3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

Merge pull request #362 from NikolajBjorner/master

Combined updates to seq, add openbsd cases to build script.
This commit is contained in:
Nikolaj Bjorner 2015-12-09 07:30:51 -08:00
commit d11022cf2d
10 changed files with 907 additions and 185 deletions

View file

@ -65,6 +65,7 @@ IS_WINDOWS=False
IS_LINUX=False
IS_OSX=False
IS_FREEBSD=False
IS_OPENBSD=False
VERBOSE=True
DEBUG_MODE=False
SHOW_CPPS = True
@ -126,6 +127,9 @@ def is_linux():
def is_freebsd():
return IS_FREEBSD
def is_openbsd():
return IS_OPENBSD
def is_osx():
return IS_OSX
@ -582,6 +586,8 @@ elif os.name == 'posix':
IS_LINUX=True
elif os.uname()[0] == 'FreeBSD':
IS_FREEBSD=True
elif os.uname()[0] == 'OpenBSD':
IS_OPENBSD=True
def display_help(exit_code):
print("mk_make.py: Z3 Makefile generator\n")
@ -1656,6 +1662,8 @@ class JavaDLLComponent(Component):
t = t.replace('PLATFORM', 'linux')
elif IS_FREEBSD:
t = t.replace('PLATFORM', 'freebsd')
elif IS_OPENBSD:
t = t.replace('PLATFORM', 'openbsd')
else:
t = t.replace('PLATFORM', 'win32')
out.write(t)

View file

@ -21,6 +21,7 @@ Notes:
#include"arith_decl_plugin.h"
#include"ast_pp.h"
#include"ast_util.h"
#include"uint_set.h"
br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
@ -41,14 +42,15 @@ br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * con
case OP_RE_LOOP:
case OP_RE_EMPTY_SET:
case OP_RE_FULL_SET:
case OP_RE_EMPTY_SEQ:
case OP_RE_OF_PRED:
case _OP_SEQ_SKOLEM:
return BR_FAILED;
// string specific operators.
case OP_STRING_CONST:
return BR_FAILED;
case OP_SEQ_CONCAT:
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
SASSERT(num_args == 2);
return mk_seq_concat(args[0], args[1], result);
case OP_SEQ_LENGTH:
@ -63,26 +65,31 @@ br_status seq_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * con
case OP_SEQ_AT:
SASSERT(num_args == 2);
return mk_str_at(args[0], args[1], result);
case OP_STRING_STRIDOF:
SASSERT(num_args == 3);
return mk_str_stridof(args[0], args[1], args[2], result);
case OP_STRING_STRREPL:
SASSERT(num_args == 3);
return mk_str_strrepl(args[0], args[1], args[2], result);
case OP_SEQ_PREFIX:
SASSERT(num_args == 2);
return mk_seq_prefix(args[0], args[1], result);
case OP_SEQ_SUFFIX:
SASSERT(num_args == 2);
return mk_seq_suffix(args[0], args[1], result);
case OP_SEQ_TO_RE:
return BR_FAILED;
case OP_SEQ_IN_RE:
return BR_FAILED;
case OP_STRING_CONST:
return BR_FAILED;
case OP_STRING_STRIDOF:
SASSERT(num_args == 3);
return mk_str_stridof(args[0], args[1], args[2], result);
case OP_STRING_STRREPL:
SASSERT(num_args == 3);
return mk_str_strrepl(args[0], args[1], args[2], result);
case OP_STRING_ITOS:
SASSERT(num_args == 1);
return mk_str_itos(args[0], result);
case OP_STRING_STOI:
SASSERT(num_args == 1);
return mk_str_stoi(args[0], result);
case OP_SEQ_TO_RE:
case OP_SEQ_IN_RE:
case OP_REGEXP_LOOP:
return BR_FAILED;
case _OP_STRING_CONCAT:
@ -141,7 +148,7 @@ br_status seq_rewriter::mk_str_length(expr* a, expr_ref& result) {
m_es.reset();
m_util.str.get_concat(a, m_es);
size_t len = 0;
size_t j = 0;
unsigned j = 0;
for (unsigned i = 0; i < m_es.size(); ++i) {
if (m_util.str.is_string(m_es[i], b)) {
len += b.length();
@ -155,7 +162,7 @@ br_status seq_rewriter::mk_str_length(expr* a, expr_ref& result) {
result = m_autil.mk_numeral(rational(len, rational::ui64()), true);
return BR_DONE;
}
if (j != m_es.size()) {
if (j != m_es.size() || j != 1) {
expr_ref_vector es(m());
for (unsigned i = 0; i < j; ++i) {
es.push_back(m_util.str.mk_length(m_es[i]));
@ -509,3 +516,217 @@ br_status seq_rewriter::mk_re_plus(expr* a, expr_ref& result) {
br_status seq_rewriter::mk_re_opt(expr* a, expr_ref& result) {
return BR_FAILED;
}
br_status seq_rewriter::mk_eq_core(expr * l, expr * r, expr_ref & result) {
expr_ref_vector lhs(m()), rhs(m()), res(m());
if (!reduce_eq(l, r, lhs, rhs)) {
result = m().mk_false();
return BR_DONE;
}
if (lhs.size() == 1 && lhs[0].get() == l && rhs[0].get() == r) {
return BR_FAILED;
}
for (unsigned i = 0; i < lhs.size(); ++i) {
res.push_back(m().mk_eq(lhs[i].get(), rhs[i].get()));
}
result = mk_and(res);
return BR_REWRITE3;
}
bool seq_rewriter::reduce_eq(expr* l, expr* r, expr_ref_vector& lhs, expr_ref_vector& rhs) {
expr* a, *b;
bool change = false;
expr_ref_vector trail(m());
m_lhs.reset();
m_rhs.reset();
m_util.str.get_concat(l, m_lhs);
m_util.str.get_concat(r, m_rhs);
// solve from back
while (!m_lhs.empty() && !m_rhs.empty()) {
if (m_lhs.back() == m_rhs.back()) {
m_lhs.pop_back();
m_rhs.pop_back();
}
else if(m_util.str.is_unit(m_lhs.back(), a) &&
m_util.str.is_unit(m_rhs.back(), b)) {
lhs.push_back(a);
rhs.push_back(b);
m_lhs.pop_back();
m_rhs.pop_back();
}
else if (!m_rhs.empty() && m_util.str.is_empty(m_rhs.back())) {
m_rhs.pop_back();
}
else if (!m_lhs.empty() && m_util.str.is_empty(m_lhs.back())) {
m_lhs.pop_back();
}
else {
break;
}
change = true;
}
// solve from front
unsigned head1 = 0, head2 = 0;
while (head1 < m_lhs.size() && head2 < m_rhs.size()) {
if (m_lhs[head1] == m_rhs[head2]) {
++head1;
++head2;
}
else if(m_util.str.is_unit(m_lhs[head1], a) &&
m_util.str.is_unit(m_rhs[head2], b)) {
lhs.push_back(a);
rhs.push_back(b);
++head1;
++head2;
}
else if (head1 < m_lhs.size() && m_util.str.is_empty(m_lhs[head1])) {
++head1;
}
else if (head2 < m_rhs.size() && m_util.str.is_empty(m_rhs[head2])) {
++head2;
}
else {
break;
}
change = true;
}
// reduce strings
std::string s1, s2;
while (head1 < m_lhs.size() &&
head2 < m_rhs.size() &&
m_util.str.is_string(m_lhs[head1], s1) &&
m_util.str.is_string(m_rhs[head2], s2)) {
size_t l = std::min(s1.length(), s2.length());
for (size_t i = 0; i < l; ++i) {
if (s1[i] != s2[i]) {
return false;
}
}
if (l == s1.length()) {
++head1;
}
else {
m_lhs[head1] = m_util.str.mk_string(std::string(s1.c_str()+l,s1.length()-l));
trail.push_back(m_lhs[head1]);
}
if (l == s2.length()) {
++head2;
}
else {
m_rhs[head2] = m_util.str.mk_string(std::string(s2.c_str()+l,s2.length()-l));
trail.push_back(m_rhs[head2]);
}
change = true;
}
while (head1 < m_lhs.size() &&
head2 < m_rhs.size() &&
m_util.str.is_string(m_lhs.back(), s1) &&
m_util.str.is_string(m_rhs.back(), s2)) {
size_t l = std::min(s1.length(), s2.length());
for (size_t i = 0; i < l; ++i) {
if (s1[s1.length()-i-1] != s2[s2.length()-i-1]) {
return false;
}
}
m_lhs.pop_back();
m_rhs.pop_back();
if (l < s1.length()) {
m_lhs.push_back(m_util.str.mk_string(std::string(s1.c_str(),s1.length()-l)));
trail.push_back(m_lhs.back());
}
if (l < s2.length()) {
m_rhs.push_back(m_util.str.mk_string(std::string(s2.c_str(),s2.length()-l)));
trail.push_back(m_rhs.back());
}
change = true;
}
bool is_sat;
if (!change) {
if (is_subsequence(m_lhs.size(), m_lhs.c_ptr(), m_rhs.size(), m_rhs.c_ptr(), lhs, rhs, is_sat)) {
return is_sat;
}
lhs.push_back(l);
rhs.push_back(r);
}
else if (head1 == m_lhs.size() && head2 == m_rhs.size()) {
// skip
}
else if (head1 == m_lhs.size()) {
return set_empty(m_rhs.size() - head2, m_rhs.c_ptr() + head2, lhs, rhs);
}
else if (head2 == m_rhs.size()) {
return set_empty(m_lhs.size() - head1, m_lhs.c_ptr() + head1, lhs, rhs);
}
else { // could solve if either side is fixed size.
SASSERT(head1 < m_lhs.size() && head2 < m_rhs.size());
if (is_subsequence(m_lhs.size() - head1, m_lhs.c_ptr() + head1,
m_rhs.size() - head2, m_rhs.c_ptr() + head2, lhs, rhs, is_sat)) {
return is_sat;
}
lhs.push_back(m_util.str.mk_concat(m_lhs.size() - head1, m_lhs.c_ptr() + head1));
rhs.push_back(m_util.str.mk_concat(m_rhs.size() - head2, m_rhs.c_ptr() + head2));
}
return true;
}
bool seq_rewriter::set_empty(unsigned sz, expr* const* es, expr_ref_vector& lhs, expr_ref_vector& rhs) {
std::string s;
for (unsigned i = 0; i < sz; ++i) {
if (m_util.str.is_unit(es[i])) {
return false;
}
if (m_util.str.is_empty(es[i])) {
continue;
}
if (m_util.str.is_string(es[i], s)) {
SASSERT(s.length() > 0);
return false;
}
lhs.push_back(m_util.str.mk_empty(m().get_sort(es[i])));
rhs.push_back(es[i]);
}
return true;
}
bool seq_rewriter::is_subsequence(unsigned szl, expr* const* l, unsigned szr, expr* const* r,
expr_ref_vector& lhs, expr_ref_vector& rhs, bool& is_sat) {
is_sat = true;
if (szl == szr) return false;
if (szr < szl) {
std::swap(szl, szr);
std::swap(l, r);
}
uint_set rpos;
for (unsigned i = 0; i < szl; ++i) {
bool found = false;
unsigned j = 0;
for (; !found && j < szr; ++j) {
found = !rpos.contains(j) && l[i] == r[j];
}
if (!found) {
return false;
}
SASSERT(0 < j && j <= szr);
rpos.insert(j-1);
}
// if we reach here, then every element of l is contained in r in some position.
ptr_vector<expr> rs;
for (unsigned j = 0; j < szr; ++j) {
if (rpos.contains(j)) {
rs.push_back(r[j]);
}
else if (!set_empty(1, r + j, lhs, rhs)) {
is_sat = false;
return true;
}
}
SASSERT(szl == rs.size());
lhs.push_back(m_util.str.mk_concat(szl, l));
rhs.push_back(m_util.str.mk_concat(szl, rs.c_ptr()));
return true;
}

View file

@ -32,7 +32,7 @@ Notes:
class seq_rewriter {
seq_util m_util;
arith_util m_autil;
ptr_vector<expr> m_es;
ptr_vector<expr> m_es, m_lhs, m_rhs;
br_status mk_seq_concat(expr* a, expr* b, expr_ref& result);
br_status mk_str_length(expr* a, expr_ref& result);
@ -53,6 +53,9 @@ class seq_rewriter {
br_status mk_re_plus(expr* a, expr_ref& result);
br_status mk_re_opt(expr* a, expr_ref& result);
bool set_empty(unsigned sz, expr* const* es, expr_ref_vector& lhs, expr_ref_vector& rhs);
bool is_subsequence(unsigned n, expr* const* l, unsigned m, expr* const* r,
expr_ref_vector& lhs, expr_ref_vector& rhs, bool& is_sat);
public:
seq_rewriter(ast_manager & m, params_ref const & p = params_ref()):
m_util(m), m_autil(m) {
@ -64,6 +67,9 @@ public:
static void get_param_descrs(param_descrs & r) {}
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_eq_core(expr * lhs, expr * rhs, expr_ref & result);
bool reduce_eq(expr* l, expr* r, expr_ref_vector& lhs, expr_ref_vector& rhs);
};

View file

@ -177,6 +177,8 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
st = m_f_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_ar_rw.get_fid())
st = m_ar_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_seq_rw.get_fid())
st = m_seq_rw.mk_eq_core(args[0], args[1], result);
if (st != BR_FAILED)
return st;

View file

@ -47,7 +47,7 @@ bool seq_decl_plugin::match(ptr_vector<sort>& binding, sort* s, sort* sP) {
if (is_sort_param(sP, i)) {
if (binding.size() <= i) binding.resize(i+1);
if (binding[i] && (binding[i] != s)) return false;
TRACE("seq", tout << "setting binding @ " << i << " to " << mk_pp(s, m) << "\n";);
TRACE("seq_verbose", tout << "setting binding @ " << i << " to " << mk_pp(s, m) << "\n";);
binding[i] = s;
return true;
}
@ -77,7 +77,7 @@ bool seq_decl_plugin::match(ptr_vector<sort>& binding, sort* s, sort* sP) {
void seq_decl_plugin::match_left_assoc(psig& sig, unsigned dsz, sort *const* dom, sort* range, sort_ref& range_out) {
ptr_vector<sort> binding;
ast_manager& m = *m_manager;
TRACE("seq",
TRACE("seq_verbose",
tout << sig.m_name << ": ";
for (unsigned i = 0; i < dsz; ++i) tout << mk_pp(dom[i], m) << " ";
if (range) tout << " range: " << mk_pp(range, m);
@ -102,7 +102,7 @@ void seq_decl_plugin::match_left_assoc(psig& sig, unsigned dsz, sort *const* dom
m.raise_exception(strm.str().c_str());
}
range_out = apply_binding(binding, sig.m_range);
TRACE("seq", tout << mk_pp(range_out, m) << "\n";);
TRACE("seq_verbose", tout << mk_pp(range_out, m) << "\n";);
}
void seq_decl_plugin::match(psig& sig, unsigned dsz, sort *const* dom, sort* range, sort_ref& range_out) {
@ -186,28 +186,27 @@ void seq_decl_plugin::init() {
sort* seqAintT[2] = { seqA, intT };
m_sigs.resize(LAST_SEQ_OP);
// TBD: have (par ..) construct and load parameterized signature from premable.
m_sigs[OP_SEQ_UNIT] = alloc(psig, m, "seq.unit", 1, 1, &A, seqA);
m_sigs[OP_SEQ_EMPTY] = alloc(psig, m, "seq.empty", 1, 0, 0, seqA);
m_sigs[OP_SEQ_CONCAT] = alloc(psig, m, "seq.++", 1, 2, seqAseqA, seqA);
m_sigs[OP_SEQ_UNIT] = alloc(psig, m, "seq.unit", 1, 1, &A, seqA);
m_sigs[OP_SEQ_EMPTY] = alloc(psig, m, "seq.empty", 1, 0, 0, seqA);
m_sigs[OP_SEQ_CONCAT] = alloc(psig, m, "seq.++", 1, 2, seqAseqA, seqA);
m_sigs[OP_SEQ_PREFIX] = alloc(psig, m, "seq.prefixof", 1, 2, seqAseqA, boolT);
m_sigs[OP_SEQ_SUFFIX] = alloc(psig, m, "seq.suffixof", 1, 2, seqAseqA, boolT);
m_sigs[OP_SEQ_CONTAINS] = alloc(psig, m, "seq.contains", 1, 2, seqAseqA, boolT);
m_sigs[OP_SEQ_EXTRACT] = alloc(psig, m, "seq.extract", 1, 3, seqAint2T, seqA);
m_sigs[OP_SEQ_AT] = alloc(psig, m, "seq.at", 1, 2, seqAintT, seqA);
m_sigs[OP_SEQ_LENGTH] = alloc(psig, m, "seq-length", 1, 1, &seqA, intT);
m_sigs[OP_RE_PLUS] = alloc(psig, m, "re.+", 1, 1, &reA, reA);
m_sigs[OP_RE_STAR] = alloc(psig, m, "re.*", 1, 1, &reA, reA);
m_sigs[OP_RE_OPTION] = alloc(psig, m, "re.opt", 1, 1, &reA, reA);
m_sigs[OP_RE_RANGE] = alloc(psig, m, "re.range", 1, 2, seqAseqA, reA);
m_sigs[OP_RE_CONCAT] = alloc(psig, m, "re.++", 1, 2, reAreA, reA);
m_sigs[OP_RE_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
m_sigs[OP_RE_INTERSECT] = alloc(psig, m, "re.inter", 1, 2, reAreA, reA);
m_sigs[OP_SEQ_EXTRACT] = alloc(psig, m, "seq.extract", 1, 3, seqAint2T, seqA);
m_sigs[OP_SEQ_AT] = alloc(psig, m, "seq.at", 1, 2, seqAintT, seqA);
m_sigs[OP_SEQ_LENGTH] = alloc(psig, m, "seq.len", 1, 1, &seqA, intT);
m_sigs[OP_RE_PLUS] = alloc(psig, m, "re.+", 1, 1, &reA, reA);
m_sigs[OP_RE_STAR] = alloc(psig, m, "re.*", 1, 1, &reA, reA);
m_sigs[OP_RE_OPTION] = alloc(psig, m, "re.opt", 1, 1, &reA, reA);
m_sigs[OP_RE_RANGE] = alloc(psig, m, "re.range", 1, 2, seqAseqA, reA);
m_sigs[OP_RE_CONCAT] = alloc(psig, m, "re.++", 1, 2, reAreA, reA);
m_sigs[OP_RE_UNION] = alloc(psig, m, "re.union", 1, 2, reAreA, reA);
m_sigs[OP_RE_INTERSECT] = alloc(psig, m, "re.inter", 1, 2, reAreA, reA);
m_sigs[OP_RE_LOOP] = alloc(psig, m, "re-loop", 1, 1, &reA, reA);
m_sigs[OP_RE_EMPTY_SEQ] = alloc(psig, m, "re-empty-seq", 1, 0, 0, reA);
m_sigs[OP_RE_EMPTY_SET] = alloc(psig, m, "re-empty-set", 1, 0, 0, reA);
m_sigs[OP_RE_FULL_SET] = alloc(psig, m, "re-full-set", 1, 0, 0, reA);
m_sigs[OP_SEQ_TO_RE] = alloc(psig, m, "seq.to.re", 1, 1, &seqA, reA);
m_sigs[OP_RE_OF_PRED] = alloc(psig, m, "re-of-pred", 1, 1, &predA, reA);
m_sigs[OP_SEQ_TO_RE] = alloc(psig, m, "seq.to.re", 1, 1, &seqA, reA);
m_sigs[OP_SEQ_IN_RE] = alloc(psig, m, "seq.in.re", 1, 2, seqAreA, boolT);
m_sigs[OP_STRING_CONST] = 0;
m_sigs[OP_STRING_STRIDOF] = alloc(psig, m, "str.indexof", 0, 3, str2TintT, intT);
@ -303,7 +302,6 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
case OP_RE_OPTION:
case OP_RE_RANGE:
case OP_RE_UNION:
case OP_RE_EMPTY_SEQ:
case OP_RE_EMPTY_SET:
case OP_RE_OF_PRED:
@ -323,18 +321,27 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
func_decl_info(m_family_id, OP_STRING_CONST, num_parameters, parameters));
case OP_SEQ_CONCAT: {
if (arity == 0) {
m.raise_exception("invalid concatenation. At least one argument expected");
}
match_left_assoc(*m_sigs[k], arity, domain, range, rng);
func_decl_info info(m_family_id, k);
info.set_left_associative();
return m.mk_func_decl(m_sigs[(rng == m_string)?_OP_STRING_CONCAT:k]->m_name, rng, rng, rng, info);
}
case OP_RE_CONCAT: {
if (arity == 0) {
m.raise_exception("invalid concatenation. At least one argument expected");
}
match_left_assoc(*m_sigs[k], arity, domain, range, rng);
func_decl_info info(m_family_id, k);
info.set_left_associative();
return m.mk_func_decl(m_sigs[k]->m_name, rng, rng, rng, info);
}
case _OP_STRING_CONCAT: {
if (arity == 0) {
m.raise_exception("invalid concatenation. At least one argument expected");
}
match_left_assoc(*m_sigs[k], arity, domain, range, rng);
func_decl_info info(m_family_id, OP_SEQ_CONCAT);
info.set_left_associative();
@ -388,6 +395,8 @@ func_decl * seq_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
match(*m_sigs[k], arity, domain, range, rng);
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, func_decl_info(m_family_id, k));
case _OP_SEQ_SKOLEM:
return m.mk_func_decl(symbol("seq.skolem"), arity, domain, rng, func_decl_info(m_family_id, k));
default:
UNREACHABLE();
return 0;
@ -421,10 +430,13 @@ bool seq_decl_plugin::is_value(app* e) const {
return is_app_of(e, m_family_id, OP_STRING_CONST);
}
app* seq_util::str::mk_string(symbol const& s) {
return u.seq.mk_string(s);
app* seq_util::mk_skolem(symbol const& name, unsigned n, expr* const* args, sort* range) {
parameter param(name);
func_decl* f = m.mk_func_decl(get_family_id(), _OP_SEQ_SKOLEM, 1, &param, n, args, range);
return m.mk_app(f, n, args);
}
void seq_util::str::get_concat(expr* e, ptr_vector<expr>& es) const {
expr* e1, *e2;
while (is_concat(e, e1, e2)) {

View file

@ -54,7 +54,6 @@ enum seq_op_kind {
OP_RE_LOOP,
OP_RE_EMPTY_SET,
OP_RE_FULL_SET,
OP_RE_EMPTY_SEQ,
OP_RE_OF_PRED,
@ -75,6 +74,7 @@ enum seq_op_kind {
_OP_STRING_TO_REGEXP,
_OP_STRING_CHARAT,
_OP_STRING_SUBSTR,
_OP_SEQ_SKOLEM,
LAST_SEQ_OP
};
@ -156,17 +156,22 @@ public:
bool is_string(sort* s) const { return is_seq(s) && seq.is_char(s->get_parameter(0).get_ast()); }
bool is_seq(sort* s) const { return is_sort_of(s, m_fid, SEQ_SORT); }
bool is_re(sort* s) const { return is_sort_of(s, m_fid, RE_SORT); }
bool is_seq(expr* e) const { return is_seq(m.get_sort(e)); }
bool is_re(expr* e) const { return is_re(m.get_sort(e)); }
app* mk_skolem(symbol const& name, unsigned n, expr* const* args, sort* range);
bool is_skolem(expr const* e) const { return is_app_of(e, m_fid, _OP_SEQ_SKOLEM); }
class str {
seq_util& u;
ast_manager& m;
family_id m_fid;
public:
str(seq_util& u):u(u), m(u.m), m_fid(u.m_fid) {}
str(seq_util& u): u(u), m(u.m), m_fid(u.m_fid) {}
sort* mk_seq(sort* s) { parameter param(s); return m.mk_sort(m_fid, SEQ_SORT, 1, &param); }
app* mk_empty(sort* s) { return m.mk_const(m.mk_func_decl(m_fid, OP_SEQ_EMPTY, 0, 0, 0, (expr*const*)0, s)); }
app* mk_string(symbol const& s);
app* mk_string(symbol const& s) { return u.seq.mk_string(s); }
app* mk_string(char const* s) { return mk_string(symbol(s)); }
app* mk_string(std::string const& s) { return mk_string(symbol(s.c_str())); }
app* mk_concat(expr* a, expr* b) { expr* es[2] = { a, b }; return m.mk_app(m_fid, OP_SEQ_CONCAT, 2, es); }
@ -190,18 +195,19 @@ public:
bool is_empty(expr const* n) const { symbol s;
return is_app_of(n, m_fid, OP_SEQ_EMPTY) || (is_string(n, s) && !s.is_numerical() && *s.bare_str() == 0);
}
bool is_concat(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_CONCAT); }
bool is_length(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_LENGTH); }
bool is_concat(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_CONCAT); }
bool is_length(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_LENGTH); }
bool is_extract(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_EXTRACT); }
bool is_contains(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_CONTAINS); }
bool is_at(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_AT); }
bool is_stridof(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STRIDOF); }
bool is_repl(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STRREPL); }
bool is_prefix(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_PREFIX); }
bool is_suffix(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_SUFFIX); }
bool is_itos(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_ITOS); }
bool is_stoi(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STOI); }
bool is_in_re(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_IN_RE); }
bool is_contains(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_CONTAINS); }
bool is_at(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_AT); }
bool is_stridof(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STRIDOF); }
bool is_repl(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STRREPL); }
bool is_prefix(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_PREFIX); }
bool is_suffix(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_SUFFIX); }
bool is_itos(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_ITOS); }
bool is_stoi(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_STOI); }
bool is_in_re(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_IN_RE); }
bool is_unit(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_UNIT); }
MATCH_BINARY(is_concat);
@ -216,17 +222,17 @@ public:
MATCH_UNARY(is_itos);
MATCH_UNARY(is_stoi);
MATCH_BINARY(is_in_re);
MATCH_UNARY(is_unit);
void get_concat(expr* e, ptr_vector<expr>& es) const;
expr* get_leftmost_concat(expr* e) const { expr* e1, *e2; while (is_concat(e, e1, e2)) e = e1; return e; }
};
class re {
seq_util& u;
ast_manager& m;
family_id m_fid;
public:
re(seq_util& u):u(u), m(u.m), m_fid(u.m_fid) {}
re(seq_util& u): m(u.m), m_fid(u.m_fid) {}
bool is_to_re(expr const* n) const { return is_app_of(n, m_fid, OP_SEQ_TO_RE); }
bool is_concat(expr const* n) const { return is_app_of(n, m_fid, OP_RE_CONCAT); }

View file

@ -30,6 +30,7 @@ Revision History:
#include"theory_dummy.h"
#include"theory_dl.h"
#include"theory_seq_empty.h"
#include"theory_seq.h"
#include"theory_pb.h"
#include"theory_fpa.h"
@ -200,7 +201,7 @@ namespace smt {
void setup::setup_QF_BVRE() {
setup_QF_BV();
setup_QF_LIA();
m_context.register_plugin(alloc(smt::theory_seq_empty, m_manager));
setup_seq();
}
void setup::setup_QF_UF(static_features const & st) {
@ -814,7 +815,7 @@ namespace smt {
}
void setup::setup_seq() {
m_context.register_plugin(alloc(theory_seq_empty, m_manager));
m_context.register_plugin(alloc(theory_seq, m_manager));
}
void setup::setup_card() {

View file

@ -21,66 +21,338 @@ Revision History:
#include "smt_context.h"
#include "smt_model_generator.h"
#include "theory_seq.h"
#include "seq_rewriter.h"
using namespace smt;
void theory_seq::solution_map::update(expr* e, expr* r, enode_pair_dependency* d) {
std::pair<expr*, enode_pair_dependency*> value;
if (m_map.find(e, value)) {
m_updates.push_back(DEL);
m_lhs.push_back(e);
m_rhs.push_back(value.first);
m_deps.push_back(value.second);
}
value.first = r;
value.second = d;
m_map.insert(e, value);
m_updates.push_back(INS);
m_lhs.push_back(e);
m_rhs.push_back(value.first);
m_deps.push_back(value.second);
}
expr* theory_seq::solution_map::find(expr* e, enode_pair_dependency*& d) {
std::pair<expr*, enode_pair_dependency*> value;
d = 0;
unsigned num_finds = 0;
expr* result = e;
while (m_map.find(result, value)) {
d = m_dm.mk_join(d, value.second);
result = value.first;
++num_finds;
}
if (num_finds > 1) { // path compression for original key only.
update(e, result, d);
}
return result;
}
void theory_seq::solution_map::pop_scope(unsigned num_scopes) {
if (num_scopes == 0) return;
unsigned start = m_limit[m_limit.size() - num_scopes];
for (unsigned i = m_updates.size(); i > start; ) {
--i;
if (m_updates[i] == INS) {
m_map.remove(m_lhs[i].get());
}
else {
m_map.insert(m_lhs[i].get(), std::make_pair(m_rhs[i].get(), m_deps[i]));
}
}
m_updates.resize(start);
m_lhs.resize(start);
m_rhs.resize(start);
m_deps.resize(start);
m_limit.resize(m_limit.size() - num_scopes);
}
void theory_seq::solution_map::display(std::ostream& out) const {
map_t::iterator it = m_map.begin(), end = m_map.end();
for (; it != end; ++it) {
out << mk_pp(it->m_key, m) << " |-> " << mk_pp(it->m_value.first, m) << "\n";
}
}
theory_seq::theory_seq(ast_manager& m):
theory(m.mk_family_id("seq")),
m_axioms_head(0),
m_axioms(m),
m(m),
m_dam(m_dep_array_value_manager, m_alloc),
m_rep(m, m_dm),
m_ineqs(m),
m_used(false),
m_axioms(m),
m_axioms_head(0),
m_incomplete(false),
m_rewrite(m),
m_util(m),
m_autil(m),
m_trail_stack(*this),
m_find(*this) {}
m_trail_stack(*this) {
m_lhs.push_back(expr_array());
m_rhs.push_back(expr_array());
m_deps.push_back(enode_pair_dependency_array());
m_prefix_sym = "prefix";
m_suffix_sym = "suffix";
m_left_sym = "left";
m_right_sym = "right";
m_contains_left_sym = "contains_left";
m_contains_right_sym = "contains_right";
}
theory_seq::~theory_seq() {
unsigned num_scopes = m_lhs.size()-1;
if (num_scopes > 0) pop_scope_eh(num_scopes);
m.del(m_lhs.back());
m.del(m_rhs.back());
m_dam.del(m_deps.back());
}
final_check_status theory_seq::final_check_eh() {
context & ctx = get_context();
ast_manager& m = get_manager();
final_check_status st = check_ineqs();
if (st == FC_CONTINUE) {
TRACE("seq", display(tout););
if (!check_ineqs()) {
return FC_CONTINUE;
}
return m_used?FC_GIVEUP:FC_DONE;
if (simplify_and_solve_eqs()) {
return FC_CONTINUE;
}
if (ctx.inconsistent()) {
return FC_CONTINUE;
}
if (m.size(m_lhs.back()) > 0 || m_incomplete) {
return FC_GIVEUP;
}
return FC_DONE;
}
final_check_status theory_seq::check_ineqs() {
bool theory_seq::check_ineqs() {
context & ctx = get_context();
ast_manager& m = get_manager();
enode_pair_vector eqs;
for (unsigned i = 0; i < m_ineqs.size(); ++i) {
expr_ref a(m_ineqs[i].get(), m);
expr* a = m_ineqs[i].get();
enode_pair_dependency* eqs = 0;
expr_ref b = canonize(a, eqs);
if (m.is_true(b)) {
TRACE("seq", tout << "Evaluates to false: " << mk_pp(a,m) << "\n";);
ctx.internalize(a, false);
literal lit(ctx.get_literal(a));
ctx.mark_as_relevant(lit);
ctx.assign(
lit,
ctx.mk_justification(
ext_theory_propagation_justification(
get_id(), ctx.get_region(), 0, 0, eqs.size(), eqs.c_ptr(), lit)));
return FC_CONTINUE;
propagate_lit(eqs, ctx.get_literal(a));
return false;
}
}
return FC_DONE;
return true;
}
final_check_status theory_seq::simplify_eqs() {
bool simplified = false;
for (unsigned i = 0; i < get_num_vars(); ++i) {
theory_var v = m_find.find(i);
if (v != i) continue;
}
if (simplified) {
return FC_CONTINUE;
}
return FC_DONE;
void theory_seq::propagate_lit(enode_pair_dependency* dep, literal lit) {
context& ctx = get_context();
ctx.mark_as_relevant(lit);
vector<enode_pair, false> _eqs;
m_dm.linearize(dep, _eqs);
TRACE("seq",
ctx.display_detailed_literal(tout, lit);
tout << " <- ";
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
);
justification* js =
ctx.mk_justification(
ext_theory_propagation_justification(
get_id(), ctx.get_region(), 0, 0, _eqs.size(), _eqs.c_ptr(), lit));
ctx.assign(lit, js);
}
void theory_seq::set_conflict(enode_pair_dependency* dep) {
context& ctx = get_context();
vector<enode_pair, false> _eqs;
m_dm.linearize(dep, _eqs);
TRACE("seq",
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
);
ctx.set_conflict(
ctx.mk_justification(
ext_theory_conflict_justification(
get_id(), ctx.get_region(), 0, 0, _eqs.size(), _eqs.c_ptr(), 0, 0)));
}
void theory_seq::propagate_eq(enode_pair_dependency* dep, enode* n1, enode* n2) {
context& ctx = get_context();
vector<enode_pair, false> _eqs;
m_dm.linearize(dep, _eqs);
TRACE("seq",
tout << mk_pp(n1->get_owner(), m) << " " << mk_pp(n2->get_owner(), m) << " <- ";
for (unsigned i = 0; i < _eqs.size(); ++i) {
tout << mk_pp(_eqs[i].first->get_owner(), m) << " = "
<< mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
);
justification* js = ctx.mk_justification(
ext_theory_eq_propagation_justification(
get_id(), ctx.get_region(), 0, 0, _eqs.size(), _eqs.c_ptr(), n1, n2));
ctx.assign_eq(n1, n2, eq_justification(js));
}
bool theory_seq::simplify_eq(expr* l, expr* r, enode_pair_dependency* deps) {
context& ctx = get_context();
seq_rewriter rw(m);
expr_ref_vector lhs(m), rhs(m);
expr_ref lh = canonize(l, deps);
expr_ref rh = canonize(r, deps);
if (!rw.reduce_eq(lh, rh, lhs, rhs)) {
// equality is inconsistent.
TRACE("seq", tout << lh << " != " << rh << "\n";);
set_conflict(deps);
return true;
}
if (lhs.size() == 1 && l == lhs[0].get() &&
rhs.size() == 1 && r == rhs[0].get()) {
return false;
}
SASSERT(lhs.size() == rhs.size());
for (unsigned i = 0; i < lhs.size(); ++i) {
m.push_back(m_lhs.back(), lhs[i].get());
m.push_back(m_rhs.back(), rhs[i].get());
m_dam.push_back(m_deps.back(), deps);
}
TRACE("seq",
tout << mk_pp(l, m) << " = " << mk_pp(r, m) << " => ";
for (unsigned i = 0; i < lhs.size(); ++i) {
tout << mk_pp(lhs[i].get(), m) << " = " << mk_pp(rhs[i].get(), m) << "; ";
}
tout << "\n";
);
return true;
}
bool theory_seq::solve_unit_eq(expr* l, expr* r, enode_pair_dependency* deps) {
expr_ref lh = canonize(l, deps);
expr_ref rh = canonize(r, deps);
if (lh == rh) {
return true;
}
if (is_var(lh) && !occurs(lh, rh)) {
add_solution(lh, rh, deps);
return true;
}
if (is_var(rh) && !occurs(rh, lh)) {
add_solution(rh, lh, deps);
return true;
}
// Use instead reference counts for dependencies to GC?
// TBD: Solutions to units are not necessarily variables, but
// they may induce new equations.
return false;
}
bool theory_seq::occurs(expr* a, expr* b) {
// true if a occurs under an interpreted function or under left/right selector.
SASSERT(is_var(a));
expr* e1, *e2;
while (is_left_select(a, e1) || is_right_select(a, e1)) {
a = e1;
}
if (m_util.str.is_concat(b, e1, e2)) {
return occurs(a, e1) || occurs(a, e2);
}
while (is_left_select(b, e1) || is_right_select(b, e1)) {
b = e1;
}
if (a == b) {
return true;
}
return false;
}
bool theory_seq::is_var(expr* a) {
return is_uninterp(a) || m_util.is_skolem(a);
}
bool theory_seq::is_left_select(expr* a, expr*& b) {
return m_util.is_skolem(a) &&
to_app(a)->get_decl()->get_parameter(0).get_symbol() == m_left_sym && (b = to_app(a)->get_arg(0), true);
}
bool theory_seq::is_right_select(expr* a, expr*& b) {
return m_util.is_skolem(a) &&
to_app(a)->get_decl()->get_parameter(0).get_symbol() == m_right_sym && (b = to_app(a)->get_arg(0), true);
}
void theory_seq::add_solution(expr* l, expr* r, enode_pair_dependency* deps) {
context& ctx = get_context();
m_rep.update(l, r, deps);
// TBD: skip new equalities for non-internalized terms.
if (ctx.e_internalized(l) && ctx.e_internalized(r)) {
enode* n1 = ctx.get_enode(l);
enode* n2 = ctx.get_enode(r);
propagate_eq(deps, n1, n2);
}
}
bool theory_seq::simplify_eqs() {
return pre_process_eqs(true);
}
bool theory_seq::solve_basic_eqs() {
return pre_process_eqs(false);
}
bool theory_seq::pre_process_eqs(bool simplify_or_solve) {
context& ctx = get_context();
bool change = false;
expr_array& lhs = m_lhs.back();
expr_array& rhs = m_rhs.back();
enode_pair_dependency_array& deps = m_deps.back();
for (unsigned i = 0; !ctx.inconsistent() && i < m.size(lhs); ++i) {
if (simplify_or_solve?
simplify_eq(m.get(lhs, i), m.get(rhs, i), m_dam.get(deps, i)):
solve_unit_eq(m.get(lhs, i), m.get(rhs, i), m_dam.get(deps, i))) {
if (i + 1 != m.size(lhs)) {
m.set(lhs, i, m.get(lhs, m.size(lhs)-1));
m.set(rhs, i, m.get(rhs, m.size(rhs)-1));
m_dam.set(deps, i, m_dam.get(deps, m_dam.size(deps)-1));
--i;
++m_stats.m_num_reductions;
}
m.pop_back(lhs);
m.pop_back(rhs);
m_dam.pop_back(deps);
change = true;
}
}
return change;
}
bool theory_seq::simplify_and_solve_eqs() {
context & ctx = get_context();
bool change = simplify_eqs();
while (!ctx.inconsistent() && solve_basic_eqs()) {
simplify_eqs();
change = true;
}
return change;
}
final_check_status theory_seq::add_axioms() {
for (unsigned i = 0; i < get_num_vars(); ++i) {
@ -94,9 +366,7 @@ bool theory_seq::internalize_atom(app* a, bool) {
}
bool theory_seq::internalize_term(app* term) {
m_used = true;
context & ctx = get_context();
ast_manager& m = get_manager();
unsigned num_args = term->get_num_args();
for (unsigned i = 0; i < num_args; i++) {
ctx.internalize(term->get_arg(i), false);
@ -104,87 +374,159 @@ bool theory_seq::internalize_term(app* term) {
if (ctx.e_internalized(term)) {
return true;
}
enode * e = ctx.mk_enode(term, false, m.is_bool(term), true);
if (m.is_bool(term)) {
bool_var bv = ctx.mk_bool_var(term);
ctx.set_var_theory(bv, get_id());
ctx.set_enode_flag(bv, true);
}
else {
enode * e = ctx.mk_enode(term, false, m.is_bool(term), true);
theory_var v = mk_var(e);
ctx.attach_th_var(e, this, v);
}
if (!m_util.str.is_concat(term) &&
!m_util.str.is_string(term) &&
!m_util.str.is_empty(term) &&
!m_util.str.is_unit(term) &&
!m_util.str.is_suffix(term) &&
!m_util.str.is_prefix(term) &&
!m_util.str.is_contains(term) &&
!m_util.is_skolem(term)) {
set_incomplete(term);
}
// assert basic axioms
if (!m_used) { m_trail_stack.push(value_trail<theory_seq,bool>(m_used)); m_used = true; }
return true;
}
void theory_seq::apply_sort_cnstr(enode* n, sort* s) {
if (!is_attached_to_var(n)) {
mk_var(n);
}
}
void theory_seq::display(std::ostream & out) const {
expr_array const& lhs = m_lhs.back();
expr_array const& rhs = m_rhs.back();
enode_pair_dependency_array const& deps = m_deps.back();
out << "Equations:\n";
for (unsigned i = 0; i < m.size(lhs); ++i) {
out << mk_pp(m.get(lhs, i), m) << " = " << mk_pp(m.get(rhs, i), m) << " <-\n";
enode_pair_dependency* dep = m_dam.get(deps, i);
if (dep) {
vector<enode_pair, false> _eqs;
const_cast<enode_pair_dependency_manager&>(m_dm).linearize(dep, _eqs);
for (unsigned i = 0; i < _eqs.size(); ++i) {
out << " " << mk_pp(_eqs[i].first->get_owner(), m) << " = " << mk_pp(_eqs[i].second->get_owner(), m) << "\n";
}
}
}
out << "Negative constraints:\n";
for (unsigned i = 0; i < m_ineqs.size(); ++i) {
out << mk_pp(m_ineqs[i], m) << "\n";
}
out << "Solved equations:\n";
m_rep.display(out);
}
void theory_seq::collect_statistics(::statistics & st) const {
st.update("seq num splits", m_stats.m_num_splits);
st.update("seq num reductions", m_stats.m_num_reductions);
}
void theory_seq::init_model(model_generator & mg) {
m_factory = alloc(seq_factory, get_manager(),
get_family_id(), mg.get_model());
mg.register_factory(m_factory);
// TBD: this is still unsound model generation.
// disequalities are not guaranteed. we need to
// prime the factory with a prefix that cannot be
// constructed using any existing combinations of the
// strings (or units) that are used.
for (unsigned i = 0; i < get_num_vars(); ++i) {
expr* e = get_enode(i)->get_owner();
if (m_util.is_seq(e)) {
enode_pair_dependency* deps = 0;
e = m_rep.find(e, deps);
if (is_var(e)) {
expr* val = m_factory->get_fresh_value(m.get_sort(e));
m_rep.update(e, val, 0);
}
}
else if (m_util.is_re(e)) {
// TBD
}
}
}
model_value_proc * theory_seq::mk_value(enode * n, model_generator & mg) {
enode_pair_dependency* deps = 0;
expr_ref e(n->get_owner(), m);
canonize(e, deps);
SASSERT(is_app(e));
m_factory->add_trail(e);
return alloc(expr_wrapper_proc, to_app(e));
}
void theory_seq::set_incomplete(app* term) {
TRACE("seq", tout << "No support for: " << mk_pp(term, m) << "\n";);
if (!m_incomplete) {
m_trail_stack.push(value_trail<theory_seq,bool>(m_incomplete));
m_incomplete = true;
}
}
theory_var theory_seq::mk_var(enode* n) {
theory_var r = theory::mk_var(n);
VERIFY(r == m_find.mk_var());
return r;
return theory::mk_var(n);
}
bool theory_seq::can_propagate() {
return m_axioms_head < m_axioms.size();
}
expr_ref theory_seq::canonize(expr* e, enode_pair_vector& eqs) {
eqs.reset();
expr_ref theory_seq::canonize(expr* e, enode_pair_dependency*& eqs) {
expr_ref result = expand(e, eqs);
m_rewrite(result);
return result;
}
expr_ref theory_seq::expand(expr* e, enode_pair_vector& eqs) {
context& ctx = get_context();
ast_manager& m = get_manager();
expr_ref theory_seq::expand(expr* e, enode_pair_dependency*& eqs) {
enode_pair_dependency* deps = 0;
e = m_rep.find(e, deps);
expr* e1, *e2;
SASSERT(ctx.e_internalized(e));
enode* n = ctx.get_enode(e);
enode* start = n;
do {
e = n->get_owner();
if (m_util.str.is_concat(e, e1, e2)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(m_util.str.mk_concat(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_empty(e) || m_util.str.is_string(e)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(e, m);
}
if (m.is_eq(e, e1, e2)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(m.mk_eq(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_prefix(e, e1, e2)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(m_util.str.mk_prefix(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_suffix(e, e1, e2)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(m_util.str.mk_suffix(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_contains(e, e1, e2)) {
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(m_util.str.mk_contains(expand(e1, eqs), expand(e2, eqs)), m);
}
#if 0
if (m_util.str.is_unit(e)) {
// TBD: canonize the element.
if (start != n) eqs.push_back(enode_pair(start, n));
return expr_ref(e, m);
}
#endif
n = n->get_next();
eqs = m_dm.mk_join(eqs, deps);
if (m_util.str.is_concat(e, e1, e2)) {
return expr_ref(m_util.str.mk_concat(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_empty(e) || m_util.str.is_string(e)) {
return expr_ref(e, m);
}
while (n != start);
return expr_ref(n->get_root()->get_owner(), m);
if (m.is_eq(e, e1, e2)) {
return expr_ref(m.mk_eq(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_prefix(e, e1, e2)) {
return expr_ref(m_util.str.mk_prefix(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_suffix(e, e1, e2)) {
return expr_ref(m_util.str.mk_suffix(expand(e1, eqs), expand(e2, eqs)), m);
}
if (m_util.str.is_contains(e, e1, e2)) {
return expr_ref(m_util.str.mk_contains(expand(e1, eqs), expand(e2, eqs)), m);
}
return expr_ref(e, m);
}
void theory_seq::add_dependency(enode_pair_dependency*& dep, enode* a, enode* b) {
if (a != b) {
dep = m_dm.mk_join(dep, m_dm.mk_leaf(std::make_pair(a, b)));
}
}
void theory_seq::propagate() {
context & ctx = get_context();
ast_manager& m = get_manager();
while (m_axioms_head < m_axioms.size() && !ctx.inconsistent()) {
expr_ref e(m);
e = m_axioms[m_axioms_head].get();
@ -200,59 +542,58 @@ void theory_seq::create_axiom(expr_ref& e) {
void theory_seq::assert_axiom(expr_ref& e) {
context & ctx = get_context();
ast_manager& m = get_manager();
if (m.is_true(e)) return;
TRACE("seq", tout << "asserting " << e << "\n";);
ctx.internalize(e, false);
literal lit(ctx.get_literal(e));
ctx.mark_as_relevant(lit);
ctx.mk_th_axiom(get_id(), 1, &lit);
}
expr_ref theory_seq::mk_skolem(char const* name, expr* e1, expr* e2) {
ast_manager& m = get_manager();
expr_ref result(m);
sort* s = m.get_sort(e1);
SASSERT(s == m.get_sort(e2));
sort* ss[2] = { s, s };
result = m.mk_app(m.mk_func_decl(symbol("#prefix_eq"), 2, ss, s), e1, e2);
return result;
expr_ref theory_seq::mk_skolem(symbol const& name, expr* e1, expr* e2) {
expr* es[2] = { e1, e2 };
return expr_ref(m_util.mk_skolem(name, 2, es, m.get_sort(e1)), m);
}
void theory_seq::propagate_eq(bool_var v, expr* e1, expr* e2) {
context& ctx = get_context();
TRACE("seq",
tout << mk_pp(ctx.bool_var2enode(v)->get_owner(), m) << " => "
<< mk_pp(e1, m) << " = " << mk_pp(e2, m) << "\n";);
ctx.internalize(e1, false);
SASSERT(ctx.e_internalized(e2));
enode* n1 = ctx.get_enode(e1);
enode* n2 = ctx.get_enode(e2);
literal lit(v);
ctx.assign_eq(n1, n2, eq_justification(
alloc(ext_theory_eq_propagation_justification,
get_id(), ctx.get_region(), 1, &lit, 0, 0, n1, n2)));
justification* js =
ctx.mk_justification(
ext_theory_eq_propagation_justification(
get_id(), ctx.get_region(), 1, &lit, 0, 0, n1, n2));
ctx.assign_eq(n1, n2, eq_justification(js));
}
void theory_seq::assign_eq(bool_var v, bool is_true) {
context & ctx = get_context();
ast_manager& m = get_manager();
enode* n = ctx.bool_var2enode(v);
app* e = n->get_owner();
if (is_true) {
expr* e1, *e2;
expr_ref f(m);
if (m_util.str.is_prefix(e, e1, e2)) {
f = mk_skolem("#prefix_eq", e1, e2);
f = mk_skolem(m_prefix_sym, e1, e2);
f = m_util.str.mk_concat(e1, f);
propagate_eq(v, f, e2);
}
else if (m_util.str.is_suffix(e, e1, e2)) {
f = mk_skolem("#suffix_eq", e1, e2);
f = mk_skolem(m_suffix_sym, e1, e2);
f = m_util.str.mk_concat(f, e1);
propagate_eq(v, f, e2);
}
else if (m_util.str.is_contains(e, e1, e2)) {
expr_ref f1 = mk_skolem("#contains_eq1", e1, e2);
expr_ref f2 = mk_skolem("#contains_eq2", e1, e2);
expr_ref f1 = mk_skolem(m_contains_left_sym, e1, e2);
expr_ref f2 = mk_skolem(m_contains_right_sym, e1, e2);
f = m_util.str.mk_concat(m_util.str.mk_concat(f1, e1), f2);
propagate_eq(v, f, e2);
}
@ -270,34 +611,69 @@ void theory_seq::assign_eq(bool_var v, bool is_true) {
}
void theory_seq::new_eq_eh(theory_var v1, theory_var v2) {
m_find.merge(v1, v2);
enode* n1 = get_enode(v1);
enode* n2 = get_enode(v2);
if (n1 != n2) {
m.push_back(m_lhs.back(), n1->get_owner());
m.push_back(m_rhs.back(), n2->get_owner());
m_dam.push_back(m_deps.back(), m_dm.mk_leaf(enode_pair(n1, n2)));
}
}
void theory_seq::new_diseq_eh(theory_var v1, theory_var v2) {
ast_manager& m = get_manager();
expr* e1 = get_enode(v1)->get_owner();
expr* e2 = get_enode(v2)->get_owner();
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_ineqs));
m_ineqs.push_back(m.mk_eq(e1, e2));
m_ineqs.push_back(mk_eq_atom(e1, e2));
}
void theory_seq::push_scope_eh() {
theory::push_scope_eh();
m_rep.push_scope();
m_dm.push_scope();
m_trail_stack.push_scope();
m_trail_stack.push(value_trail<theory_seq, unsigned>(m_axioms_head));
expr_array lhs, rhs;
enode_pair_dependency_array deps;
m.copy(m_lhs.back(), lhs);
m.copy(m_rhs.back(), rhs);
m_dam.copy(m_deps.back(), deps);
m_lhs.push_back(lhs);
m_rhs.push_back(rhs);
m_deps.push_back(deps);
}
void theory_seq::pop_scope_eh(unsigned num_scopes) {
m_trail_stack.pop_scope(num_scopes);
theory::pop_scope_eh(num_scopes);
theory::pop_scope_eh(num_scopes);
m_dm.pop_scope(num_scopes);
m_rep.pop_scope(num_scopes);
while (num_scopes > 0) {
--num_scopes;
m.del(m_lhs.back());
m.del(m_rhs.back());
m_dam.del(m_deps.back());
m_lhs.pop_back();
m_rhs.pop_back();
m_deps.pop_back();
}
}
void theory_seq::restart_eh() {
SASSERT(m_lhs.size() == 1);
m.del(m_lhs.back());
m.del(m_rhs.back());
m_dam.del(m_deps.back());
m_lhs.reset();
m_rhs.reset();
m_deps.reset();
m_lhs.push_back(expr_array());
m_rhs.push_back(expr_array());
m_deps.push_back(enode_pair_dependency_array());
}
void theory_seq::relevant_eh(app* n) {
ast_manager& m = get_manager();
if (m_util.str.is_length(n)) {
expr_ref e(m);
e = m_autil.mk_le(m_autil.mk_numeral(rational(0), true), n);

View file

@ -28,30 +28,82 @@ Revision History:
namespace smt {
class theory_seq : public theory {
struct config {
static const bool preserve_roots = true;
static const unsigned max_trail_sz = 16;
static const unsigned factor = 2;
typedef small_object_allocator allocator;
};
typedef scoped_dependency_manager<enode_pair> enode_pair_dependency_manager;
typedef enode_pair_dependency_manager::dependency enode_pair_dependency;
struct enode_pair_dependency_array_config : public config {
typedef enode_pair_dependency* value;
typedef dummy_value_manager<value> value_manager;
static const bool ref_count = false;
};
typedef parray_manager<enode_pair_dependency_array_config> enode_pair_dependency_array_manager;
typedef enode_pair_dependency_array_manager::ref enode_pair_dependency_array;
typedef union_find<theory_seq> th_union_find;
typedef trail_stack<theory_seq> th_trail_stack;
class solution_map {
enum map_update { INS, DEL };
typedef obj_map<expr, std::pair<expr*, enode_pair_dependency*> > map_t;
ast_manager& m;
enode_pair_dependency_manager& m_dm;
map_t m_map;
expr_ref_vector m_lhs, m_rhs;
ptr_vector<enode_pair_dependency> m_deps;
svector<map_update> m_updates;
unsigned_vector m_limit;
public:
solution_map(ast_manager& m, enode_pair_dependency_manager& dm): m(m), m_dm(dm), m_lhs(m), m_rhs(m) {}
void update(expr* e, expr* r, enode_pair_dependency* d);
expr* find(expr* e, enode_pair_dependency*& d);
void push_scope() { m_limit.push_back(m_updates.size()); }
void pop_scope(unsigned num_scopes);
void display(std::ostream& out) const;
};
struct stats {
stats() { reset(); }
void reset() { memset(this, 0, sizeof(stats)); }
unsigned m_num_splits;
unsigned m_num_reductions;
};
expr_ref_vector m_axioms;
expr_ref_vector m_ineqs;
ast_manager& m;
small_object_allocator m_alloc;
enode_pair_dependency_array_config::value_manager m_dep_array_value_manager;
enode_pair_dependency_manager m_dm;
enode_pair_dependency_array_manager m_dam;
solution_map m_rep; // unification representative.
vector<expr_array> m_lhs, m_rhs; // persistent sets of equalities.
vector<enode_pair_dependency_array> m_deps; // persistent sets of dependencies.
seq_factory* m_factory; // value factory
expr_ref_vector m_ineqs; // inequalities to check
expr_ref_vector m_axioms;
unsigned m_axioms_head;
bool m_used;
bool m_incomplete;
th_rewriter m_rewrite;
seq_util m_util;
arith_util m_autil;
th_trail_stack m_trail_stack;
th_union_find m_find;
stats m_stats;
symbol m_prefix_sym;
symbol m_suffix_sym;
symbol m_contains_left_sym;
symbol m_contains_right_sym;
symbol m_left_sym;
symbol m_right_sym;
virtual final_check_status final_check_eh();
virtual bool internalize_atom(app*, bool);
virtual bool internalize_term(app*);
virtual void new_eq_eh(theory_var, theory_var);
virtual void new_diseq_eh(theory_var, theory_var);
virtual void assign_eq(bool_var v, bool is_true);
virtual void assign_eq(bool_var v, bool is_true);
virtual bool can_propagate();
virtual void propagate();
virtual void push_scope_eh();
@ -61,28 +113,44 @@ namespace smt {
virtual theory* mk_fresh(context* new_ctx) { return alloc(theory_seq, new_ctx->get_manager()); }
virtual char const * get_name() const { return "seq"; }
virtual theory_var mk_var(enode* n);
virtual void apply_sort_cnstr(enode* n, sort* s);
virtual void display(std::ostream & out) const;
virtual void collect_statistics(::statistics & st) const;
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
virtual void init_model(model_generator & mg);
bool check_ineqs();
bool pre_process_eqs(bool simplify_or_solve);
bool simplify_eqs();
bool simplify_eq(expr* l, expr* r, enode_pair_dependency* dep);
bool solve_unit_eq(expr* l, expr* r, enode_pair_dependency* dep);
bool solve_basic_eqs();
bool simplify_and_solve_eqs();
void propagate_lit(enode_pair_dependency* dep, literal lit);
void propagate_eq(enode_pair_dependency* dep, enode* n1, enode* n2);
void propagate_eq(bool_var v, expr* e1, expr* e2);
void set_conflict(enode_pair_dependency* dep);
final_check_status check_ineqs();
final_check_status simplify_eqs();
bool occurs(expr* a, expr* b);
bool is_var(expr* b);
void add_solution(expr* l, expr* r, enode_pair_dependency* dep);
bool is_left_select(expr* a, expr*& b);
bool is_right_select(expr* a, expr*& b);
final_check_status add_axioms();
void assert_axiom(expr_ref& e);
void create_axiom(expr_ref& e);
expr_ref canonize(expr* e, enode_pair_vector& eqs);
expr_ref expand(expr* e, enode_pair_vector& eqs);
expr_ref canonize(expr* e, enode_pair_dependency*& eqs);
expr_ref expand(expr* e, enode_pair_dependency*& eqs);
void add_dependency(enode_pair_dependency*& dep, enode* a, enode* b);
void propagate_eq(bool_var v, expr* e1, expr* e2);
expr_ref mk_skolem(char const* name, expr* e1, expr* e2);
expr_ref mk_skolem(symbol const& s, expr* e1, expr* e2);
void set_incomplete(app* term);
public:
theory_seq(ast_manager& m);
virtual void init_model(model_generator & mg) {
mg.register_factory(alloc(seq_factory, get_manager(), get_family_id(), mg.get_model()));
}
th_trail_stack & get_trail_stack() { return m_trail_stack; }
virtual void merge_eh(theory_var v1, theory_var v2, theory_var, theory_var);
static void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {}
void unmerge_eh(theory_var v1, theory_var v2);
virtual ~theory_seq();
};
};

View file

@ -25,22 +25,44 @@ Revision History:
namespace smt {
class seq_factory : public value_factory {
typedef hashtable<symbol, symbol_hash_proc, symbol_eq_proc> symbol_set;
ast_manager& m;
proto_model& m_model;
seq_util u;
symbol_set m_strings;
unsigned m_next;
std::string m_unique_prefix;
obj_map<sort, expr*> m_unique_sequences;
expr_ref_vector m_trail;
public:
seq_factory(ast_manager & m, family_id fid, proto_model & md):
value_factory(m, fid),
m(m),
m_model(md),
u(m),
m_next(0)
m_next(0),
m_unique_prefix("#B"),
m_trail(m)
{
m_strings.insert(symbol(""));
m_strings.insert(symbol("a"));
m_strings.insert(symbol("b"));
}
void add_trail(expr* e) {
m_trail.push_back(e);
}
void set_prefix(char const* p) {
m_unique_prefix = p;
}
// generic method for setting unique sequences
void set_prefix(expr* uniq) {
m_trail.push_back(uniq);
m_unique_sequences.insert(m.get_sort(uniq), uniq);
}
virtual expr* get_some_value(sort* s) {
if (u.is_string(s))
return u.str.mk_string(symbol(""));
@ -60,7 +82,7 @@ namespace smt {
if (u.is_string(s)) {
while (true) {
std::ostringstream strm;
strm << "S" << m_next++;
strm << m_unique_prefix << m_next++;
symbol sym(strm.str().c_str());
if (m_strings.contains(sym)) continue;
m_strings.insert(sym);