3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-14 12:51:48 +00:00

Revert deallocation in set methods and restore indentation in gcd function

Co-authored-by: nunoplopes <2998477+nunoplopes@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot] 2026-02-09 16:08:58 +00:00
parent cd492c3e9c
commit d3572a95b9
2 changed files with 228 additions and 238 deletions

View file

@ -954,249 +954,251 @@ void mpz_manager<SYNCH>::gcd(mpz const & a, mpz const & b, mpz & c) {
return;
}
}
else {
#ifdef _MP_GMP
ensure_mpz_t a1(a), b1(b);
mk_big(c);
mpz_gcd(*c.ptr(), a1(), b1());
return;
ensure_mpz_t a1(a), b1(b);
mk_big(c);
mpz_gcd(*c.ptr(), a1(), b1());
return;
#endif
if (is_zero(a)) {
set(c, b);
abs(c);
return;
}
if (is_zero(b)) {
set(c, a);
abs(c);
return;
}
#ifdef BINARY_GCD
// Binary GCD for big numbers
// - It doesn't use division
// - The initial experiments, don't show any performance improvement
// - It only works with _MP_INTERNAL
mpz u, v, diff;
set(u, a);
set(v, b);
abs(u);
abs(v);
unsigned k_u = power_of_two_multiple(u);
unsigned k_v = power_of_two_multiple(v);
unsigned k = k_u < k_v ? k_u : k_v;
machine_div2k(u, k_u);
while (true) {
machine_div2k(v, k_v);
if (lt(u, v)) {
sub(v, u, v);
}
else {
sub(u, v, diff);
swap(u, v);
swap(v, diff);
if (is_zero(a)) {
set(c, b);
abs(c);
return;
}
if (is_zero(v) || is_one(v))
break;
// reset least significant bit
if (is_small(v))
v.set(v.value() & ~1);
else
v.ptr()->m_digits[0] &= ~static_cast<digit_t>(1);
k_v = power_of_two_multiple(v);
}
if (is_zero(b)) {
set(c, a);
abs(c);
return;
}
#ifdef BINARY_GCD
// Binary GCD for big numbers
// - It doesn't use division
// - The initial experiments, don't show any performance improvement
// - It only works with _MP_INTERNAL
mpz u, v, diff;
set(u, a);
set(v, b);
abs(u);
abs(v);
mul2k(u, k, c);
del(u); del(v); del(diff);
unsigned k_u = power_of_two_multiple(u);
unsigned k_v = power_of_two_multiple(v);
unsigned k = k_u < k_v ? k_u : k_v;
machine_div2k(u, k_u);
while (true) {
machine_div2k(v, k_v);
if (lt(u, v)) {
sub(v, u, v);
}
else {
sub(u, v, diff);
swap(u, v);
swap(v, diff);
}
if (is_zero(v) || is_one(v))
break;
// reset least significant bit
if (is_small(v))
v.set(v.value() & ~1);
else
v.ptr()->m_digits[0] &= ~static_cast<digit_t>(1);
k_v = power_of_two_multiple(v);
}
mul2k(u, k, c);
del(u); del(v); del(diff);
#endif // BINARY_GCD
#ifdef EUCLID_GCD
mpz tmp1;
mpz tmp2;
mpz aux;
set(tmp1, a);
set(tmp2, b);
abs(tmp1);
abs(tmp2);
if (lt(tmp1, tmp2))
swap(tmp1, tmp2);
if (is_zero(tmp2)) {
swap(c, tmp1);
}
else {
while (true) {
if (is_uint64(tmp1) && is_uint64(tmp2)) {
set(c, u64_gcd(get_uint64(tmp1), get_uint64(tmp2)));
break;
}
rem(tmp1, tmp2, aux);
if (is_zero(aux)) {
swap(c, tmp2);
break;
}
mpz tmp1;
mpz tmp2;
mpz aux;
set(tmp1, a);
set(tmp2, b);
abs(tmp1);
abs(tmp2);
if (lt(tmp1, tmp2))
swap(tmp1, tmp2);
swap(tmp2, aux);
if (is_zero(tmp2)) {
swap(c, tmp1);
}
}
del(tmp1); del(tmp2); del(aux);
else {
while (true) {
if (is_uint64(tmp1) && is_uint64(tmp2)) {
set(c, u64_gcd(get_uint64(tmp1), get_uint64(tmp2)));
break;
}
rem(tmp1, tmp2, aux);
if (is_zero(aux)) {
swap(c, tmp2);
break;
}
swap(tmp1, tmp2);
swap(tmp2, aux);
}
}
del(tmp1); del(tmp2); del(aux);
#endif // EUCLID_GCD
#ifdef LS_BINARY_GCD
mpz u, v, t, u1, u2;
set(u, a);
set(v, b);
abs(u);
abs(v);
if (lt(u, v))
swap(u, v);
while (!is_zero(v)) {
// Basic idea:
// compute t = 2^e*v such that t <= u < 2t
// u := min{u - t, 2t - u}
//
// The assignment u := min{u - t, 2t - u}
// can be replaced with u := u - t
//
// Since u and v are positive, we have:
// 2^{log2(u)} <= u < 2^{(log2(u) + 1)}
// 2^{log2(v)} <= v < 2^{(log2(v) + 1)}
// -->
// 2^{log2(v)}*2^{log2(u)-log2(v)} <= v*2^{log2(u)-log2(v)} < 2^{log2(v) + 1}*2^{log2(u)-log2(v)}
// -->
// 2^{log2(u)} <= v*2^{log2(u)-log2(v)} < 2^{log2(u) + 1}
//
// Now, let t be v*2^{log2(u)-log2(v)}
// If t <= u, then we found t
// Otherwise t = t div 2
unsigned k_u = log2(u);
unsigned k_v = log2(v);
SASSERT(k_v <= k_u);
unsigned e = k_u - k_v;
mul2k(v, e, t);
sub(u, t, u1);
if (is_neg(u1)) {
// t is too big
machine_div2k(t, 1);
// Now, u1 contains u - 2t
neg(u1);
// Now, u1 contains 2t - u
sub(u, t, u2); // u2 := u - t
}
else {
// u1 contains u - t
mul2k(t, 1);
sub(t, u, u2);
// u2 contains 2t - u
}
SASSERT(is_nonneg(u1));
SASSERT(is_nonneg(u2));
if (lt(u1, u2))
swap(u, u1);
else
swap(u, u2);
mpz u, v, t, u1, u2;
set(u, a);
set(v, b);
abs(u);
abs(v);
if (lt(u, v))
swap(u,v);
}
swap(u, c);
del(u); del(v); del(t); del(u1); del(u2);
swap(u, v);
while (!is_zero(v)) {
// Basic idea:
// compute t = 2^e*v such that t <= u < 2t
// u := min{u - t, 2t - u}
//
// The assignment u := min{u - t, 2t - u}
// can be replaced with u := u - t
//
// Since u and v are positive, we have:
// 2^{log2(u)} <= u < 2^{(log2(u) + 1)}
// 2^{log2(v)} <= v < 2^{(log2(v) + 1)}
// -->
// 2^{log2(v)}*2^{log2(u)-log2(v)} <= v*2^{log2(u)-log2(v)} < 2^{log2(v) + 1}*2^{log2(u)-log2(v)}
// -->
// 2^{log2(u)} <= v*2^{log2(u)-log2(v)} < 2^{log2(u) + 1}
//
// Now, let t be v*2^{log2(u)-log2(v)}
// If t <= u, then we found t
// Otherwise t = t div 2
unsigned k_u = log2(u);
unsigned k_v = log2(v);
SASSERT(k_v <= k_u);
unsigned e = k_u - k_v;
mul2k(v, e, t);
sub(u, t, u1);
if (is_neg(u1)) {
// t is too big
machine_div2k(t, 1);
// Now, u1 contains u - 2t
neg(u1);
// Now, u1 contains 2t - u
sub(u, t, u2); // u2 := u - t
}
else {
// u1 contains u - t
mul2k(t, 1);
sub(t, u, u2);
// u2 contains 2t - u
}
SASSERT(is_nonneg(u1));
SASSERT(is_nonneg(u2));
if (lt(u1, u2))
swap(u, u1);
else
swap(u, u2);
if (lt(u, v))
swap(u,v);
}
swap(u, c);
del(u); del(v); del(t); del(u1); del(u2);
#endif // LS_BINARY_GCD
#ifdef LEHMER_GCD
// For now, it only works if sizeof(digit_t) == sizeof(unsigned)
static_assert(sizeof(digit_t) == sizeof(unsigned), "");
int64_t a_hat, b_hat, A, B, C, D, T, q, a_sz, b_sz;
mpz a1, b1, t, r, tmp;
set(a1, a);
set(b1, b);
abs(a1);
abs(b1);
if (lt(a1, b1))
swap(a1, b1);
while (true) {
SASSERT(ge(a1, b1));
if (is_small(b1)) {
if (is_small(a1)) {
unsigned r = u_gcd(a1.value(), b1.value());
set(c, r);
break;
// For now, it only works if sizeof(digit_t) == sizeof(unsigned)
static_assert(sizeof(digit_t) == sizeof(unsigned), "");
int64_t a_hat, b_hat, A, B, C, D, T, q, a_sz, b_sz;
mpz a1, b1, t, r, tmp;
set(a1, a);
set(b1, b);
abs(a1);
abs(b1);
if (lt(a1, b1))
swap(a1, b1);
while (true) {
SASSERT(ge(a1, b1));
if (is_small(b1)) {
if (is_small(a1)) {
unsigned r = u_gcd(a1.value(), b1.value());
set(c, r);
break;
}
else {
while (!is_zero(b1)) {
SASSERT(ge(a1, b1));
rem(a1, b1, tmp);
swap(a1, b1);
swap(b1, tmp);
}
swap(c, a1);
break;
}
}
SASSERT(!is_small(a1));
SASSERT(!is_small(b1));
a_sz = a1.ptr()->m_size;
b_sz = b1.ptr()->m_size;
SASSERT(b_sz <= a_sz);
a_hat = a1.ptr()->m_digits[a_sz - 1];
b_hat = (b_sz == a_sz) ? b1.ptr()->m_digits[b_sz - 1] : 0;
A = 1;
B = 0;
C = 0;
D = 1;
while (true) {
// Loop invariants
SASSERT(a_hat + A <= static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(a_hat + B < static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(b_hat + C < static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(b_hat + D <= static_cast<int64_t>(UINT_MAX) + 1);
// overflows can't happen since I'm using int64
if (b_hat + C == 0 || b_hat + D == 0)
break;
q = (a_hat + A)/(b_hat + C);
if (q != (a_hat + B)/(b_hat + D))
break;
T = A - q*C;
A = C;
C = T;
T = B - q*D;
B = D;
D = T;
T = a_hat - q*b_hat;
a_hat = b_hat;
b_hat = T;
}
SASSERT(ge(a1, b1));
if (B == 0) {
rem(a1, b1, t);
swap(a1, b1);
swap(b1, t);
SASSERT(ge(a1, b1));
}
else {
while (!is_zero(b1)) {
SASSERT(ge(a1, b1));
rem(a1, b1, tmp);
swap(a1, b1);
swap(b1, tmp);
}
swap(c, a1);
break;
// t <- A*a1
set(tmp, A);
mul(a1, tmp, t);
// t <- t + B*b1
set(tmp, B);
addmul(t, tmp, b1, t);
// r <- C*a1
set(tmp, C);
mul(a1, tmp, r);
// r <- r + D*b1
set(tmp, D);
addmul(r, tmp, b1, r);
// a <- t
swap(a1, t);
// b <- r
swap(b1, r);
SASSERT(ge(a1, b1));
}
}
SASSERT(!is_small(a1));
SASSERT(!is_small(b1));
a_sz = a1.ptr()->m_size;
b_sz = b1.ptr()->m_size;
SASSERT(b_sz <= a_sz);
a_hat = a1.ptr()->m_digits[a_sz - 1];
b_hat = (b_sz == a_sz) ? b1.ptr()->m_digits[b_sz - 1] : 0;
A = 1;
B = 0;
C = 0;
D = 1;
while (true) {
// Loop invariants
SASSERT(a_hat + A <= static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(a_hat + B < static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(b_hat + C < static_cast<int64_t>(UINT_MAX) + 1);
SASSERT(b_hat + D <= static_cast<int64_t>(UINT_MAX) + 1);
// overflows can't happen since I'm using int64
if (b_hat + C == 0 || b_hat + D == 0)
break;
q = (a_hat + A)/(b_hat + C);
if (q != (a_hat + B)/(b_hat + D))
break;
T = A - q*C;
A = C;
C = T;
T = B - q*D;
B = D;
D = T;
T = a_hat - q*b_hat;
a_hat = b_hat;
b_hat = T;
del(a1); del(b1); del(r); del(t); del(tmp);
}
SASSERT(ge(a1, b1));
if (B == 0) {
rem(a1, b1, t);
swap(a1, b1);
swap(b1, t);
SASSERT(ge(a1, b1));
}
else {
// t <- A*a1
set(tmp, A);
mul(a1, tmp, t);
// t <- t + B*b1
set(tmp, B);
addmul(t, tmp, b1, t);
// r <- C*a1
set(tmp, C);
mul(a1, tmp, r);
// r <- r + D*b1
set(tmp, D);
addmul(r, tmp, b1, r);
// a <- t
swap(a1, t);
// b <- r
swap(b1, r);
SASSERT(ge(a1, b1));
}
}
del(a1); del(b1); del(r); del(t); del(tmp);
#endif // LEHMER_GCD
}

View file

@ -338,10 +338,7 @@ class mpz_manager {
void set_big_i64(mpz & c, int64_t v);
void set_i64(mpz & c, int64_t v) {
if (mpz::fits_in_small(v)) {
if (!is_small(c)) {
deallocate(c);
}
if (mpz::fits_in_small(v) && is_small(c)) {
c.set64(v);
}
else {
@ -663,10 +660,7 @@ public:
void set(mpz & a, int val) {
// On 32-bit platforms, int can be outside small range
if (mpz::fits_in_small(val)) {
if (!is_small(a)) {
deallocate(a);
}
if (mpz::fits_in_small(val) && is_small(a)) {
a.set(val);
}
else {
@ -675,10 +669,7 @@ public:
}
void set(mpz & a, unsigned val) {
if (mpz::fits_in_small(val)) {
if (!is_small(a)) {
deallocate(a);
}
if (mpz::fits_in_small(val) && is_small(a)) {
a.set(static_cast<int>(val));
}
else {
@ -693,10 +684,7 @@ public:
}
void set(mpz & a, uint64_t val) {
if (mpz::fits_in_small(val)) {
if (!is_small(a)) {
deallocate(a);
}
if (mpz::fits_in_small(val) && is_small(a)) {
a.set64(static_cast<int64_t>(val));
}
else {