mirror of
https://github.com/Z3Prover/z3
synced 2025-09-10 03:31:25 +00:00
move out sign
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
89c91765f6
commit
d3b105f9f8
15 changed files with 176 additions and 168 deletions
|
@ -1327,25 +1327,25 @@ namespace upolynomial {
|
|||
div(sz, p, 2, two_x_1, buffer);
|
||||
}
|
||||
|
||||
polynomial::sign manager::sign_of(numeral const & c) {
|
||||
sign manager::sign_of(numeral const & c) {
|
||||
if (m().is_zero(c))
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
if (m().is_pos(c))
|
||||
return polynomial::sign_pos;
|
||||
return sign_pos;
|
||||
else
|
||||
return polynomial::sign_neg;
|
||||
return sign_neg;
|
||||
}
|
||||
|
||||
// Return the number of sign changes in the coefficients of p
|
||||
unsigned manager::sign_changes(unsigned sz, numeral const * p) {
|
||||
unsigned r = 0;
|
||||
auto prev_sign = polynomial::sign_zero;
|
||||
auto prev_sign = sign_zero;
|
||||
unsigned i = 0;
|
||||
for (; i < sz; i++) {
|
||||
auto sign = sign_of(p[i]);
|
||||
if (sign == polynomial::sign_zero)
|
||||
if (sign == sign_zero)
|
||||
continue;
|
||||
if (sign != prev_sign && prev_sign != polynomial::sign_zero)
|
||||
if (sign != prev_sign && prev_sign != sign_zero)
|
||||
r++;
|
||||
prev_sign = sign;
|
||||
}
|
||||
|
@ -1375,7 +1375,7 @@ namespace upolynomial {
|
|||
}
|
||||
return sign_changes(Q.size(), Q.c_ptr());
|
||||
#endif
|
||||
polynomial::sign prev_sign = polynomial::sign_zero;
|
||||
sign prev_sign = sign_zero;
|
||||
unsigned num_vars = 0;
|
||||
// a0 a1 a2 a3
|
||||
// a0 a0+a1 a0+a1+a2 a0+a1+a2+a3
|
||||
|
@ -1389,9 +1389,9 @@ namespace upolynomial {
|
|||
m().add(Q[k], Q[k-1], Q[k]);
|
||||
}
|
||||
auto sign = sign_of(Q[k-1]);
|
||||
if (polynomial::is_zero(sign))
|
||||
if (::is_zero(sign))
|
||||
continue;
|
||||
if (sign != prev_sign && !polynomial::is_zero(prev_sign)) {
|
||||
if (sign != prev_sign && !::is_zero(prev_sign)) {
|
||||
num_vars++;
|
||||
if (num_vars > 1)
|
||||
return num_vars;
|
||||
|
@ -1729,14 +1729,14 @@ namespace upolynomial {
|
|||
}
|
||||
|
||||
// Evaluate the sign of p(b)
|
||||
polynomial::sign manager::eval_sign_at(unsigned sz, numeral const * p, mpbq const & b) {
|
||||
sign manager::eval_sign_at(unsigned sz, numeral const * p, mpbq const & b) {
|
||||
// Actually, given b = c/2^k, we compute the sign of (2^k)^n*p(b)
|
||||
// Original Horner Sequence
|
||||
// ((a_n * b + a_{n-1})*b + a_{n-2})*b + a_{n-3} ...
|
||||
// Variation of the Horner Sequence for (2^k)^n*p(b)
|
||||
// ((a_n * c + a_{n-1}*2_k)*c + a_{n-2}*(2_k)^2)*c + a_{n-3}*(2_k)^3 ... + a_0*(2_k)^n
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
if (sz == 1)
|
||||
return sign_of(p[0]);
|
||||
numeral const & c = b.numerator();
|
||||
|
@ -1762,14 +1762,14 @@ namespace upolynomial {
|
|||
}
|
||||
|
||||
// Evaluate the sign of p(b)
|
||||
polynomial::sign manager::eval_sign_at(unsigned sz, numeral const * p, mpq const & b) {
|
||||
sign manager::eval_sign_at(unsigned sz, numeral const * p, mpq const & b) {
|
||||
// Actually, given b = c/d, we compute the sign of (d^n)*p(b)
|
||||
// Original Horner Sequence
|
||||
// ((a_n * b + a_{n-1})*b + a_{n-2})*b + a_{n-3} ...
|
||||
// Variation of the Horner Sequence for (d^n)*p(b)
|
||||
// ((a_n * c + a_{n-1}*d)*c + a_{n-2}*d^2)*c + a_{n-3}*d^3 ... + a_0*d^n
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
if (sz == 1)
|
||||
return sign_of(p[0]);
|
||||
numeral const & c = b.numerator();
|
||||
|
@ -1796,11 +1796,11 @@ namespace upolynomial {
|
|||
}
|
||||
|
||||
// Evaluate the sign of p(b)
|
||||
polynomial::sign manager::eval_sign_at(unsigned sz, numeral const * p, mpz const & b) {
|
||||
sign manager::eval_sign_at(unsigned sz, numeral const * p, mpz const & b) {
|
||||
// Using Horner Sequence
|
||||
// ((a_n * b + a_{n-1})*b + a_{n-2})*b + a_{n-3} ...
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
if (sz == 1)
|
||||
return sign_of(p[0]);
|
||||
scoped_numeral r(m());
|
||||
|
@ -1817,21 +1817,21 @@ namespace upolynomial {
|
|||
return sign_of(r);
|
||||
}
|
||||
|
||||
polynomial::sign manager::eval_sign_at_zero(unsigned sz, numeral const * p) {
|
||||
sign manager::eval_sign_at_zero(unsigned sz, numeral const * p) {
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
return sign_of(p[0]);
|
||||
}
|
||||
|
||||
polynomial::sign manager::eval_sign_at_plus_inf(unsigned sz, numeral const * p) {
|
||||
sign manager::eval_sign_at_plus_inf(unsigned sz, numeral const * p) {
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
return sign_of(p[sz-1]);
|
||||
}
|
||||
|
||||
polynomial::sign manager::eval_sign_at_minus_inf(unsigned sz, numeral const * p) {
|
||||
sign manager::eval_sign_at_minus_inf(unsigned sz, numeral const * p) {
|
||||
if (sz == 0)
|
||||
return polynomial::sign_zero;
|
||||
return sign_zero;
|
||||
unsigned degree = sz - 1;
|
||||
if (degree % 2 == 0)
|
||||
return sign_of(p[sz-1]);
|
||||
|
@ -2751,7 +2751,7 @@ namespace upolynomial {
|
|||
The arguments sign_a and sign_b must contain the values returned by
|
||||
eval_sign_at(sz, p, a) and eval_sign_at(sz, p, b).
|
||||
*/
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, polynomial::sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
SASSERT(sign_a == eval_sign_at(sz, p, a));
|
||||
SASSERT(-sign_a == eval_sign_at(sz, p, b));
|
||||
SASSERT(sign_a != 0);
|
||||
|
@ -2759,7 +2759,7 @@ namespace upolynomial {
|
|||
bqm.add(a, b, mid);
|
||||
bqm.div2(mid);
|
||||
auto sign_mid = eval_sign_at(sz, p, mid);
|
||||
if (polynomial::is_zero(sign_mid)) {
|
||||
if (::is_zero(sign_mid)) {
|
||||
swap(mid, a);
|
||||
return false;
|
||||
}
|
||||
|
@ -2774,8 +2774,8 @@ namespace upolynomial {
|
|||
|
||||
// See refine_core
|
||||
bool manager::refine(unsigned sz, numeral const * p, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(!polynomial::is_zero(sign_a));
|
||||
sign sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(!::is_zero(sign_a));
|
||||
return refine_core(sz, p, sign_a, bqm, a, b);
|
||||
}
|
||||
|
||||
|
@ -2784,8 +2784,8 @@ namespace upolynomial {
|
|||
//
|
||||
// Return TRUE, if interval was squeezed, and new interval is stored in (a,b).
|
||||
// Return FALSE, if the actual root was found, it is stored in a.
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, polynomial::sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
SASSERT(sign_a != polynomial::sign_zero);
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
SASSERT(sign_a != sign_zero);
|
||||
SASSERT(sign_a == eval_sign_at(sz, p, a));
|
||||
SASSERT(-sign_a == eval_sign_at(sz, p, b));
|
||||
scoped_mpbq w(bqm);
|
||||
|
@ -2802,16 +2802,16 @@ namespace upolynomial {
|
|||
}
|
||||
|
||||
bool manager::refine(unsigned sz, numeral const * p, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
sign sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(eval_sign_at(sz, p, b) == -sign_a);
|
||||
SASSERT(sign_a != 0);
|
||||
return refine_core(sz, p, sign_a, bqm, a, b, prec_k);
|
||||
}
|
||||
|
||||
bool manager::convert_q2bq_interval(unsigned sz, numeral const * p, mpq const & a, mpq const & b, mpbq_manager & bqm, mpbq & c, mpbq & d) {
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
polynomial::sign sign_b = eval_sign_at(sz, p, b);
|
||||
SASSERT(!polynomial::is_zero(sign_a) && !polynomial::is_zero(sign_b));
|
||||
sign sign_a = eval_sign_at(sz, p, a);
|
||||
sign sign_b = eval_sign_at(sz, p, b);
|
||||
SASSERT(!::is_zero(sign_a) && !::is_zero(sign_b));
|
||||
SASSERT(sign_a == -sign_b);
|
||||
bool found_d = false;
|
||||
TRACE("convert_bug",
|
||||
|
@ -2843,7 +2843,7 @@ namespace upolynomial {
|
|||
SASSERT(bqm.lt(upper, b));
|
||||
while (true) {
|
||||
auto sign_upper = eval_sign_at(sz, p, upper);
|
||||
if (polynomial::is_zero(sign_upper)) {
|
||||
if (::is_zero(sign_upper)) {
|
||||
// found root
|
||||
bqm.swap(c, upper);
|
||||
bqm.del(lower); bqm.del(upper);
|
||||
|
@ -2887,8 +2887,8 @@ namespace upolynomial {
|
|||
SASSERT(bqm.lt(lower, upper));
|
||||
SASSERT(bqm.lt(lower, b));
|
||||
while (true) {
|
||||
polynomial::sign sign_lower = eval_sign_at(sz, p, lower);
|
||||
if (polynomial::is_zero(sign_lower)) {
|
||||
sign sign_lower = eval_sign_at(sz, p, lower);
|
||||
if (::is_zero(sign_lower)) {
|
||||
// found root
|
||||
bqm.swap(c, lower);
|
||||
bqm.del(lower); bqm.del(upper);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue