3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
This commit is contained in:
Nikolaj Bjorner 2018-08-11 13:33:35 -07:00
commit d270df67f7
4 changed files with 64 additions and 10 deletions

View file

@ -63,6 +63,7 @@ void smt_params::updt_params(params_ref const & p) {
theory_bv_params::updt_params(p);
theory_pb_params::updt_params(p);
// theory_array_params::updt_params(p);
theory_datatype_params::updt_params(p);
updt_local_params(p);
}

View file

@ -94,5 +94,6 @@ def_module_params(module_name='smt',
('core.extend_patterns', BOOL, False, 'extend unsat core with literals that trigger (potential) quantifier instances'),
('core.extend_patterns.max_distance', UINT, UINT_MAX, 'limits the distance of a pattern-extended unsat core'),
('core.extend_nonlocal_patterns', BOOL, False, 'extend unsat cores with literals that have quantifiers with patterns that contain symbols which are not in the quantifier\'s body'),
('lemma_gc_strategy', UINT, 0, 'lemma garbage collection strategy: 0 - fixed, 1 - geometric, 2 - at restart, 3 - none')
('lemma_gc_strategy', UINT, 0, 'lemma garbage collection strategy: 0 - fixed, 1 - geometric, 2 - at restart, 3 - none'),
('dt_lazy_splits', UINT, 1, 'How lazy datatype splits are performed: 0- eager, 1- lazy for infinite types, 2- lazy')
))

View file

@ -19,6 +19,8 @@ Revision History:
#ifndef THEORY_DATATYPE_PARAMS_H_
#define THEORY_DATATYPE_PARAMS_H_
#include "smt/params/smt_params_helper.hpp"
struct theory_datatype_params {
unsigned m_dt_lazy_splits;
@ -26,11 +28,10 @@ struct theory_datatype_params {
m_dt_lazy_splits(1) {
}
#if 0
void register_params(ini_params & p) {
p.register_unsigned_param("dt_lazy_splits", m_dt_lazy_splits, "How lazy datatype splits are performed: 0- eager, 1- lazy for infinite types, 2- lazy");
void updt_params(params_ref const & _p) {
smt_params_helper p(_p);
m_dt_lazy_splits = p.dt_lazy_splits();
}
#endif
void display(std::ostream & out) const { out << "m_dt_lazy_splits=" << m_dt_lazy_splits << std::endl; }
};

View file

@ -1388,7 +1388,7 @@ namespace smt {
// (but don't introduce it if it isn't already in the instance)
expr_ref haystack(ex->get_arg(0), m), needle(ex->get_arg(1), m), startIdx(ex->get_arg(2), m);
expr_ref zeroAst(mk_int(0), m);
// (H contains N) <==> (H indexof N, i) >= 0
// (H contains N) <==> (H indexof N, 0) >= 0
expr_ref premise(u.str.mk_contains(haystack, needle), m);
ctx.internalize(premise, false);
expr_ref conclusion(m_autil.mk_ge(ex, zeroAst), m);
@ -1482,14 +1482,23 @@ namespace smt {
{
// heuristic: integrate with str.contains information
// (but don't introduce it if it isn't already in the instance)
// (H contains N) <==> (H indexof N, i) >= 0
// (0 <= i < len(H)) ==> (H contains N) <==> (H indexof N, i) >= 0
expr_ref precondition1(m_autil.mk_gt(i, minus_one), m);
//expr_ref precondition2(m_autil.mk_lt(i, mk_strlen(H)), m);
expr_ref precondition2(m.mk_not(m_autil.mk_ge(m_autil.mk_add(i, m_autil.mk_mul(minus_one, mk_strlen(H))), zero)), m);
expr_ref _precondition(m.mk_and(precondition1, precondition2), m);
expr_ref precondition(_precondition);
th_rewriter rw(m);
rw(precondition);
expr_ref premise(u.str.mk_contains(H, N), m);
ctx.internalize(premise, false);
expr_ref conclusion(m_autil.mk_ge(e, zero), m);
expr_ref containsAxiom(ctx.mk_eq_atom(premise, conclusion), m);
SASSERT(containsAxiom);
expr_ref finalAxiom(rewrite_implication(precondition, containsAxiom), m);
SASSERT(finalAxiom);
// we can't assert this during init_search as it breaks an invariant if the instance becomes inconsistent
m_delayed_assertions_todo.push_back(containsAxiom);
m_delayed_assertions_todo.push_back(finalAxiom);
}
}
@ -1829,6 +1838,14 @@ namespace smt {
u.str.is_string(range1, range1val);
u.str.is_string(range2, range2val);
return zstring("[") + range1val + zstring("-") + range2val + zstring("]");
} else if (u.re.is_loop(a_regex)) {
expr * body;
unsigned lo, hi;
u.re.is_loop(a_regex, body, lo, hi);
rational rLo(lo);
rational rHi(hi);
zstring bodyStr = get_std_regex_str(body);
return zstring("(") + bodyStr + zstring("{") + zstring(rLo.to_string().c_str()) + zstring(",") + zstring(rHi.to_string().c_str()) + zstring("})");
} else if (u.re.is_full_seq(a_regex)) {
return zstring("(.*)");
} else if (u.re.is_full_char(a_regex)) {
@ -6644,6 +6661,7 @@ namespace smt {
ENSURE(u.is_re(re));
expr * sub1;
expr * sub2;
unsigned lo, hi;
if (u.re.is_to_re(re, sub1)) {
if (!u.str.is_string(sub1))
throw default_exception("regular expressions must be built from string literals");
@ -6663,6 +6681,9 @@ namespace smt {
} else if (u.re.is_star(re, sub1) || u.re.is_plus(re, sub1)) {
unsigned cx = estimate_regex_complexity(sub1);
return _qmul(2, cx);
} else if (u.re.is_loop(re, sub1, lo, hi)) {
unsigned cx = estimate_regex_complexity(sub1);
return _qadd(lo, cx);
} else if (u.re.is_range(re, sub1, sub2)) {
SASSERT(u.str.is_string(sub1));
SASSERT(u.str.is_string(sub2));
@ -6684,6 +6705,7 @@ namespace smt {
ENSURE(u.is_re(re));
expr * sub1;
expr * sub2;
unsigned lo, hi;
if (u.re.is_to_re(re, sub1)) {
SASSERT(u.str.is_string(sub1));
zstring str;
@ -6702,7 +6724,7 @@ namespace smt {
unsigned cx1 = estimate_regex_complexity_under_complement(sub1);
unsigned cx2 = estimate_regex_complexity_under_complement(sub2);
return _qmul(cx1, cx2);
} else if (u.re.is_star(re, sub1) || u.re.is_plus(re, sub1)) {
} else if (u.re.is_star(re, sub1) || u.re.is_plus(re, sub1) || u.re.is_loop(re, sub1, lo, hi)) {
unsigned cx = estimate_regex_complexity_under_complement(sub1);
return _qmul(2, cx);
} else if (u.re.is_range(re, sub1, sub2)) {
@ -6736,6 +6758,7 @@ namespace smt {
bool theory_str::check_regex_length_linearity_helper(expr * re, bool already_star) {
expr * sub1;
expr * sub2;
unsigned lo, hi;
if (u.re.is_to_re(re)) {
return true;
} else if (u.re.is_concat(re, sub1, sub2)) {
@ -6757,6 +6780,8 @@ namespace smt {
} else if (u.re.is_complement(re)) {
// TODO can we do better?
return false;
} else if (u.re.is_loop(re, sub1, lo, hi)) {
return check_regex_length_linearity_helper(sub1, already_star);
} else {
TRACE("str", tout << "WARNING: unknown regex term " << mk_pp(re, get_manager()) << std::endl;);
UNREACHABLE(); return false;
@ -6767,6 +6792,7 @@ namespace smt {
void theory_str::check_subterm_lengths(expr * re, integer_set & lens) {
expr * sub1;
expr * sub2;
unsigned lo, hi;
if (u.re.is_to_re(re, sub1)) {
SASSERT(u.str.is_string(sub1));
zstring str;
@ -6821,6 +6847,14 @@ namespace smt {
lens.reset();
} else if (u.re.is_complement(re)) {
lens.reset();
} else if (u.re.is_loop(re, sub1, lo, hi)) {
integer_set lens_1;
check_subterm_lengths(sub1, lens_1);
for (unsigned i = lo; i <= hi; ++i) {
for (auto j : lens_1) {
lens.insert(i * j);
}
}
} else {
TRACE("str", tout << "WARNING: unknown regex term " << mk_pp(re, get_manager()) << std::endl;);
lens.reset();
@ -6842,6 +6876,7 @@ namespace smt {
ast_manager & m = get_manager();
expr * sub1;
expr * sub2;
unsigned lo, hi;
if (u.re.is_to_re(re, sub1)) {
if (!u.str.is_string(sub1))
throw default_exception("regular expressions must be built from string literals");
@ -6911,6 +6946,22 @@ namespace smt {
expr_ref retval(ctx.mk_eq_atom(lenVar, m_autil.mk_add_simplify(sum_terms)), m);
return retval;
}
} else if (u.re.is_loop(re, sub1, lo, hi)) {
expr * v1 = mk_int_var("rlen");
freeVariables.push_back(v1);
expr_ref r1 = infer_all_regex_lengths(v1, sub1, freeVariables);
expr_ref_vector v1_choices(m);
for (unsigned i = lo; i <= hi; ++i) {
rational rI(i);
expr_ref v1_i(ctx.mk_eq_atom(lenVar, m_autil.mk_mul(m_autil.mk_numeral(rI, true), v1)), m);
v1_choices.push_back(v1_i);
}
expr_ref_vector finalResult(m);
finalResult.push_back(r1);
finalResult.push_back(mk_or(v1_choices));
expr_ref retval(mk_and(finalResult), m);
SASSERT(retval);
return retval;
} else if (u.re.is_range(re, sub1, sub2)) {
SASSERT(u.str.is_string(sub1));
SASSERT(u.str.is_string(sub2));