mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 18:31:49 +00:00
n/a
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
2f5f546990
commit
d22a0d04ed
|
@ -707,6 +707,10 @@ public:
|
|||
func_decl * get_decl() const { return m_decl; }
|
||||
family_id get_family_id() const { return get_decl()->get_family_id(); }
|
||||
decl_kind get_decl_kind() const { return get_decl()->get_decl_kind(); }
|
||||
symbol const& get_name() const { return get_decl()->get_name(); }
|
||||
unsigned get_num_parameters() const { return get_decl()->get_num_parameters(); }
|
||||
parameter const& get_parameter(unsigned idx) const { return get_decl()->get_parameter(idx); }
|
||||
parameter const* get_parameters() const { return get_decl()->get_parameters(); }
|
||||
bool is_app_of(family_id fid, decl_kind k) const { return get_family_id() == fid && get_decl_kind() == k; }
|
||||
unsigned get_num_args() const { return m_num_args; }
|
||||
expr * get_arg(unsigned idx) const { SASSERT(idx < m_num_args); return m_args[idx]; }
|
||||
|
|
|
@ -23,7 +23,7 @@ Revision History:
|
|||
#include "ast/ast_pp.h"
|
||||
#include "util/scoped_ptr_vector.h"
|
||||
|
||||
#define DEBUG(x) TRACE("recfun", tout << x << '\n';)
|
||||
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
|
||||
#define VALIDATE_PARAM(m, _pred_) if (!(_pred_)) m.raise_exception("invalid parameter to recfun " #_pred_);
|
||||
|
||||
namespace recfun {
|
||||
|
@ -42,18 +42,18 @@ namespace recfun {
|
|||
sort_ref_vector const & arg_sorts,
|
||||
unsigned num_guards, expr ** guards, expr* rhs)
|
||||
: m_pred(m, fid, name, arg_sorts), m_guards(m), m_rhs(expr_ref(rhs,m)), m_def(d) {
|
||||
for (unsigned i=0; i<num_guards; ++i) {
|
||||
m_guards.push_back(expr_ref(guards[i], m));
|
||||
for (unsigned i = 0; i < num_guards; ++i) {
|
||||
m_guards.push_back(guards[i]);
|
||||
}
|
||||
}
|
||||
|
||||
def::def(ast_manager &m, family_id fid, symbol const & s,
|
||||
unsigned arity, sort *const * domain, sort* range)
|
||||
: m_manager(m), m_name(s),
|
||||
unsigned arity, sort* const * domain, sort* range)
|
||||
: m(m), m_name(s),
|
||||
m_domain(m), m_range(range, m), m_vars(m), m_cases(),
|
||||
m_decl(m), m_fid(fid), m_macro(false)
|
||||
{
|
||||
for (unsigned i=0; i < arity; ++i)
|
||||
for (unsigned i = 0; i < arity; ++i)
|
||||
m_domain.push_back(domain[i]);
|
||||
|
||||
SASSERT(arity == get_arity());
|
||||
|
@ -69,8 +69,8 @@ namespace recfun {
|
|||
ite_find_p(ast_manager & m) : m(m) {}
|
||||
virtual bool operator()(expr * e) { return m.is_ite(e); }
|
||||
};
|
||||
ite_find_p p(m());
|
||||
check_pred cp(p, m());
|
||||
ite_find_p p(m);
|
||||
check_pred cp(p, m);
|
||||
return cp(e);
|
||||
}
|
||||
|
||||
|
@ -108,8 +108,10 @@ namespace recfun {
|
|||
ite_lst const * to_split; // `ite` terms to make a choice on
|
||||
unfold_lst const * to_unfold; // terms yet to unfold
|
||||
|
||||
branch(choice_lst const * path, ite_lst const * to_split, unfold_lst const * to_unfold) : path(path), to_split(to_split), to_unfold(to_unfold) {}
|
||||
branch(branch const & from) : path(from.path), to_split(from.to_split), to_unfold(from.to_unfold) {}
|
||||
branch(choice_lst const * path, ite_lst const * to_split, unfold_lst const * to_unfold) :
|
||||
path(path), to_split(to_split), to_unfold(to_unfold) {}
|
||||
branch(branch const & from) :
|
||||
path(from.path), to_split(from.to_split), to_unfold(from.to_unfold) {}
|
||||
};
|
||||
|
||||
// state for computing cases from the RHS of a functions' definition
|
||||
|
@ -161,14 +163,14 @@ namespace recfun {
|
|||
{
|
||||
for (; choices != nullptr; choices = choices->next) {
|
||||
app * ite = choices->ite;
|
||||
SASSERT(m.is_ite(ite));
|
||||
expr* c = nullptr, *th = nullptr, *el = nullptr;
|
||||
VERIFY(m.is_ite(ite, c, th, el));
|
||||
|
||||
// condition to add to the guard
|
||||
expr * cond0 = ite->get_arg(0);
|
||||
conditions.push_back(choices->sign ? cond0 : m.mk_not(cond0));
|
||||
conditions.push_back(choices->sign ? c : m.mk_not(c));
|
||||
|
||||
// binding to add to the substitution
|
||||
subst.insert(ite, choices->sign ? ite->get_arg(1) : ite->get_arg(2));
|
||||
subst.insert(ite, choices->sign ? th : el);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -183,11 +185,11 @@ namespace recfun {
|
|||
}
|
||||
|
||||
void def::add_case(std::string & name, unsigned n_conditions, expr ** conditions, expr * rhs, bool is_imm) {
|
||||
case_def c(m(), m_fid, this, name, get_domain(), n_conditions, conditions, rhs);
|
||||
case_def c(m, m_fid, this, name, get_domain(), n_conditions, conditions, rhs);
|
||||
c.set_is_immediate(is_imm);
|
||||
DEBUG("add_case " << name << " " << mk_pp(rhs, m())
|
||||
TRACEFN("add_case " << name << " " << mk_pp(rhs, m)
|
||||
<< " :is_imm " << is_imm
|
||||
<< " :guards " << mk_pp_vec(n_conditions, (ast**)conditions, m()));
|
||||
<< " :guards " << mk_pp_vec(n_conditions, (ast**)conditions, m));
|
||||
m_cases.push_back(c);
|
||||
}
|
||||
|
||||
|
@ -197,12 +199,12 @@ namespace recfun {
|
|||
unsigned n_vars, var *const * vars, expr* rhs0)
|
||||
{
|
||||
if (m_cases.size() != 0) {
|
||||
DEBUG("bug: cases for " << m_name << " has cases already");
|
||||
TRACEFN("bug: " << m_name << " has cases already");
|
||||
UNREACHABLE();
|
||||
}
|
||||
SASSERT(n_vars = m_domain.size());
|
||||
|
||||
DEBUG("compute cases " << mk_pp(rhs0, m()));
|
||||
TRACEFN("compute cases " << mk_pp(rhs0, m));
|
||||
|
||||
unsigned case_idx = 0;
|
||||
std::string name;
|
||||
|
@ -211,18 +213,18 @@ namespace recfun {
|
|||
name.append(m_name.bare_str());
|
||||
name.append("_");
|
||||
|
||||
for (unsigned i=0; i<n_vars; ++i)
|
||||
for (unsigned i = 0; i < n_vars; ++i)
|
||||
m_vars.push_back(vars[i]);
|
||||
|
||||
#if 0
|
||||
// simplify `rhs`
|
||||
expr_ref simplified_rhs(m());
|
||||
expr_ref simplified_rhs(m);
|
||||
expr* rhs;
|
||||
th_rw.reset();
|
||||
th_rw(rhs0, simplified_rhs);
|
||||
rhs = simplified_rhs.get();
|
||||
|
||||
DEBUG("simplified into " << mk_pp(rhs, m()));
|
||||
TRACEFN("simplified into " << mk_pp(rhs, m()));
|
||||
#else
|
||||
expr* rhs = rhs0;
|
||||
#endif
|
||||
|
@ -241,14 +243,14 @@ namespace recfun {
|
|||
// rebuilding a `ite`-free RHS on the fly for each path in `rhs`.
|
||||
// Each such `ite`-free term is converted into a case_def and added to definition.
|
||||
|
||||
case_state st(m());
|
||||
case_state st(m);
|
||||
{
|
||||
branch b(nullptr, nullptr, st.mk_unfold_lst(rhs));
|
||||
st.push_branch(b);
|
||||
}
|
||||
|
||||
while (! st.empty()) {
|
||||
DEBUG("main loop iter");
|
||||
TRACEFN("main loop iter");
|
||||
|
||||
branch b = st.pop_branch();
|
||||
|
||||
|
@ -264,15 +266,15 @@ namespace recfun {
|
|||
expr * e = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
if (m().is_ite(e)) {
|
||||
if (m.is_ite(e)) {
|
||||
// need to do a case split on `e`, forking the search space
|
||||
b.to_split = st.cons_ite(to_app(e), b.to_split);
|
||||
} else if (is_app(e)) {
|
||||
}
|
||||
else if (is_app(e)) {
|
||||
// explore arguments
|
||||
app * a = to_app(e);
|
||||
|
||||
for (unsigned i=0; i < a->get_num_args(); ++i)
|
||||
stack.push_back(a->get_arg(i));
|
||||
for (expr * arg : *to_app(e)) {
|
||||
stack.push_back(arg);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -280,7 +282,8 @@ namespace recfun {
|
|||
if (b.to_split != nullptr) {
|
||||
// split one `ite`, which will lead to distinct (sets of) cases
|
||||
app * ite = b.to_split->ite;
|
||||
SASSERT(m().is_ite(ite));
|
||||
expr* c = nullptr, *th = nullptr, *el = nullptr;
|
||||
VERIFY(m.is_ite(ite, c, th, el));
|
||||
|
||||
/* explore both positive choice and negative choice.
|
||||
* each contains a longer path, with `ite` mapping to `true` (resp. `false),
|
||||
|
@ -291,10 +294,11 @@ namespace recfun {
|
|||
|
||||
branch b_pos(st.cons_choice(ite, true, b.path),
|
||||
b.to_split->next,
|
||||
st.cons_unfold(ite->get_arg(0), ite->get_arg(1), b.to_unfold));
|
||||
st.cons_unfold(c, th, b.to_unfold));
|
||||
|
||||
branch b_neg(st.cons_choice(ite, false, b.path),
|
||||
b.to_split->next,
|
||||
st.cons_unfold(ite->get_arg(0), ite->get_arg(2), b.to_unfold));
|
||||
st.cons_unfold(c, el, b.to_unfold));
|
||||
|
||||
st.push_branch(b_neg);
|
||||
st.push_branch(b_pos);
|
||||
|
@ -302,20 +306,20 @@ namespace recfun {
|
|||
else {
|
||||
// leaf of the search tree
|
||||
|
||||
expr_ref_vector conditions_raw(m());
|
||||
expr_substitution subst(m());
|
||||
convert_path(m(), b.path, conditions_raw, subst);
|
||||
expr_ref_vector conditions_raw(m);
|
||||
expr_substitution subst(m);
|
||||
convert_path(m, b.path, conditions_raw, subst);
|
||||
|
||||
// substitute, to get rid of `ite` terms
|
||||
expr_ref case_rhs = replace_subst(th_rw, m(), subst, rhs);
|
||||
expr_ref_vector conditions(m());
|
||||
expr_ref case_rhs = replace_subst(th_rw, m, subst, rhs);
|
||||
expr_ref_vector conditions(m);
|
||||
for (expr * g : conditions_raw) {
|
||||
expr_ref g_subst(replace_subst(th_rw, m(), subst, g), m());
|
||||
expr_ref g_subst(replace_subst(th_rw, m, subst, g), m);
|
||||
conditions.push_back(g_subst);
|
||||
}
|
||||
|
||||
|
||||
unsigned old_name_len = name.size();
|
||||
size_t old_name_len = name.size();
|
||||
{ // TODO: optimize? this does many copies
|
||||
std::ostringstream sout;
|
||||
sout << ((unsigned long) case_idx);
|
||||
|
@ -330,7 +334,7 @@ namespace recfun {
|
|||
}
|
||||
}
|
||||
|
||||
DEBUG("done analysing " << get_name());
|
||||
TRACEFN("done analysing " << get_name());
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -495,4 +499,4 @@ namespace recfun {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,10 +21,10 @@ Revision History:
|
|||
#include "ast/rewriter/th_rewriter.h"
|
||||
|
||||
namespace recfun {
|
||||
class case_def; //<! one possible control path of a function
|
||||
class case_pred; //<! a predicate guarding a given control flow path of a function
|
||||
class util; //<! util for other modules
|
||||
class def; //!< definition of a (recursive) function
|
||||
class case_def; //<! one possible control path of a function
|
||||
class case_pred; //<! a predicate guarding a given control flow path of a function
|
||||
class util; //<! util for other modules
|
||||
class def; //!< definition of a (recursive) function
|
||||
class promise_def; //!< definition to be complete
|
||||
|
||||
enum op_kind {
|
||||
|
@ -33,12 +33,12 @@ namespace recfun {
|
|||
OP_DEPTH_LIMIT, // predicate enforcing some depth limit
|
||||
};
|
||||
|
||||
/*! A predicate `p(t1…tn)`, that, if true, means `f(t1…tn)` is following
|
||||
/*! A predicate `p(t1...tn)`, that, if true, means `f(t1...tn)` is following
|
||||
a given path of its control flow and can be unrolled.
|
||||
|
||||
For example, `fact n := if n<2 then 1 else n * fact(n-1)` would have two cases,
|
||||
and therefore two case predicates `C_fact_0` and `C_fact_1`, where
|
||||
`C_fact_0(t)=true` means `t<2` (first path) and `C_fact_1(t)=true` means `¬(t<2)` (second path).
|
||||
`C_fact_0(t)=true` means `t<2` (first path) and `C_fact_1(t)=true` means `not (t<2)` (second path).
|
||||
*/
|
||||
class case_pred {
|
||||
friend class case_def;
|
||||
|
@ -98,7 +98,7 @@ namespace recfun {
|
|||
friend class promise_def;
|
||||
typedef vector<case_def> cases;
|
||||
|
||||
ast_manager & m_manager;
|
||||
ast_manager & m;
|
||||
symbol m_name; //<! name of function
|
||||
sort_ref_vector m_domain; //<! type of arguments
|
||||
sort_ref m_range; //<! return type
|
||||
|
@ -116,7 +116,6 @@ namespace recfun {
|
|||
void add_case(std::string & name, unsigned n_conds, expr ** conditions, expr* rhs, bool is_imm = false);
|
||||
bool contains_ite(expr* e); // expression contains a test?
|
||||
public:
|
||||
ast_manager & m() const { return m_manager; }
|
||||
symbol const & get_name() const { return m_name; }
|
||||
vars const & get_vars() const { return m_vars; }
|
||||
cases & get_cases() { return m_cases; }
|
||||
|
@ -237,9 +236,9 @@ namespace recfun {
|
|||
|
||||
ast_manager & m() { return m_manager; }
|
||||
th_rewriter & get_th_rewriter() { return m_th_rw; }
|
||||
bool is_case_pred(app * e) const { return is_app_of(e, m_family_id, OP_FUN_CASE_PRED); }
|
||||
bool is_defined(app * e) const { return is_app_of(e, m_family_id, OP_FUN_DEFINED); }
|
||||
bool is_depth_limit(app * e) const { return is_app_of(e, m_family_id, OP_DEPTH_LIMIT); }
|
||||
bool is_case_pred(expr * e) const { return is_app_of(e, m_family_id, OP_FUN_CASE_PRED); }
|
||||
bool is_defined(expr * e) const { return is_app_of(e, m_family_id, OP_FUN_DEFINED); }
|
||||
bool is_depth_limit(expr * e) const { return is_app_of(e, m_family_id, OP_DEPTH_LIMIT); }
|
||||
bool owns_app(app * e) const { return e->get_family_id() == m_family_id; }
|
||||
|
||||
//<! add a function declaration
|
||||
|
|
|
@ -859,6 +859,10 @@ namespace smt {
|
|||
|
||||
void mk_th_axiom(theory_id tid, literal l1, literal l2, literal l3, unsigned num_params = 0, parameter * params = nullptr);
|
||||
|
||||
void mk_th_axiom(theory_id tid, literal_vector const& ls, unsigned num_params = 0, parameter * params = nullptr) {
|
||||
mk_th_axiom(tid, ls.size(), ls.c_ptr(), num_params, params);
|
||||
}
|
||||
|
||||
/*
|
||||
* Provide a hint to the core solver that the specified literals form a "theory case split".
|
||||
* The core solver will enforce the condition that exactly one of these literals can be
|
||||
|
|
|
@ -29,6 +29,7 @@ namespace smt {
|
|||
|
||||
theory_recfun::theory_recfun(ast_manager & m)
|
||||
: theory(m.mk_family_id("recfun")),
|
||||
m(m),
|
||||
m_plugin(*reinterpret_cast<recfun_decl_plugin*>(m.get_plugin(get_family_id()))),
|
||||
m_util(m_plugin.u()),
|
||||
m_trail(*this),
|
||||
|
@ -42,8 +43,8 @@ namespace smt {
|
|||
|
||||
theory_recfun::~theory_recfun() {
|
||||
reset_queues();
|
||||
for (auto & kv : m_guards) {
|
||||
m().dec_ref(kv.m_key);
|
||||
for (expr* g : m_guards) {
|
||||
m.dec_ref(g);
|
||||
}
|
||||
m_guards.reset();
|
||||
}
|
||||
|
@ -61,28 +62,26 @@ namespace smt {
|
|||
}
|
||||
|
||||
bool theory_recfun::internalize_atom(app * atom, bool gate_ctx) {
|
||||
context & ctx = get_context();
|
||||
for (expr * arg : *atom) {
|
||||
ctx.internalize(arg, false);
|
||||
ctx().internalize(arg, false);
|
||||
}
|
||||
if (!ctx.e_internalized(atom)) {
|
||||
ctx.mk_enode(atom, false, true, false);
|
||||
if (!ctx().e_internalized(atom)) {
|
||||
ctx().mk_enode(atom, false, true, false);
|
||||
}
|
||||
if (!ctx.b_internalized(atom)) {
|
||||
bool_var v = ctx.mk_bool_var(atom);
|
||||
ctx.set_var_theory(v, get_id());
|
||||
if (!ctx().b_internalized(atom)) {
|
||||
bool_var v = ctx().mk_bool_var(atom);
|
||||
ctx().set_var_theory(v, get_id());
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool theory_recfun::internalize_term(app * term) {
|
||||
context & ctx = get_context();
|
||||
for (expr* e : *term) {
|
||||
ctx.internalize(e, false);
|
||||
ctx().internalize(e, false);
|
||||
}
|
||||
// the internalization of the arguments may have triggered the internalization of term.
|
||||
if (!ctx.e_internalized(term)) {
|
||||
ctx.mk_enode(term, false, false, true);
|
||||
if (!ctx().e_internalized(term)) {
|
||||
ctx().mk_enode(term, false, false, true);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -108,7 +107,7 @@ namespace smt {
|
|||
void theory_recfun::relevant_eh(app * n) {
|
||||
SASSERT(ctx().relevancy());
|
||||
if (u().is_defined(n)) {
|
||||
TRACEFN("relevant_eh: (defined) " << mk_pp(n, m()));
|
||||
TRACEFN("relevant_eh: (defined) " << mk_pp(n, m));
|
||||
case_expansion e(u(), n);
|
||||
push_case_expand(std::move(e));
|
||||
}
|
||||
|
@ -143,7 +142,7 @@ namespace smt {
|
|||
|
||||
for (literal_vector & c : m_q_clauses) {
|
||||
TRACEFN("add axiom " << pp_lits(ctx(), c));
|
||||
ctx().mk_th_axiom(get_id(), c.size(), c.c_ptr());
|
||||
ctx().mk_th_axiom(get_id(), c);
|
||||
}
|
||||
m_q_clauses.clear();
|
||||
|
||||
|
@ -176,8 +175,8 @@ namespace smt {
|
|||
c.push_back(~mk_literal(dlimit));
|
||||
SASSERT(ctx().get_assignment(c.back()) == l_true);
|
||||
}
|
||||
for (auto& kv : m_guards) {
|
||||
c.push_back(~ mk_literal(kv.m_key));
|
||||
for (expr * g : m_guards) {
|
||||
c.push_back(~ mk_literal(g));
|
||||
}
|
||||
TRACEFN("max-depth limit: add clause " << pp_lits(ctx(), c));
|
||||
SASSERT(std::all_of(c.begin(), c.end(), [&](literal & l) { return ctx().get_assignment(l) == l_false; })); // conflict
|
||||
|
@ -185,18 +184,21 @@ namespace smt {
|
|||
m_q_clauses.push_back(std::move(c));
|
||||
}
|
||||
|
||||
// if `is_true` and `v = C_f_i(t1...tn)`, then body-expand i-th case of `f(t1...tn)`
|
||||
/**
|
||||
* if `is_true` and `v = C_f_i(t1...tn)`,
|
||||
* then body-expand i-th case of `f(t1...tn)`
|
||||
*/
|
||||
void theory_recfun::assign_eh(bool_var v, bool is_true) {
|
||||
expr* e = get_context().bool_var2expr(v);
|
||||
expr* e = ctx().bool_var2expr(v);
|
||||
if (!is_true || !is_app(e)) return;
|
||||
app* a = to_app(e);
|
||||
if (u().is_case_pred(a)) {
|
||||
TRACEFN("assign_case_pred_true "<< mk_pp(e,m()));
|
||||
TRACEFN("assign_case_pred_true "<< mk_pp(e,m));
|
||||
// add to set of local assumptions, for depth-limit purpose
|
||||
SASSERT(!m_guards.contains(e));
|
||||
m_guards.insert(e, empty());
|
||||
m().inc_ref(e);
|
||||
insert_ref_map<theory_recfun,guard_set,ast_manager,expr*> trail_elt(m(), m_guards, e);
|
||||
m_guards.insert(e);
|
||||
m.inc_ref(e);
|
||||
insert_ref_map<theory_recfun,guard_set,ast_manager,expr*> trail_elt(m, m_guards, e);
|
||||
m_trail.push(trail_elt);
|
||||
|
||||
if (m_guards.size() > get_max_depth()) {
|
||||
|
@ -215,18 +217,17 @@ namespace smt {
|
|||
expr_ref theory_recfun::apply_args(recfun::vars const & vars,
|
||||
ptr_vector<expr> const & args,
|
||||
expr * e) {
|
||||
// check that var order is standard
|
||||
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
|
||||
var_subst subst(m(), true);
|
||||
expr_ref new_body(m());
|
||||
SASSERT(is_standard_order(vars));
|
||||
var_subst subst(m, true);
|
||||
expr_ref new_body(m);
|
||||
new_body = subst(e, args.size(), args.c_ptr());
|
||||
ctx().get_rewriter()(new_body); // simplify
|
||||
return new_body;
|
||||
}
|
||||
|
||||
app_ref theory_recfun::apply_pred(recfun::case_pred const & p,
|
||||
ptr_vector<expr> const & args) {
|
||||
return app_ref(u().mk_case_pred(p, args), m());
|
||||
ptr_vector<expr> const & args) {
|
||||
return app_ref(u().mk_case_pred(p, args), m);
|
||||
}
|
||||
|
||||
literal theory_recfun::mk_literal(expr* e) {
|
||||
|
@ -242,47 +243,54 @@ namespace smt {
|
|||
return lit;
|
||||
}
|
||||
|
||||
/**
|
||||
* For functions f(args) that are given as macros f(vs) = rhs
|
||||
*
|
||||
* 1. substitute `e.args` for `vs` into the macro rhs
|
||||
* 2. add unit clause `f(args) = rhs`
|
||||
*/
|
||||
void theory_recfun::assert_macro_axiom(case_expansion & e) {
|
||||
TRACEFN("assert_macro_axiom " << pp_case_expansion(e, m()));
|
||||
SASSERT(e.m_def->is_fun_macro());
|
||||
auto & vars = e.m_def->get_vars();
|
||||
expr_ref lhs(e.m_lhs, m());
|
||||
// substitute `e.args` into the macro RHS
|
||||
expr_ref rhs(apply_args(vars, e.m_args, e.m_def->get_macro_rhs()), m());
|
||||
TRACEFN("macro expansion yields" << mk_pp(rhs,m()));
|
||||
// add unit clause `lhs = rhs`
|
||||
expr_ref lhs(e.m_lhs, m);
|
||||
expr_ref rhs(apply_args(vars, e.m_args, e.m_def->get_macro_rhs()), m);
|
||||
literal lit = mk_eq_lit(lhs, rhs);
|
||||
TRACEFN("assert_macro_axiom: " << pp_lit(ctx(), lit));
|
||||
ctx().mk_th_axiom(get_id(), 1, &lit);
|
||||
TRACEFN("case expansion " << pp_case_expansion(e, m) << "\n" <<
|
||||
"macro expansion yields " << mk_pp(rhs,m) << "\n" <<
|
||||
"literal " << pp_lit(ctx(), lit));
|
||||
}
|
||||
|
||||
/**
|
||||
* Add case axioms for every case expansion path.
|
||||
*
|
||||
* assert `p(args) <=> And(guards)` (with CNF on the fly)
|
||||
*
|
||||
* also body-expand paths that do not depend on any defined fun
|
||||
*/
|
||||
void theory_recfun::assert_case_axioms(case_expansion & e) {
|
||||
TRACEFN("assert_case_axioms "<< pp_case_expansion(e,m())
|
||||
TRACEFN("assert_case_axioms "<< pp_case_expansion(e,m)
|
||||
<< " with " << e.m_def->get_cases().size() << " cases");
|
||||
SASSERT(e.m_def->is_fun_defined());
|
||||
// add case-axioms for all case-paths
|
||||
auto & vars = e.m_def->get_vars();
|
||||
for (recfun::case_def const & c : e.m_def->get_cases()) {
|
||||
// applied predicate to `args`
|
||||
literal_vector guards;
|
||||
for (auto & g : c.get_guards()) {
|
||||
expr_ref guard = apply_args(vars, e.m_args, g);
|
||||
guards.push_back(~mk_literal(guard));
|
||||
}
|
||||
app_ref pred_applied = apply_pred(c.get_pred(), e.m_args);
|
||||
SASSERT(u().owns_app(pred_applied));
|
||||
literal concl = mk_literal(pred_applied);
|
||||
|
||||
// assert `p(args) <=> And(guards)` (with CNF on the fly)
|
||||
|
||||
for (literal g : guards) {
|
||||
literal c[2] = {~ concl, ~g};
|
||||
literal_vector guards;
|
||||
guards.push_back(concl);
|
||||
for (auto & g : c.get_guards()) {
|
||||
expr_ref ga = apply_args(vars, e.m_args, g);
|
||||
literal guard = mk_literal(ga);
|
||||
guards.push_back(~guard);
|
||||
literal c[2] = {~concl, guard};
|
||||
ctx().mk_th_axiom(get_id(), 2, c);
|
||||
}
|
||||
guards.push_back(concl);
|
||||
ctx().mk_th_axiom(get_id(), guards.size(), guards.c_ptr());
|
||||
ctx().mk_th_axiom(get_id(), guards);
|
||||
|
||||
// also body-expand paths that do not depend on any defined fun
|
||||
if (c.is_immediate()) {
|
||||
body_expansion be(c, e.m_args);
|
||||
assert_body_axiom(be);
|
||||
|
@ -290,20 +298,21 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* For a guarded definition guards => f(vars) = rhs
|
||||
* and occurrence f(args)
|
||||
*
|
||||
* substitute `args` for `vars` in guards, and rhs
|
||||
* add axiom guards[args/vars] => f(args) = rhs[args/vars]
|
||||
*
|
||||
*/
|
||||
void theory_recfun::assert_body_axiom(body_expansion & e) {
|
||||
TRACEFN("assert_body_axioms "<< pp_body_expansion(e,m()));
|
||||
recfun::def & d = *e.m_cdef->get_def();
|
||||
auto & vars = d.get_vars();
|
||||
auto & args = e.m_args;
|
||||
// check that var order is standard
|
||||
SASSERT(vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0);
|
||||
expr_ref lhs(u().mk_fun_defined(d, args), m());
|
||||
// substitute `e.args` into the RHS of this particular case
|
||||
SASSERT(is_standard_order(vars));
|
||||
expr_ref lhs(u().mk_fun_defined(d, args), m);
|
||||
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
|
||||
// substitute `e.args` into the guard of this particular case, to make
|
||||
// the `condition` part of the clause `conds => lhs=rhs`
|
||||
|
||||
// now build the axiom `conds => lhs = rhs`
|
||||
|
||||
literal_vector clause;
|
||||
for (auto & g : e.m_cdef->get_guards()) {
|
||||
|
@ -311,8 +320,9 @@ namespace smt {
|
|||
clause.push_back(~mk_literal(guard));
|
||||
}
|
||||
clause.push_back(mk_eq_lit(lhs, rhs));
|
||||
TRACEFN("assert_body_axiom " << pp_lits(ctx(), clause));
|
||||
ctx().mk_th_axiom(get_id(), clause.size(), clause.c_ptr());
|
||||
ctx().mk_th_axiom(get_id(), clause);
|
||||
TRACEFN("body " << pp_body_expansion(e,m));
|
||||
TRACEFN("clause " << pp_lits(ctx(), clause));
|
||||
}
|
||||
|
||||
final_check_status theory_recfun::final_check_eh() {
|
||||
|
@ -321,15 +331,14 @@ namespace smt {
|
|||
|
||||
void theory_recfun::add_theory_assumptions(expr_ref_vector & assumptions) {
|
||||
app_ref dlimit = m_util.mk_depth_limit_pred(get_max_depth());
|
||||
TRACEFN("add_theory_assumption " << mk_pp(dlimit.get(), m()));
|
||||
TRACEFN("add_theory_assumption " << mk_pp(dlimit.get(), m));
|
||||
assumptions.push_back(dlimit);
|
||||
}
|
||||
|
||||
|
||||
// if `dlimit` occurs in unsat core, return "unknown"
|
||||
lbool theory_recfun::validate_unsat_core(expr_ref_vector & unsat_core) {
|
||||
for (auto & e : unsat_core) {
|
||||
if (is_app(e) && m_util.is_depth_limit(to_app(e)))
|
||||
if (u().is_depth_limit(e))
|
||||
return l_undef;
|
||||
}
|
||||
return l_false;
|
||||
|
|
|
@ -33,7 +33,7 @@ namespace smt {
|
|||
stats() { reset(); }
|
||||
};
|
||||
|
||||
// one case-expansion of `f(t1…tn)`
|
||||
// one case-expansion of `f(t1...tn)`
|
||||
struct case_expansion {
|
||||
expr * m_lhs; // the term to expand
|
||||
recfun_def * m_def;
|
||||
|
@ -64,18 +64,16 @@ namespace smt {
|
|||
|
||||
friend std::ostream& operator<<(std::ostream&, pp_case_expansion const &);
|
||||
|
||||
// one body-expansion of `f(t1…tn)` using a `C_f_i(t1…tn)`
|
||||
// one body-expansion of `f(t1...tn)` using a `C_f_i(t1...tn)`
|
||||
struct body_expansion {
|
||||
recfun_case_def const * m_cdef;
|
||||
ptr_vector<expr> m_args;
|
||||
|
||||
body_expansion(recfun_util& u, app * n) : m_cdef(0), m_args() {
|
||||
SASSERT(u.is_case_pred(n));
|
||||
func_decl * d = n->get_decl();
|
||||
const symbol& name = d->get_name();
|
||||
m_cdef = &u.get_case_def(name);
|
||||
for (unsigned i = 0; i < n->get_num_args(); ++i)
|
||||
m_args.push_back(n->get_arg(i));
|
||||
m_cdef = &u.get_case_def(n->get_name());
|
||||
for (expr * arg : *n)
|
||||
m_args.push_back(arg);
|
||||
}
|
||||
body_expansion(recfun_case_def const & d, ptr_vector<expr> & args) : m_cdef(&d), m_args(args) {}
|
||||
body_expansion(body_expansion const & from): m_cdef(from.m_cdef), m_args(from.m_args) {}
|
||||
|
@ -90,11 +88,11 @@ namespace smt {
|
|||
|
||||
friend std::ostream& operator<<(std::ostream&, pp_body_expansion const &);
|
||||
|
||||
struct empty{};
|
||||
|
||||
typedef trail_stack<theory_recfun> th_trail_stack;
|
||||
typedef obj_map<expr, empty> guard_set;
|
||||
typedef obj_hashtable<expr> guard_set;
|
||||
|
||||
ast_manager& m;
|
||||
recfun_decl_plugin& m_plugin;
|
||||
recfun_util& m_util;
|
||||
stats m_stats;
|
||||
|
@ -107,7 +105,6 @@ namespace smt {
|
|||
vector<literal_vector> m_q_clauses;
|
||||
|
||||
recfun_util & u() const { return m_util; }
|
||||
ast_manager & m() { return get_manager(); }
|
||||
bool is_defined(app * f) const { return u().is_defined(f); }
|
||||
bool is_case_pred(app * f) const { return u().is_case_pred(f); }
|
||||
|
||||
|
@ -123,6 +120,7 @@ namespace smt {
|
|||
void max_depth_conflict(void);
|
||||
literal mk_literal(expr* e);
|
||||
literal mk_eq_lit(expr* l, expr* r);
|
||||
bool is_standard_order(recfun::vars const& vars) const { return vars.size() == 0 || vars[vars.size()-1]->get_idx() == 0; }
|
||||
protected:
|
||||
void push_case_expand(case_expansion&& e) { m_q_case_expand.push_back(e); }
|
||||
void push_body_expand(body_expansion&& e) { m_q_body_expand.push_back(e); }
|
||||
|
|
Loading…
Reference in a new issue