
// find j such that k = adjust_row_inverse(j)
@ -202,8 +202,8 @@ public:
}
}
}
m_work_vector.clean_up();
SASSERT(m_work_vector.is_OK());
m_work_vector.clp_up();
lp_assert(m_work_vector.is_OK());
w = m_work_vector;
#endif
}

View file

@ -33,7 +33,7 @@ square_dense_submatrix<T, X>::square_dense_submatrix (sparse_matrix<T, X> *paren
unsigned row = parent_matrix->adjust_row(i);
for (auto & iv : parent_matrix->get_row_values(row)) {
unsigned j = parent_matrix->adjust_column_inverse(iv.m_index);
SASSERT(j>= m_index_start);
lp_assert(j>= m_index_start);
m_v[row_offset + j] = iv.m_value;
}
row_offset += m_dim;
@ -58,7 +58,7 @@ template <typename T, typename X> void square_dense_submatrix<T, X>::init(sparse
template <typename T, typename X> int square_dense_submatrix<T, X>::find_pivot_column_in_row(unsigned i) const {
int j = -1;
T max = zero_of_type<T>();
SASSERT(i >= m_index_start);
lp_assert(i >= m_index_start);
unsigned row_start = (i - m_index_start) * m_dim;
for (unsigned k = i; k < m_parent->dimension(); k++) {
unsigned col = adjust_column(k); // this is where the column is in the row
@ -79,14 +79,14 @@ template <typename T, typename X> void square_dense_submatrix<T, X>::pivot(un
}
template <typename T, typename X> void square_dense_submatrix<T, X>::pivot_row_to_row(unsigned i, unsigned row, lp_settings & settings) {
SASSERT(i < row);
lp_assert(i < row);
unsigned pj = adjust_column(i); // the pivot column
unsigned pjd = pj - m_index_start;
unsigned pivot_row_offset = (i-m_index_start)*m_dim;
T pivot = m_v[pivot_row_offset + pjd];
unsigned row_offset= (row-m_index_start)*m_dim;
T m = m_v[row_offset + pjd];
SASSERT(!is_zero(pivot));
lp_assert(!is_zero(pivot));
m_v[row_offset + pjd] = -m * pivot; // creating L matrix
for (unsigned j = m_index_start; j < m_parent->dimension(); j++) {
if (j == pj) {
@ -109,7 +109,7 @@ template <typename T, typename X> void square_dense_submatrix<T, X>::divide_r
unsigned pj = adjust_column(i); // the pivot column
unsigned irow_offset = (i - m_index_start) * m_dim;
T pivot = m_v[irow_offset + pj - m_index_start];
SASSERT(!is_zero(pivot));
lp_assert(!is_zero(pivot));
for (unsigned k = m_index_start; k < m_parent->dimension(); k++) {
if (k == pj){
m_v[irow_offset++] = one_of_type<T>() / pivot; // creating the L matrix diagonal
@ -173,7 +173,7 @@ template <typename T, typename X> void square_dense_submatrix<T, X>::push_new
template <typename T, typename X>
template <typename L>
L square_dense_submatrix<T, X>::row_by_vector_product(unsigned i, const vector<L> & v) {
SASSERT(i >= m_index_start);
lp_assert(i >= m_index_start);
unsigned row_in_subm = i - m_index_start;
unsigned row_offset = row_in_subm * m_dim;
@ -186,7 +186,7 @@ L square_dense_submatrix<T, X>::row_by_vector_product(unsigned i, const vector<L
template <typename T, typename X>
template <typename L>
L square_dense_submatrix<T, X>::column_by_vector_product(unsigned j, const vector<L> & v) {
SASSERT(j >= m_index_start);
lp_assert(j >= m_index_start);
unsigned offset = j - m_index_start;
L r = zero_of_type<L>();
@ -197,7 +197,7 @@ L square_dense_submatrix<T, X>::column_by_vector_product(unsigned j, const vecto
template <typename T, typename X>
template <typename L>
L square_dense_submatrix<T, X>::row_by_indexed_vector_product(unsigned i, const indexed_vector<L> & v) {
SASSERT(i >= m_index_start);
lp_assert(i >= m_index_start);
unsigned row_in_subm = i - m_index_start;
unsigned row_offset = row_in_subm * m_dim;
@ -264,8 +264,8 @@ void square_dense_submatrix<T, X>::apply_from_left_local(indexed_vector<L> & w,
#ifdef Z3DEBUG
// cout << "w final" << endl;
// print_vector(w.m_data);
// SASSERT(vectors_are_equal<T>(deb_w, w.m_data));
// SASSERT(w.is_OK());
// lp_assert(vectors_are_equal<T>(deb_w, w.m_data));
// lp_assert(w.is_OK());
#endif
}
@ -295,16 +295,16 @@ void square_dense_submatrix<T, X>::apply_from_left_to_vector(vector<L> & w) {
#ifdef Z3DEBUG
// cout << "w final" << endl;
// print_vector(w.m_data);
// SASSERT(vectors_are_equal<L>(deb_w, w));
// lp_assert(vectors_are_equal<L>(deb_w, w));
#endif
}
template <typename T, typename X> bool square_dense_submatrix<T, X>::is_L_matrix() const {
#ifdef Z3DEBUG
SASSERT(m_row_permutation.is_identity());
#ifdef LEAN_DEBUG
lp_assert(m_row_permutation.is_identity());
for (unsigned i = 0; i < m_parent->dimension(); i++) {
if (i < m_index_start) {
SASSERT(m_column_permutation[i] == i);
lp_assert(m_column_permutation[i] == i);
continue;
}
unsigned row_offs = (i-m_index_start)*m_dim;
@ -312,9 +312,9 @@ template <typename T, typename X> bool square_dense_submatrix<T, X>::is_L_mat
unsigned j = m_index_start + k;
unsigned jex = adjust_column_inverse(j);
if (jex > i) {
SASSERT(is_zero(m_v[row_offs + k]));
lp_assert(is_zero(m_v[row_offs + k]));
} else if (jex == i) {
SASSERT(!is_zero(m_v[row_offs + k]));
lp_assert(!is_zero(m_v[row_offs + k]));
}
}
}
@ -341,8 +341,8 @@ template <typename T, typename X> void square_dense_submatrix<T, X>::apply_from_
t[adjust_column_inverse(j)] = column_by_vector_product(j, w);
}
w = t;
#ifdef Z3DEBUG
// SASSERT(vector_are_equal<T>(deb_w, w));
#ifdef LEAN_DEBUG
// lp_assert(vector_are_equal<T>(deb_w, w));
#endif
}

View file

@ -48,10 +48,10 @@ public:
m_map.emplace_replace(m_key, b);
return *this;
}
ref & operator=(const ref & b) { SASSERT(false); return *this; }
ref & operator=(const ref & b) { lp_assert(false); return *this; }
operator const B&() const {
auto it = m_map.m_map.find(m_key);
SASSERT(it != m_map.m_map.end());
lp_assert(it != m_map.m_map.end());
return it->second;
}
};
@ -88,7 +88,7 @@ public:
const B & operator[]( const A & a) const {
auto it = m_map.find(a);
if (it == m_map.end()) {
SASSERT(false);
lp_assert(false);
}
return it->second;
@ -143,7 +143,7 @@ public:
for (auto & t: d.m_original_changed) {
m_map[t.first] = t.second;
}
// SASSERT(d.m_deb_copy == m_map);
// lp_assert(d.m_deb_copy == m_map);
m_stack.pop();
}
}
@ -157,7 +157,7 @@ public:
delta & d = m_stack.top();
auto it = m_map.find(key);
if (it == m_map.end()) {
SASSERT(d.m_new.find(key) == d.m_new.end());
lp_assert(d.m_new.find(key) == d.m_new.end());
return;
}
auto &orig_changed = d.m_original_changed;
@ -166,7 +166,7 @@ public:
if (orig_changed.find(key) == orig_changed.end())
orig_changed.emplace(it->first, it->second); // need to restore
} else { // k is new
SASSERT(orig_changed.find(key) == orig_changed.end());
lp_assert(orig_changed.find(key) == orig_changed.end());
d.m_new.erase(nit);
}

View file

@ -96,7 +96,7 @@ public:
for (auto & t : d.m_erased) {
m_set.insert(t);
}
SASSERT(d.m_deb_copy == m_set);
lp_assert(d.m_deb_copy == m_set);
m_stack.pop();
}
}

View file

@ -35,7 +35,7 @@ public:
unsigned m_i;
public:
ref(stacked_vector<B> &m, unsigned key) :m_vec(m), m_i(key) {
SASSERT(key < m.size());
lp_assert(key < m.size());
}
ref & operator=(const B & b) {
m_vec.emplace_replace(m_i, b);
@ -59,7 +59,7 @@ public:
unsigned m_i;
public:
ref_const(const stacked_vector<B> &m, unsigned key) :m_vec(m), m_i(key) {
SASSERT(key < m.size());
lp_assert(key < m.size());
}
operator const B&() const {
@ -87,7 +87,7 @@ public:
/*
const B & operator[](unsigned a) const {
SASSERT(a < m_vector.size());
lp_assert(a < m_vector.size());
return m_vector[a];
}
*/
@ -106,10 +106,10 @@ public:
}
template <typename T>
void pop_tail(vector<T> & v, unsigned k) {
SASSERT(v.size() >= k);
v.resize(v.size() - k);
}
void pop_tail(vector<T> & v, unsigned k) {
lp_assert(v.size() >= k);
v.resize(v.size() - k);
}
template <typename T>
void resize(vector<T> & v, unsigned new_size) {
@ -117,8 +117,8 @@ public:
}
void pop(unsigned k) {
SASSERT(m_stack_of_vector_sizes.size() >= k);
SASSERT(k > 0);
lp_assert(m_stack_of_vector_sizes.size() >= k);
lp_assert(k > 0);
resize(m_vector, m_stack_of_vector_sizes[m_stack_of_vector_sizes.size() - k]);
pop_tail(m_stack_of_vector_sizes, k);
unsigned first_change = m_stack_of_change_sizes[m_stack_of_change_sizes.size() - k];
@ -138,15 +138,15 @@ public:
return;
delta & d = m_stack.back();
SASSERT(m_vector.size() >= d.m_size);
lp_assert(m_vector.size() >= d.m_size);
while (m_vector.size() > d.m_size)
m_vector.pop_back();
for (auto & t : d.m_original_changed) {
SASSERT(t.first < m_vector.size());
lp_assert(t.first < m_vector.size());
m_vector[t.first] = t.second;
}
// SASSERT(d.m_deb_copy == m_vector);
// lp_assert(d.m_deb_copy == m_vector);
m_stack.pop_back();*/
}
@ -175,10 +175,10 @@ public:
m_vector.resize(m_vector.size() + 1);
}
unsigned peek_size(unsigned k) const {
SASSERT(k > 0 && k <= m_stack_of_vector_sizes.size());
return m_stack_of_vector_sizes[m_stack_of_vector_sizes.size() - k];
}
unsigned peek_size(unsigned k) const {
lp_assert(k > 0 && k <= m_stack_of_vector_sizes.size());
return m_stack_of_vector_sizes[m_stack_of_vector_sizes.size() - k];
}
const vector<B>& operator()() const { return m_vector; }
};

View file

@ -208,7 +208,7 @@ public:
void scan_row_to_work_vector(unsigned i);
void clean_row_work_vector(unsigned i);
void clp_row_work_vector(unsigned i);
#ifdef Z3DEBUG
@ -218,7 +218,7 @@ public:
virtual void set_number_of_columns(unsigned /*n*/) { }
#endif
T get_max_val_in_row(unsigned /* i */) const { SASSERT(false); }
T get_max_val_in_row(unsigned /* i */) const { lp_unreachable(); }
T get_balance() const;
@ -234,7 +234,7 @@ public:
for (auto & c : row) {
unsigned j = c.m_j;
auto & col = m_columns[j];
SASSERT(col[col.size() - 1].m_i == m_rows.size() -1 ); // todo : start here!!!!
lp_assert(col[col.size() - 1].m_i == m_rows.size() -1 ); // todo : start here!!!!
col.pop_back();
}
}
@ -261,7 +261,7 @@ public:
m_columns.pop_back(); // delete the last column
m_stack.pop();
}
SASSERT(is_correct());
lp_assert(is_correct());
}
void multiply_row(unsigned row, T const & alpha) {
@ -277,7 +277,7 @@ public:
}
T dot_product_with_column(const vector<T> & y, unsigned j) const {
SASSERT(j < column_count());
lp_assert(j < column_count());
T ret = numeric_traits<T>::zero();
for (auto & it : m_columns[j]) {
ret += y[it.m_i] * get_val(it); // get_value_of_column_cell(it);
@ -296,20 +296,20 @@ public:
// now fix the columns
for (auto & rc : m_rows[i]) {
column_cell & cc = m_columns[rc.m_j][rc.m_offset];
SASSERT(cc.m_i == ii);
lp_assert(cc.m_i == ii);
cc.m_i = i;
}
for (auto & rc : m_rows[ii]) {
column_cell & cc = m_columns[rc.m_j][rc.m_offset];
SASSERT(cc.m_i == i);
lp_assert(cc.m_i == i);
cc.m_i = ii;
}
}
void fill_last_row_with_pivoting(linear_combination_iterator<T> & it, const vector<int> & basis_heading) {
SASSERT(numeric_traits<T>::precise());
SASSERT(row_count() > 0);
lp_assert(numeric_traits<T>::precise());
lp_assert(row_count() > 0);
m_work_vector.resize(column_count());
T a;
unsigned j;
@ -347,13 +347,13 @@ public:
alpha = zero_of_type<T>();
m_work_vector.erase_from_index(j);
}
SASSERT(m_work_vector.is_OK());
lp_assert(m_work_vector.is_OK());
unsigned last_row = row_count() - 1;
for (unsigned j : m_work_vector.m_index) {
set (last_row, j, m_work_vector.m_data[j]);
}
SASSERT(column_count() > 0);
lp_assert(column_count() > 0);
set(last_row, column_count() - 1, one_of_type<T>());
}
@ -369,7 +369,7 @@ public:
template <typename L>
L dot_product_with_row(unsigned row, const vector<L> & w) const {
L ret = zero_of_type<L>();
SASSERT(row < m_rows.size());
lp_assert(row < m_rows.size());
for (auto & it : m_rows[row]) {
ret += w[it.m_j] * it.get_val();
}

View file

@ -25,7 +25,7 @@ namespace lp {
// each assignment for this matrix should be issued only once!!!
template <typename T, typename X>
void static_matrix<T, X>::init_row_columns(unsigned m, unsigned n) {
SASSERT(m_rows.size() == 0 && m_columns.size() == 0);
lp_assert(m_rows.size() == 0 && m_columns.size() == 0);
for (unsigned i = 0; i < m; i++){
m_rows.push_back(row_strip());
}
@ -45,23 +45,23 @@ template <typename T, typename X> void static_matrix<T, X>::scan_row_ii_to_offse
template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_given_cell(unsigned i, column_cell & c, unsigned pivot_col) {
unsigned ii = c.m_i;
SASSERT(i < row_count() && ii < column_count());
SASSERT(i != ii);
lp_assert(i < row_count() && ii < column_count());
lp_assert(i != ii);
m_became_zeros.reset();
T alpha = -get_val(c);
SASSERT(!is_zero(alpha));
lp_assert(!is_zero(alpha));
auto & ii_row_vals = m_rows[ii];
remove_element(ii_row_vals, ii_row_vals[c.m_offset]);
scan_row_ii_to_offset_vector(ii);
SASSERT(!is_zero(alpha));
lp_assert(!is_zero(alpha));
unsigned prev_size_ii = ii_row_vals.size();
// run over the pivot row and update row ii
for (const auto & iv : m_rows[i]) {
unsigned j = iv.m_j;
if (j == pivot_col) continue;
T alv = alpha * iv.m_value;
SASSERT(!is_zero(iv.m_value));
lp_assert(!is_zero(iv.m_value));
int j_offs = m_vector_of_row_offsets[j];
if (j_offs == -1) { // it is a new element
add_new_element(ii, j, alv);
@ -76,7 +76,7 @@ template <typename T, typename X> bool static_matrix<T, X>::pivot_row_to_row_giv
}
}
// clean the work vector
// clp the work vector
for (unsigned k = 0; k < prev_size_ii; k++) {
m_vector_of_row_offsets[ii_row_vals[k].m_j] = -1;
}
@ -119,9 +119,9 @@ template <typename T, typename X> void static_matrix<T, X>::init_empty_matrix
}
template <typename T, typename X> unsigned static_matrix<T, X>::lowest_row_in_column(unsigned col) {
SASSERT(col < column_count());
lp_assert(col < column_count());
column_strip & colstrip = m_columns[col];
SASSERT(colstrip.size() > 0);
lp_assert(colstrip.size() > 0);
unsigned ret = 0;
for (auto & t : colstrip) {
if (t.m_i > ret) {
@ -137,7 +137,7 @@ template <typename T, typename X> void static_matrix<T, X>::add_columns_at_th
}
template <typename T, typename X> void static_matrix<T, X>::forget_last_columns(unsigned how_many_to_forget) {
SASSERT(m_columns.size() >= how_many_to_forget);
lp_assert(m_columns.size() >= how_many_to_forget);
unsigned j = column_count() - 1;
for (; how_many_to_forget > 0; how_many_to_forget--) {
remove_last_column(j --);
@ -166,7 +166,7 @@ template <typename T, typename X> void static_matrix<T, X>::remove_last_column(u
template <typename T, typename X> void static_matrix<T, X>::set(unsigned row, unsigned col, T const & val) {
if (numeric_traits<T>::is_zero(val)) return;
SASSERT(row < row_count() && col < column_count());
lp_assert(row < row_count() && col < column_count());
auto & r = m_rows[row];
unsigned offs_in_cols = static_cast<unsigned>(m_columns[col].size());
m_columns[col].push_back(make_column_cell(row, static_cast<unsigned>(r.size())));
@ -186,7 +186,7 @@ std::set<std::pair<unsigned, unsigned>> static_matrix<T, X>::get_domain() {
template <typename T, typename X> void static_matrix<T, X>::copy_column_to_indexed_vector (unsigned j, indexed_vector<T> & v) const {
SASSERT(j < m_columns.size());
lp_assert(j < m_columns.size());
for (auto & it : m_columns[j]) {
const T& val = get_val(it);
if (!is_zero(val))
@ -255,7 +255,7 @@ template <typename T, typename X> void static_matrix<T, X>::check_consistency
for (int i = 0; i < m_rows.size(); i++){
for (auto & t : m_rows[i]) {
std::pair<unsigned, unsigned> p(i, t.m_j);
SASSERT(by_rows.find(p) == by_rows.end());
lp_assert(by_rows.find(p) == by_rows.end());
by_rows[p] = t.get_val();
}
}
@ -263,11 +263,11 @@ template <typename T, typename X> void static_matrix<T, X>::check_consistency
for (int i = 0; i < m_columns.size(); i++){
for (auto & t : m_columns[i]) {
std::pair<unsigned, unsigned> p(t.m_i, i);
SASSERT(by_cols.find(p) == by_cols.end());
lp_assert(by_cols.find(p) == by_cols.end());
by_cols[p] = get_val(t);
}
}
SASSERT(by_rows.size() == by_cols.size());
lp_assert(by_rows.size() == by_cols.size());
for (auto & t : by_rows) {
auto ic = by_cols.find(t.first);
@ -275,8 +275,8 @@ template <typename T, typename X> void static_matrix<T, X>::check_consistency
//std::cout << "rows have pair (" << t.first.first <<"," << t.first.second
// << "), but columns don't " << std::endl;
}
SASSERT(ic != by_cols.end());
SASSERT(t.second == ic->second);
lp_assert(ic != by_cols.end());
lp_assert(t.second == ic->second);
}
}
#endif

View file

@ -89,7 +89,7 @@ public :
void analyze_i_for_upper(unsigned i) {
mpq l;
bool strict = false;
SASSERT(is_zero(l));
lp_assert(is_zero(l));
for (unsigned k = 0; k < m_index.size(); k++) {
if (k == i)
continue;
@ -180,7 +180,7 @@ public :
void analyze_i_for_lower(unsigned i) {
mpq l;
SASSERT(is_zero(l));
lp_assert(is_zero(l));
bool strict = false;
for (unsigned k = 0; k < m_index.size(); k++) {
if (k == i)