mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 11:25:51 +00:00
review of NB
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
0db79b1c79
commit
d0f682b239
7 changed files with 223 additions and 259 deletions
|
@ -21,30 +21,28 @@
|
|||
#include "math/lp/nex_creator.h"
|
||||
#include <map>
|
||||
|
||||
namespace nla {
|
||||
using namespace nla;
|
||||
|
||||
nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
||||
// divides by variable j. A precondition is that a is a multiple of j.
|
||||
nex * nex_creator::mk_div(const nex& a, lpvar j) {
|
||||
SASSERT(is_simplified(a));
|
||||
SASSERT((a->is_mul() && a->contains(j)) || (a->is_var() && to_var(a)->var() == j));
|
||||
if (a->is_var())
|
||||
SASSERT(a.contains(j));
|
||||
SASSERT(a.is_mul() || (a.is_var() && a.to_var().var() == j));
|
||||
if (a.is_var())
|
||||
return mk_scalar(rational(1));
|
||||
vector<nex_pow> bv;
|
||||
bool seenj = false;
|
||||
auto ma = *to_mul(a);
|
||||
auto ma = a.to_mul();
|
||||
for (auto& p : ma) {
|
||||
const nex * c = p.e();
|
||||
int pow = p.pow();
|
||||
if (!seenj && c->contains(j)) {
|
||||
if (!c->is_var()) {
|
||||
bv.push_back(nex_pow(mk_div(c, j)));
|
||||
if (pow != 1) {
|
||||
bv.push_back(nex_pow(clone(c), pow - 1));
|
||||
}
|
||||
} else {
|
||||
SASSERT(to_var(c)->var() == j);
|
||||
if (p.pow() != 1) {
|
||||
bv.push_back(nex_pow(mk_var(j), pow - 1));
|
||||
}
|
||||
SASSERT(!c->is_var() || c->to_var().var() == j);
|
||||
if (!c->is_var()) {
|
||||
bv.push_back(nex_pow(mk_div(*c, j)));
|
||||
}
|
||||
if (pow != 1) {
|
||||
bv.push_back(nex_pow(clone(c), pow - 1));
|
||||
}
|
||||
seenj = true;
|
||||
} else {
|
||||
|
@ -64,9 +62,10 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
|
||||
}
|
||||
|
||||
// TBD: describe what this does
|
||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
||||
if (p.e()->is_mul()) {
|
||||
const nex_mul & m = *to_mul(p.e());
|
||||
const nex_mul & m = p.e()->to_mul();
|
||||
if (m.size() == 0) {
|
||||
const rational& coeff = m.coeff();
|
||||
if (coeff.is_one())
|
||||
|
@ -78,10 +77,10 @@ bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
|||
}
|
||||
if (!p.e()->is_scalar())
|
||||
return false;
|
||||
const nex_scalar *pe = to_scalar(p.e());
|
||||
if (pe->value().is_one())
|
||||
const nex_scalar &pe = p.e()->to_scalar();
|
||||
if (pe.value().is_one())
|
||||
return true; // r does not change here
|
||||
r *= pe->value().expt(p.pow() * pow);
|
||||
r *= pe.value().expt(p.pow() * pow);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -89,22 +88,16 @@ bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
|||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational& coeff) {
|
||||
TRACE("grobner_d", print_vector(children, tout););
|
||||
vector<nex_pow> to_promote;
|
||||
bool skipped = false;
|
||||
unsigned j = 0;
|
||||
for (nex_pow& p : children) {
|
||||
if (eat_scalar_pow(coeff, p, 1)) {
|
||||
skipped = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
}
|
||||
p.e() = simplify(p.e());
|
||||
if ((p.e())->is_mul()) {
|
||||
skipped = true;
|
||||
if (p.e()->is_mul()) {
|
||||
to_promote.push_back(p);
|
||||
} else {
|
||||
if (skipped)
|
||||
children[j] = p;
|
||||
j++;
|
||||
children[j++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -112,13 +105,13 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational&
|
|||
|
||||
for (nex_pow & p : to_promote) {
|
||||
TRACE("grobner_d", tout << p << "\n";);
|
||||
nex_mul *pm = to_mul(p.e());
|
||||
for (nex_pow& pp : *pm) {
|
||||
nex_mul &pm = p.e()->to_mul();
|
||||
for (nex_pow& pp : pm) {
|
||||
TRACE("grobner_d", tout << pp << "\n";);
|
||||
if (!eat_scalar_pow(coeff, pp, p.pow()))
|
||||
children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));
|
||||
}
|
||||
coeff *= pm->coeff().expt(p.pow());
|
||||
coeff *= pm.coeff().expt(p.pow());
|
||||
}
|
||||
|
||||
mul_to_powers(children);
|
||||
|
@ -159,29 +152,28 @@ bool nex_creator::gt_on_powers_mul_same_degree(const T& a, const nex_mul& b) con
|
|||
if (it_b != b.end()) b_pow = it_b->pow();
|
||||
}
|
||||
}
|
||||
TRACE("nex_less", tout << "a = "; print_vector(a, tout) << (ret?" > ":" <= ") << b << "\n";);
|
||||
TRACE("nex_gt", tout << "a = "; print_vector(a, tout) << (ret?" > ":" <= ") << b << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool nex_creator::children_are_simplified(const vector<nex_pow>& children) const {
|
||||
for (auto c : children)
|
||||
if (!is_simplified(c.e()) || c.pow() == 0)
|
||||
if (!is_simplified(*c.e()) || c.pow() == 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_powers_mul(const vector<nex_pow>& children, const nex_mul& b) const {
|
||||
TRACE("nex_less", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(&b));
|
||||
TRACE("nex_gt", tout << "children = "; print_vector(children, tout) << " , b = " << b << "\n";);
|
||||
SASSERT(children_are_simplified(children) && is_simplified(b));
|
||||
unsigned a_deg = get_degree_children(children);
|
||||
unsigned b_deg = b.get_degree();
|
||||
|
||||
return a_deg == b_deg ? gt_on_powers_mul_same_degree(children, b) : a_deg > b_deg;
|
||||
}
|
||||
|
||||
bool nex_creator::gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const {
|
||||
TRACE("grobner_d", tout << "a = " << a << " , b = " << b << "\n";);
|
||||
SASSERT(is_simplified(&a) && is_simplified(&b));
|
||||
SASSERT(is_simplified(a) && is_simplified(b));
|
||||
unsigned a_deg = a.get_degree();
|
||||
unsigned b_deg = b.get_degree();
|
||||
return a_deg == b_deg ? gt_on_powers_mul_same_degree(a, b) : a_deg > b_deg;
|
||||
|
@ -208,15 +200,12 @@ bool nex_creator::gt_nex_powers(const vector<nex_pow>& children, const nex* b) c
|
|||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
case expr_type::VAR:
|
||||
if (get_degree_children(children) > 1)
|
||||
return true;
|
||||
const nex_pow & c = children[0];
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return gt(f, b);
|
||||
}
|
||||
SASSERT(children[0].pow() == 1);
|
||||
SASSERT(!children[0].e()->is_scalar());
|
||||
return gt(children[0].e(), b);
|
||||
case expr_type::MUL:
|
||||
return gt_on_powers_mul(children, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
|
@ -231,15 +220,12 @@ bool nex_creator::gt_on_mul_nex(const nex_mul* a, const nex* b) const {
|
|||
switch (b->type()) {
|
||||
case expr_type::SCALAR:
|
||||
return false;
|
||||
case expr_type::VAR: {
|
||||
case expr_type::VAR:
|
||||
if (a->get_degree() > 1)
|
||||
return true;
|
||||
const nex_pow & c = *a->begin();
|
||||
SASSERT(c.pow() == 1);
|
||||
const nex * f = c.e();
|
||||
SASSERT(!f->is_scalar());
|
||||
return gt(f, b);
|
||||
}
|
||||
SASSERT(a->begin()->pow() == 1);
|
||||
SASSERT(!a->begin()->e()->is_scalar());
|
||||
return gt(a->begin()->e(), b);
|
||||
case expr_type::MUL:
|
||||
return gt_on_mul_mul(*a, *to_mul(b));
|
||||
case expr_type::SUM:
|
||||
|
@ -258,8 +244,7 @@ bool nex_creator::gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const {
|
|||
if (gt((*b)[j], (*a)[j]))
|
||||
return false;
|
||||
}
|
||||
return size > b->size();
|
||||
|
||||
return a->size() > size;
|
||||
}
|
||||
|
||||
// the only difference with gt() that it disregards the coefficient in nex_mul
|
||||
|
@ -321,11 +306,11 @@ bool nex_creator::gt(const nex* a, const nex* b) const {
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool nex_creator::is_sorted(const nex_mul* e) const {
|
||||
for (unsigned j = 0; j < e->size() - 1; j++) {
|
||||
if (!(gt_on_nex_pow((*e)[j], (*e)[j+1]))) {
|
||||
TRACE("grobner_d", tout << "not sorted e " << * e << "\norder is incorrect " <<
|
||||
(*e)[j] << " >= " << (*e)[j + 1]<< "\n";);
|
||||
bool nex_creator::is_sorted(const nex_mul& e) const {
|
||||
for (unsigned j = 0; j < e.size() - 1; j++) {
|
||||
if (!(gt_on_nex_pow(e[j], e[j+1]))) {
|
||||
TRACE("grobner_d", tout << "not sorted e " << e << "\norder is incorrect " <<
|
||||
e[j] << " >= " << e[j + 1]<< "\n";);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -333,18 +318,18 @@ bool nex_creator::is_sorted(const nex_mul* e) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
||||
TRACE("nla_cn_", tout << "e = " << *e << "\n";);
|
||||
if (e->size() == 0) {
|
||||
bool nex_creator::mul_is_simplified(const nex_mul& e) const {
|
||||
TRACE("nla_cn_", tout << "e = " << e << "\n";);
|
||||
if (e.size() == 0) {
|
||||
TRACE("nla_cn", );
|
||||
return false; // it has to be a scalar
|
||||
}
|
||||
if (e->size() == 1 && e->begin()->pow() == 1 && e->coeff().is_one()) {
|
||||
if (e.size() == 1 && e.begin()->pow() == 1 && e.coeff().is_one()) {
|
||||
TRACE("nla_cn", );
|
||||
return false;
|
||||
}
|
||||
std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return gt(a, b); });
|
||||
for (const auto &p : *e) {
|
||||
for (const auto &p : e) {
|
||||
const nex* ee = p.e();
|
||||
if (p.pow() == 0) {
|
||||
TRACE("nla_cn", tout << "not simplified " << *ee << "\n";);
|
||||
|
@ -380,7 +365,7 @@ nex * nex_creator::simplify_mul(nex_mul *e) {
|
|||
if (e->size() == 0 || e->coeff().is_zero())
|
||||
return mk_scalar(e->coeff());
|
||||
TRACE("grobner_d", tout << *e << "\n";);
|
||||
SASSERT(is_simplified(e));
|
||||
SASSERT(is_simplified(*e));
|
||||
return e;
|
||||
}
|
||||
|
||||
|
@ -399,19 +384,19 @@ nex* nex_creator::simplify_sum(nex_sum *e) {
|
|||
return r;
|
||||
}
|
||||
|
||||
bool nex_creator::sum_is_simplified(const nex_sum* e) const {
|
||||
if (e->size() < 2) return false;
|
||||
bool nex_creator::sum_is_simplified(const nex_sum& e) const {
|
||||
if (e.size() < 2) return false;
|
||||
bool scalar = false;
|
||||
for (nex * ee : *e) {
|
||||
for (nex * ee : e) {
|
||||
TRACE("nla_cn_details", tout << "ee = " << *ee << "\n";);
|
||||
if (ee->is_sum()) {
|
||||
TRACE("nla_cn", tout << "not simplified e = " << *e << "\n"
|
||||
TRACE("nla_cn", tout << "not simplified e = " << e << "\n"
|
||||
<< " has a child which is a sum " << *ee << "\n";);
|
||||
return false;
|
||||
}
|
||||
if (ee->is_scalar()) {
|
||||
if (scalar) {
|
||||
TRACE("nla_cn", tout << "not simplified e = " << *e << "\n"
|
||||
TRACE("nla_cn", tout << "not simplified e = " << e << "\n"
|
||||
<< " have more than one scalar " << *ee << "\n";);
|
||||
|
||||
return false;
|
||||
|
@ -425,7 +410,7 @@ bool nex_creator::sum_is_simplified(const nex_sum* e) const {
|
|||
scalar = true;
|
||||
}
|
||||
}
|
||||
if (!is_simplified(ee))
|
||||
if (!is_simplified(*ee))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -457,7 +442,7 @@ nex* nex_creator::create_child_from_nex_and_coeff(nex *e,
|
|||
TRACE("grobner_d", tout << *e << ", coeff = " << coeff << "\n";);
|
||||
if (coeff.is_one())
|
||||
return e;
|
||||
SASSERT(is_simplified(e));
|
||||
SASSERT(is_simplified(*e));
|
||||
switch (e->type()) {
|
||||
case expr_type::VAR: {
|
||||
if (coeff.is_one())
|
||||
|
@ -538,7 +523,7 @@ void nex_creator::sort_join_sum(ptr_vector<nex> & children) {
|
|||
std::map<nex*, rational, nex_lt> map([this](const nex *a , const nex *b)
|
||||
{ return gt_for_sort_join_sum(a, b); });
|
||||
std::unordered_set<nex*> allocated_nexs; // handling (nex*) as numbers
|
||||
nex_scalar * common_scalar;
|
||||
nex_scalar * common_scalar = nullptr;
|
||||
fill_join_map_for_sum(children, map, allocated_nexs, common_scalar);
|
||||
|
||||
TRACE("grobner_d", for (auto & p : map ) { tout << "(" << *p.first << ", " << p.second << ") ";});
|
||||
|
@ -551,32 +536,24 @@ void nex_creator::sort_join_sum(ptr_vector<nex> & children) {
|
|||
}
|
||||
TRACE("grobner_d",
|
||||
tout << "map=";
|
||||
for (auto & p : map )
|
||||
{ tout << "(" << *p.first << ", " << p.second << ") "; }
|
||||
for (auto & p : map ) tout << "(" << *p.first << ", " << p.second << ") ";
|
||||
tout << "\nchildren="; print_vector_of_ptrs(children, tout) << "\n";);
|
||||
}
|
||||
|
||||
void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
||||
TRACE("grobner_d", print_vector_of_ptrs(children, tout););
|
||||
ptr_vector<nex> to_promote;
|
||||
bool skipped = false;
|
||||
unsigned k = 0;
|
||||
for (unsigned j = 0; j < children.size(); j++) {
|
||||
nex* e = children[j] = simplify(children[j]);
|
||||
if (e->is_sum()) {
|
||||
skipped = true;
|
||||
to_promote.push_back(e);
|
||||
} else if (is_zero_scalar(e)) {
|
||||
skipped = true;
|
||||
continue;
|
||||
} else if (e->is_mul() && to_mul(e)->coeff().is_zero() ) {
|
||||
skipped = true;
|
||||
continue;
|
||||
}else {
|
||||
if (skipped) {
|
||||
children[k] = e;
|
||||
}
|
||||
k++;
|
||||
} else {
|
||||
children[k++] = e;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -584,7 +561,7 @@ void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|||
children.shrink(k);
|
||||
|
||||
for (nex *e : to_promote) {
|
||||
for (nex *ee : *(to_sum(e)->children_ptr())) {
|
||||
for (nex *ee : *(e->to_sum().children_ptr())) {
|
||||
if (!is_zero_scalar(ee))
|
||||
children.push_back(ee);
|
||||
}
|
||||
|
@ -594,11 +571,10 @@ void nex_creator::simplify_children_of_sum(ptr_vector<nex> & children) {
|
|||
}
|
||||
|
||||
|
||||
bool have_no_scalars(const nex_mul* a) {
|
||||
for (auto & p : *a)
|
||||
static bool have_no_scalars(const nex_mul& a) {
|
||||
for (auto & p : a)
|
||||
if (p.e()->is_scalar() && !to_scalar(p.e())->value().is_one())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -606,24 +582,23 @@ bool nex_mul::all_factors_are_elementary() const {
|
|||
for (auto & p : *this)
|
||||
if (!p.e()->is_elementary())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
nex * nex_creator::mk_div_sum_by_mul(const nex_sum* m, const nex_mul* b) {
|
||||
nex * nex_creator::mk_div_sum_by_mul(const nex_sum& m, const nex_mul& b) {
|
||||
nex_sum * r = mk_sum();
|
||||
for (auto e : *m) {
|
||||
r->add_child(mk_div_by_mul(e, b));
|
||||
for (auto e : m) {
|
||||
r->add_child(mk_div_by_mul(*e, b));
|
||||
}
|
||||
TRACE("grobner_d", tout << *r << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
nex * nex_creator::mk_div_mul_by_mul(const nex_mul *a, const nex_mul* b) {
|
||||
SASSERT(a->all_factors_are_elementary() && b->all_factors_are_elementary());
|
||||
b->get_powers_from_mul(m_powers);
|
||||
nex * nex_creator::mk_div_mul_by_mul(const nex_mul& a, const nex_mul& b) {
|
||||
SASSERT(a.all_factors_are_elementary() && b.all_factors_are_elementary());
|
||||
b.get_powers_from_mul(m_powers);
|
||||
nex_mul* ret = new nex_mul();
|
||||
for (auto& p_from_a : *a) {
|
||||
for (auto& p_from_a : a) {
|
||||
TRACE("grobner_d", tout << "p_from_a = " << p_from_a << "\n";);
|
||||
const nex* e = p_from_a.e();
|
||||
if (e->is_scalar()) {
|
||||
|
@ -658,46 +633,45 @@ nex * nex_creator::mk_div_mul_by_mul(const nex_mul *a, const nex_mul* b) {
|
|||
if (ret->size() == 0) {
|
||||
delete ret;
|
||||
TRACE("grobner_d", tout << "return scalar\n";);
|
||||
return mk_scalar(a->coeff() / b->coeff());
|
||||
return mk_scalar(a.coeff() / b.coeff());
|
||||
}
|
||||
ret->coeff() = a->coeff() / b->coeff();
|
||||
ret->coeff() = a.coeff() / b.coeff();
|
||||
add_to_allocated(ret);
|
||||
TRACE("grobner_d", tout << *ret << "\n";);
|
||||
return ret;
|
||||
}
|
||||
|
||||
nex * nex_creator::mk_div_by_mul(const nex* a, const nex_mul* b) {
|
||||
nex * nex_creator::mk_div_by_mul(const nex& a, const nex_mul& b) {
|
||||
SASSERT(have_no_scalars(b));
|
||||
if (a->is_sum()) {
|
||||
return mk_div_sum_by_mul(to_sum(a), b);
|
||||
}
|
||||
|
||||
if (a->is_var()) {
|
||||
SASSERT(b->get_degree() == 1 && get_vars_of_expr(a) == get_vars_of_expr(b) && b->coeff().is_one());
|
||||
SASSERT(!a.is_var() || (b.get_degree() == 1 && get_vars_of_expr(&a) == get_vars_of_expr(&b) && b.coeff().is_one()));
|
||||
if (a.is_sum()) {
|
||||
return mk_div_sum_by_mul(a.to_sum(), b);
|
||||
}
|
||||
if (a.is_var()) {
|
||||
return mk_scalar(rational(1));
|
||||
}
|
||||
return mk_div_mul_by_mul(to_mul(a), b);
|
||||
return mk_div_mul_by_mul(a.to_mul(), b);
|
||||
}
|
||||
|
||||
nex * nex_creator::mk_div(const nex* a, const nex* b) {
|
||||
TRACE("grobner_d", tout << *a <<" / " << *b << "\n";);
|
||||
if (b->is_var()) {
|
||||
return mk_div(a, to_var(b)->var());
|
||||
nex * nex_creator::mk_div(const nex& a, const nex& b) {
|
||||
TRACE("grobner_d", tout << a <<" / " << b << "\n";);
|
||||
if (b.is_var()) {
|
||||
return mk_div(a, b.to_var().var());
|
||||
}
|
||||
return mk_div_by_mul(a, to_mul(b));
|
||||
return mk_div_by_mul(a, b.to_mul());
|
||||
}
|
||||
|
||||
nex* nex_creator::simplify(nex* e) {
|
||||
nex* es;
|
||||
TRACE("grobner_d", tout << *e << std::endl;);
|
||||
if (e->is_mul())
|
||||
es = simplify_mul(to_mul(e));
|
||||
es = simplify_mul(to_mul(e));
|
||||
else if (e->is_sum())
|
||||
es = simplify_sum(to_sum(e));
|
||||
es = simplify_sum(to_sum(e));
|
||||
else
|
||||
es = e;
|
||||
TRACE("grobner_d", tout << "simplified = " << *es << std::endl;);
|
||||
SASSERT(is_simplified(es));
|
||||
SASSERT(is_simplified(*es));
|
||||
return es;
|
||||
}
|
||||
|
||||
|
@ -713,7 +687,7 @@ void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex
|
|||
m_allocated.push_back(e);
|
||||
}
|
||||
if (e->is_mul()) {
|
||||
to_mul(e)->coeff() = coeff;
|
||||
e->to_mul().coeff() = coeff;
|
||||
children.push_back(simplify(e));
|
||||
} else {
|
||||
SASSERT(e->is_var());
|
||||
|
@ -725,13 +699,12 @@ void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex
|
|||
}
|
||||
}
|
||||
|
||||
bool nex_creator::is_simplified(const nex *e) const
|
||||
{
|
||||
TRACE("nla_cn_details", tout << "e = " << *e << "\n";);
|
||||
if (e->is_mul())
|
||||
return mul_is_simplified(to_mul(e));
|
||||
if (e->is_sum())
|
||||
return sum_is_simplified(to_sum(e));
|
||||
bool nex_creator::is_simplified(const nex& e) const {
|
||||
TRACE("nla_cn_details", tout << "e = " << e << "\n";);
|
||||
if (e.is_mul())
|
||||
return mul_is_simplified(e.to_mul());
|
||||
if (e.is_sum())
|
||||
return sum_is_simplified(e.to_sum());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -752,10 +725,10 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
|
|||
nex_pow& np = (*a)[j];
|
||||
SASSERT(np.pow());
|
||||
unsigned power = np.pow();
|
||||
nex_sum * s = to_sum(np.e()); // s is going to explode
|
||||
nex_sum const& s = np.e()->to_sum(); // s is going to explode
|
||||
nex_sum * r = mk_sum();
|
||||
nex *sclone = power > 1? clone(s) : nullptr;
|
||||
for (nex *e : *s) {
|
||||
nex *sclone = power > 1 ? clone(&s) : nullptr;
|
||||
for (nex *e : s) {
|
||||
nex_mul *m = mk_mul();
|
||||
if (power > 1)
|
||||
m->add_child_in_power(sclone, power - 1);
|
||||
|
@ -777,11 +750,11 @@ nex* nex_creator::canonize(const nex *a) {
|
|||
|
||||
nex *t = simplify(clone(a));
|
||||
if (t->is_sum()) {
|
||||
nex_sum * s = to_sum(t);
|
||||
for (unsigned j = 0; j < s->size(); j++) {
|
||||
(*s)[j] = canonize((*s)[j]);
|
||||
nex_sum & s = t->to_sum();
|
||||
for (unsigned j = 0; j < s.size(); j++) {
|
||||
s[j] = canonize(s[j]);
|
||||
}
|
||||
t = simplify(s);
|
||||
t = simplify(&s);
|
||||
TRACE("grobner_d", tout << *t << "\n";);
|
||||
return t;
|
||||
}
|
||||
|
@ -810,4 +783,3 @@ bool nex_creator::equal(const nex* a, const nex* b) {
|
|||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue