3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

Merge branch 'unstable' of https://git01.codeplex.com/z3 into ml-ng

This commit is contained in:
Christoph M. Wintersteiger 2015-01-21 13:51:00 +00:00
commit d0a7246f00
18 changed files with 1622 additions and 602 deletions

View file

@ -1,9 +1,13 @@
RELEASE NOTES
Version 4.3.3
Version 4.4
=============
- Fixed bug in floating point models
- New feature: Stochastic local search engine for bit-vector formulas (see the qfbv-sls tactic).
See also: Froehlich, Biere, Wintersteiger, Hamadi: Stochastic Local Search
for Satisfiability Modulo Theories, AAAI 2015.
- Fixed various bugs reported by Marc Brockschmidt, Venkatesh-Prasad Ranganath, Enric Carbonell, Morgan Deters, Tom Ball, and Codeplex users rsas, clockish, Heizmann.
Version 4.3.2
=============

View file

@ -9,7 +9,7 @@ from mk_util import *
# Z3 Project definition
def init_project_def():
set_version(4, 3, 3, 0)
set_version(4, 4, 0, 0)
add_lib('util', [])
add_lib('polynomial', ['util'], 'math/polynomial')
add_lib('sat', ['util'])

View file

@ -66,7 +66,7 @@ class sat_tactic : public tactic {
CASSERT("sat_solver", m_solver.check_invariant());
IF_VERBOSE(TACTIC_VERBOSITY_LVL, m_solver.display_status(verbose_stream()););
TRACE("sat_dimacs", m_solver.display_dimacs(tout););
lbool r = m_solver.check();
if (r == l_false) {
g->assert_expr(m.mk_false(), 0, 0);

View file

@ -1091,7 +1091,7 @@ namespace smt {
case_split_queue * mk_case_split_queue(context & ctx, smt_params & p) {
if (p.m_relevancy_lvl < 2 && (p.m_case_split_strategy == CS_RELEVANCY || p.m_case_split_strategy == CS_RELEVANCY_ACTIVITY ||
p.m_case_split_strategy == CS_RELEVANCY_GOAL)) {
warning_msg("relevacy must be enabled to use option CASE_SPLIT=3, 4 or 5");
warning_msg("relevancy must be enabled to use option CASE_SPLIT=3, 4 or 5");
p.m_case_split_strategy = CS_ACTIVITY;
}
if (p.m_auto_config && (p.m_case_split_strategy == CS_RELEVANCY || p.m_case_split_strategy == CS_RELEVANCY_ACTIVITY ||

View file

@ -282,6 +282,7 @@ namespace smt {
if (!m_fparams) {
m_fparams = alloc(smt_params, m_context->get_fparams());
m_fparams->m_relevancy_lvl = 0; // no relevancy since the model checking problems are quantifier free
m_fparams->m_case_split_strategy = CS_ACTIVITY; // avoid warning messages about smt.case_split >= 3.
}
if (!m_aux_context) {
symbol logic;

View file

@ -198,11 +198,75 @@ struct is_non_qflira_functor {
}
};
struct is_non_qfauflira_functor {
struct found {};
ast_manager & m;
arith_util m_arith_util;
array_util m_array_util;
bool m_int;
bool m_real;
is_non_qfauflira_functor(ast_manager & _m, bool _int, bool _real) :
m(_m), m_arith_util(_m), m_array_util(_m), m_int(_int), m_real(_real) {}
void operator()(var *) { throw found(); }
void operator()(quantifier *) { throw found(); }
bool compatible_sort(app * n) const {
if (m.is_bool(n))
return true;
if (m_int && m_arith_util.is_int(n))
return true;
if (m_real && m_arith_util.is_real(n))
return true;
if (m_array_util.is_array(n))
return true;
return false;
}
void operator()(app * n) {
if (!compatible_sort(n))
throw found();
family_id fid = n->get_family_id();
if (fid == m.get_basic_family_id())
return;
if (fid == m_arith_util.get_family_id()) {
switch (n->get_decl_kind()) {
case OP_LE: case OP_GE: case OP_LT: case OP_GT:
case OP_ADD: case OP_NUM:
return;
case OP_MUL:
if (n->get_num_args() != 2)
throw found();
if (!m_arith_util.is_numeral(n->get_arg(0)))
throw found();
return;
case OP_TO_REAL:
if (!m_real)
throw found();
break;
default:
throw found();
}
return;
}
if (is_uninterp(n))
return;
throw found();
}
};
static bool is_qflia(goal const & g) {
is_non_qflira_functor p(g.m(), true, false);
return !test(g, p);
}
static bool is_qfauflia(goal const & g) {
is_non_qfauflira_functor p(g.m(), true, false);
return !test(g, p);
}
class is_qflia_probe : public probe {
public:
virtual result operator()(goal const & g) {
@ -210,6 +274,13 @@ public:
}
};
class is_qfauflia_probe : public probe {
public:
virtual result operator()(goal const & g) {
return is_qfauflia(g);
}
};
static bool is_qflra(goal const & g) {
is_non_qflira_functor p(g.m(), false, true);
return !test(g, p);
@ -289,6 +360,10 @@ probe * mk_is_qflia_probe() {
return alloc(is_qflia_probe);
}
probe * mk_is_qfauflia_probe() {
return alloc(is_qfauflia_probe);
}
probe * mk_is_qflra_probe() {
return alloc(is_qflra_probe);
}

View file

@ -33,6 +33,7 @@ probe * mk_arith_max_degree_probe();
*/
probe * mk_is_qflia_probe();
probe * mk_is_qfauflia_probe();
probe * mk_is_qflra_probe();
probe * mk_is_qflira_probe();
probe * mk_is_ilp_probe();
@ -40,6 +41,7 @@ probe * mk_is_mip_probe();
/*
ADD_PROBE("is-qflia", "true if the goal is in QF_LIA.", "mk_is_qflia_probe()")
ADD_PROBE("is-qfauflia", "true if the goal is in QF_AUFLIA.", "mk_is_qfauflia_probe()")
ADD_PROBE("is-qflra", "true if the goal is in QF_LRA.", "mk_is_qflra_probe()")
ADD_PROBE("is-qflira", "true if the goal is in QF_LIRA.", "mk_is_qflira_probe()")
ADD_PROBE("is-ilp", "true if the goal is ILP.", "mk_is_ilp_probe()")

View file

@ -28,10 +28,14 @@ Notes:
#include"probe_arith.h"
#include"quant_tactics.h"
#include"qffpa_tactic.h"
#include"qfaufbv_tactic.h"
#include"qfauflia_tactic.h"
tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
tactic * st = using_params(and_then(mk_simplify_tactic(m),
cond(mk_is_qfbv_probe(), mk_qfbv_tactic(m),
cond(mk_is_qfaufbv_probe(), mk_qfaufbv_tactic(m),
cond(mk_is_qfauflia_probe(), mk_qfauflia_tactic(m),
cond(mk_is_qflia_probe(), mk_qflia_tactic(m),
cond(mk_is_qflra_probe(), mk_qflra_tactic(m),
cond(mk_is_qfnra_probe(), mk_qfnra_tactic(m),
@ -39,7 +43,7 @@ tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
cond(mk_is_nra_probe(), mk_nra_tactic(m),
cond(mk_is_lira_probe(), mk_lira_tactic(m, p),
cond(mk_is_qffpabv_probe(), mk_qffpa_tactic(m, p),
mk_smt_tactic()))))))))),
mk_smt_tactic()))))))))))),
p);
return st;
}

View file

@ -41,7 +41,7 @@ tactic * mk_tactic_for_logic(ast_manager & m, params_ref const & p, symbol const
if (logic=="QF_UF")
return mk_qfuf_tactic(m, p);
else if (logic=="QF_BV")
return mk_qfbv_tactic(m, p);
return mk_qfbv_tactic(m, p);
else if (logic=="QF_IDL")
return mk_qfidl_tactic(m, p);
else if (logic=="QF_LIA")

View file

@ -316,6 +316,44 @@ probe * mk_is_qfbv_probe() {
return alloc(is_qfbv_probe);
}
struct is_non_qfaufbv_predicate {
struct found {};
ast_manager & m;
bv_util m_bv_util;
array_util m_array_util;
is_non_qfaufbv_predicate(ast_manager & _m) : m(_m), m_bv_util(_m), m_array_util(_m) {}
void operator()(var *) { throw found(); }
void operator()(quantifier *) { throw found(); }
void operator()(app * n) {
if (!m.is_bool(n) && !m_bv_util.is_bv(n) && !m_array_util.is_array(n))
throw found();
family_id fid = n->get_family_id();
if (fid == m.get_basic_family_id())
return;
if (fid == m_bv_util.get_family_id() || fid == m_array_util.get_family_id())
return;
if (is_uninterp(n))
return;
throw found();
}
};
class is_qfaufbv_probe : public probe {
public:
virtual result operator()(goal const & g) {
return !test<is_non_qfaufbv_predicate>(g);
}
};
probe * mk_is_qfaufbv_probe() {
return alloc(is_qfaufbv_probe);
}
class num_consts_probe : public probe {
bool m_bool; // If true, track only boolean constants. Otherwise, track only non boolean constants.
char const * m_family; // (Ignored if m_bool == true), if != 0 and m_bool == true, then track only constants of the given family.

View file

@ -111,10 +111,12 @@ probe * mk_div(probe * p1, probe * p2);
probe * mk_is_propositional_probe();
probe * mk_is_qfbv_probe();
probe * mk_is_qfaufbv_probe();
/*
ADD_PROBE("is-propositional", "true if the goal is in propositional logic.", "mk_is_propositional_probe()")
ADD_PROBE("is-qfbv", "true if the goal is in QF_BV.", "mk_is_qfbv_probe()")
ADD_PROBE("is-qfaufbv", "true if the goal is in QF_AUFBV.", "mk_is_qfaufbv_probe()")
*/
#endif

View file

@ -0,0 +1,621 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
sls_engine.cpp
Abstract:
A Stochastic Local Search (SLS) engine
Author:
Christoph (cwinter) 2014-03-19
Notes:
--*/
#include<float.h>
#include<iomanip>
#include"map.h"
#include"ast_smt2_pp.h"
#include"ast_pp.h"
#include"var_subst.h"
#include"model_pp.h"
#include"tactic.h"
#include"cooperate.h"
#include"luby.h"
#include"sls_params.hpp"
#include"sls_engine.h"
sls_engine::sls_engine(ast_manager & m, params_ref const & p) :
m_manager(m),
m_powers(m_mpz_manager),
m_zero(m_mpz_manager.mk_z(0)),
m_one(m_mpz_manager.mk_z(1)),
m_two(m_mpz_manager.mk_z(2)),
m_cancel(false),
m_bv_util(m),
m_tracker(m, m_bv_util, m_mpz_manager, m_powers),
m_evaluator(m, m_bv_util, m_tracker, m_mpz_manager, m_powers)
{
updt_params(p);
m_tracker.updt_params(p);
}
sls_engine::~sls_engine() {
m_mpz_manager.del(m_zero);
m_mpz_manager.del(m_one);
m_mpz_manager.del(m_two);
}
void sls_engine::updt_params(params_ref const & _p) {
sls_params p(_p);
m_produce_models = _p.get_bool("model", false);
m_max_restarts = p.max_restarts();
m_tracker.set_random_seed(p.random_seed());
m_walksat = p.walksat();
m_walksat_repick = p.walksat_repick();
m_paws_sp = p.paws_sp();
m_paws = m_paws_sp < 1024;
m_wp = p.wp();
m_vns_mc = p.vns_mc();
m_vns_repick = p.vns_repick();
m_restart_base = p.restart_base();
m_restart_next = m_restart_base;
m_restart_init = p.restart_init();
m_early_prune = p.early_prune();
m_random_offset = p.random_offset();
m_rescore = p.rescore();
// Andreas: Would cause trouble because repick requires an assertion being picked before which is not the case in GSAT.
if (m_walksat_repick && !m_walksat)
NOT_IMPLEMENTED_YET();
if (m_vns_repick && !m_walksat)
NOT_IMPLEMENTED_YET();
}
void sls_engine::checkpoint() {
if (m_cancel)
throw tactic_exception(TACTIC_CANCELED_MSG);
cooperate("sls");
}
bool sls_engine::full_eval(model & mdl) {
bool res = true;
unsigned sz = m_assertions.size();
for (unsigned i = 0; i < sz && res; i++) {
checkpoint();
expr_ref o(m_manager);
if (!mdl.eval(m_assertions[i], o, true))
exit(ERR_INTERNAL_FATAL);
res = m_manager.is_true(o.get());
}
TRACE("sls", tout << "Evaluation: " << res << std::endl;);
return res;
}
double sls_engine::top_score() {
double top_sum = 0.0;
unsigned sz = m_assertions.size();
for (unsigned i = 0; i < sz; i++) {
expr * e = m_assertions[i];
top_sum += m_tracker.get_score(e);
}
TRACE("sls_top", tout << "Score distribution:";
for (unsigned i = 0; i < sz; i++)
tout << " " << m_tracker.get_score(m_assertions[i]);
tout << " AVG: " << top_sum / (double)sz << std::endl;);
m_tracker.set_top_sum(top_sum);
return top_sum;
}
double sls_engine::rescore() {
m_evaluator.update_all();
m_stats.m_full_evals++;
return top_score();
}
double sls_engine::serious_score(func_decl * fd, const mpz & new_value) {
m_evaluator.serious_update(fd, new_value);
m_stats.m_incr_evals++;
return m_tracker.get_top_sum();
}
double sls_engine::incremental_score(func_decl * fd, const mpz & new_value) {
m_evaluator.update(fd, new_value);
m_stats.m_incr_evals++;
return m_tracker.get_top_sum();
}
double sls_engine::incremental_score_prune(func_decl * fd, const mpz & new_value) {
m_stats.m_incr_evals++;
if (m_evaluator.update_prune(fd, new_value))
return m_tracker.get_top_sum();
else
return -DBL_MAX;
}
// checks whether the score outcome of a given move is better than the previous score
bool sls_engine::what_if(
func_decl * fd,
const unsigned & fd_inx,
const mpz & temp,
double & best_score,
unsigned & best_const,
mpz & best_value) {
#ifdef Z3DEBUG
mpz old_value;
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
#endif
double r;
if (m_early_prune)
r = incremental_score_prune(fd, temp);
else
r = incremental_score(fd, temp);
#ifdef Z3DEBUG
TRACE("sls_whatif", tout << "WHAT IF " << fd->get_name() << " WERE " << m_mpz_manager.to_string(temp) <<
" --> " << r << std::endl;);
m_mpz_manager.del(old_value);
#endif
// Andreas: Had this idea on my last day. Maybe we could add a noise here similar to the one that worked so well for ucb assertion selection.
// r += 0.0001 * m_tracker.get_random_uint(8);
// Andreas: For some reason it is important to use > here instead of >=. Probably related to prefering the LSB.
if (r > best_score) {
best_score = r;
best_const = fd_inx;
m_mpz_manager.set(best_value, temp);
return true;
}
return false;
}
void sls_engine::mk_add(unsigned bv_sz, const mpz & old_value, mpz & add_value, mpz & result) {
mpz temp, mask, mask2;
m_mpz_manager.add(old_value, add_value, temp);
m_mpz_manager.set(mask, m_powers(bv_sz));
m_mpz_manager.bitwise_not(bv_sz, mask, mask2);
m_mpz_manager.bitwise_and(temp, mask2, result);
m_mpz_manager.del(temp);
m_mpz_manager.del(mask);
m_mpz_manager.del(mask2);
}
void sls_engine::mk_inc(unsigned bv_sz, const mpz & old_value, mpz & incremented) {
unsigned shift;
m_mpz_manager.add(old_value, m_one, incremented);
if (m_mpz_manager.is_power_of_two(incremented, shift) && shift == bv_sz)
m_mpz_manager.set(incremented, m_zero);
}
void sls_engine::mk_dec(unsigned bv_sz, const mpz & old_value, mpz & decremented) {
if (m_mpz_manager.is_zero(old_value)) {
m_mpz_manager.set(decremented, m_powers(bv_sz));
m_mpz_manager.dec(decremented);
}
else
m_mpz_manager.sub(old_value, m_one, decremented);
}
void sls_engine::mk_inv(unsigned bv_sz, const mpz & old_value, mpz & inverted) {
m_mpz_manager.bitwise_not(bv_sz, old_value, inverted);
}
void sls_engine::mk_flip(sort * s, const mpz & old_value, unsigned bit, mpz & flipped) {
m_mpz_manager.set(flipped, m_zero);
if (m_bv_util.is_bv_sort(s)) {
mpz mask;
m_mpz_manager.set(mask, m_powers(bit));
m_mpz_manager.bitwise_xor(old_value, mask, flipped);
m_mpz_manager.del(mask);
}
else if (m_manager.is_bool(s))
m_mpz_manager.set(flipped, (m_mpz_manager.is_zero(old_value)) ? m_one : m_zero);
else
NOT_IMPLEMENTED_YET();
}
void sls_engine::mk_random_move(ptr_vector<func_decl> & unsat_constants)
{
unsigned rnd_mv = 0;
unsigned ucc = unsat_constants.size();
unsigned rc = (m_tracker.get_random_uint((ucc < 16) ? 4 : (ucc < 256) ? 8 : (ucc < 4096) ? 12 : (ucc < 65536) ? 16 : 32)) % ucc;
func_decl * fd = unsat_constants[rc];
mpz new_value;
sort * srt = fd->get_range();
if (m_manager.is_bool(srt))
m_mpz_manager.set(new_value, (m_mpz_manager.is_zero(m_tracker.get_value(fd))) ? m_one : m_zero);
else
{
if (m_mpz_manager.is_one(m_tracker.get_random_bool())) rnd_mv = 2;
if (m_mpz_manager.is_one(m_tracker.get_random_bool())) rnd_mv++;
// Andreas: The other option would be to scale the probability for flips according to the bit-width.
/* unsigned bv_sz2 = m_bv_util.get_bv_size(srt);
rnd_mv = m_tracker.get_random_uint(16) % (bv_sz2 + 3);
if (rnd_mv > 3) rnd_mv = 0; */
move_type mt = (move_type)rnd_mv;
// Andreas: Christoph claimed inversion doesn't make sense, let's do a flip instead. Is this really true?
if (mt == MV_INV) mt = MV_FLIP;
unsigned bit = 0;
switch (mt)
{
case MV_FLIP: {
unsigned bv_sz = m_bv_util.get_bv_size(srt);
bit = (m_tracker.get_random_uint((bv_sz < 16) ? 4 : (bv_sz < 256) ? 8 : (bv_sz < 4096) ? 12 : (bv_sz < 65536) ? 16 : 32)) % bv_sz;
mk_flip(fd->get_range(), m_tracker.get_value(fd), bit, new_value);
break;
}
case MV_INC:
mk_inc(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
case MV_DEC:
mk_dec(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
case MV_INV:
mk_inv(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
default:
NOT_IMPLEMENTED_YET();
}
TRACE("sls", tout << "Randomization candidates: ";
for (unsigned i = 0; i < unsat_constants.size(); i++)
tout << unsat_constants[i]->get_name() << ", ";
tout << std::endl;
tout << "Random move: ";
switch (mt) {
case MV_FLIP: tout << "Flip #" << bit << " in " << fd->get_name() << std::endl; break;
case MV_INC: tout << "+1 for " << fd->get_name() << std::endl; break;
case MV_DEC: tout << "-1 for " << fd->get_name() << std::endl; break;
case MV_INV: tout << "NEG for " << fd->get_name() << std::endl; break;
}
tout << "Locally randomized model: " << std::endl; m_tracker.show_model(tout););
}
m_evaluator.serious_update(fd, new_value);
m_mpz_manager.del(new_value);
}
// finds the move that increased score the most. returns best_const = -1, if no increasing move exists.
double sls_engine::find_best_move(
ptr_vector<func_decl> & to_evaluate,
double score,
unsigned & best_const,
mpz & best_value,
unsigned & new_bit,
move_type & move)
{
mpz old_value, temp;
unsigned bv_sz;
double new_score = score;
// Andreas: Introducting a bit of randomization by using a random offset and a random direction to go through the candidate list.
unsigned sz = to_evaluate.size();
unsigned offset = (m_random_offset) ? m_tracker.get_random_uint(16) % sz : 0;
for (unsigned j = 0; j < sz; j++) {
unsigned i = j + offset;
if (i >= sz) i -= sz;
//for (unsigned i = 0; i < to_evaluate.size(); i++) {
func_decl * fd = to_evaluate[i];
sort * srt = fd->get_range();
bv_sz = (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
// first try to flip every bit
for (unsigned j = 0; j < bv_sz; j++) {
// What would happen if we flipped bit #i ?
mk_flip(srt, old_value, j, temp);
if (what_if(fd, i, temp, new_score, best_const, best_value)) {
new_bit = j;
move = MV_FLIP;
}
}
if (m_bv_util.is_bv_sort(srt) && bv_sz > 1) {
if (!m_mpz_manager.is_even(old_value)) {
// for odd values, try +1
mk_inc(bv_sz, old_value, temp);
if (what_if(fd, i, temp, new_score, best_const, best_value))
move = MV_INC;
}
else {
// for even values, try -1
mk_dec(bv_sz, old_value, temp);
if (what_if(fd, i, temp, new_score, best_const, best_value))
move = MV_DEC;
}
// try inverting
mk_inv(bv_sz, old_value, temp);
if (what_if(fd, i, temp, new_score, best_const, best_value))
move = MV_INV;
}
// reset to what it was before
incremental_score(fd, old_value);
}
m_mpz_manager.del(old_value);
m_mpz_manager.del(temp);
return new_score;
}
// finds the move that increased score the most. returns best_const = -1, if no increasing move exists.
double sls_engine::find_best_move_mc(ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value) {
mpz old_value, temp, temp2;
unsigned bv_sz;
double new_score = score;
// Andreas: Introducting a bit of randomization by using a random offset and a random direction to go through the candidate list.
unsigned sz = to_evaluate.size();
unsigned offset = (m_random_offset) ? m_tracker.get_random_uint(16) % sz : 0;
for (unsigned j = 0; j < sz; j++) {
unsigned i = j + offset;
if (i >= sz) i -= sz;
//for (unsigned i = 0; i < to_evaluate.size(); i++) {
func_decl * fd = to_evaluate[i];
sort * srt = fd->get_range();
bv_sz = (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
if (m_bv_util.is_bv_sort(srt) && bv_sz > 2) {
for (unsigned j = 0; j < bv_sz; j++) {
mk_flip(srt, old_value, j, temp);
for (unsigned l = 0; l < m_vns_mc && l < bv_sz / 2; l++)
{
unsigned k = m_tracker.get_random_uint(16) % bv_sz;
while (k == j)
k = m_tracker.get_random_uint(16) % bv_sz;
mk_flip(srt, temp, k, temp2);
what_if(fd, i, temp2, new_score, best_const, best_value);
}
}
}
// reset to what it was before
incremental_score(fd, old_value);
}
m_mpz_manager.del(old_value);
m_mpz_manager.del(temp);
m_mpz_manager.del(temp2);
return new_score;
}
// main search loop
lbool sls_engine::search() {
lbool res = l_undef;
double score = 0.0, old_score = 0.0;
unsigned new_const = (unsigned)-1, new_bit;
mpz new_value;
move_type move;
score = rescore();
unsigned sz = m_assertions.size();
while (check_restart(m_stats.m_moves)) {
checkpoint();
m_stats.m_moves++;
// Andreas: Every base restart interval ...
if (m_stats.m_moves % m_restart_base == 0)
{
// ... potentially smooth the touched counters ...
m_tracker.ucb_forget(m_assertions);
// ... or normalize the top-level score.
if (m_rescore) score = rescore();
}
// get candidate variables
ptr_vector<func_decl> & to_evaluate = m_tracker.get_unsat_constants(m_assertions);
if (!to_evaluate.size())
{
res = l_true;
goto bailout;
}
// random walk with probability wp / 1024
if (m_wp && m_tracker.get_random_uint(10) < m_wp)
{
mk_random_move(to_evaluate);
score = m_tracker.get_top_sum();
continue;
}
old_score = score;
new_const = (unsigned)-1;
// find best increasing move
score = find_best_move(to_evaluate, score, new_const, new_value, new_bit, move);
// use Monte Carlo 2-bit-flip sampling if no increasing move was found previously
if (m_vns_mc && (new_const == static_cast<unsigned>(-1)))
score = find_best_move_mc(to_evaluate, score, new_const, new_value);
// repick assertion if no increasing move was found previously
if (m_vns_repick && (new_const == static_cast<unsigned>(-1)))
{
expr * q = m_tracker.get_new_unsat_assertion(m_assertions);
// only apply if another unsatisfied assertion actually exists
if (q)
{
ptr_vector<func_decl> & to_evaluate2 = m_tracker.get_unsat_constants_walksat(q);
score = find_best_move(to_evaluate2, score, new_const, new_value, new_bit, move);
if (new_const != static_cast<unsigned>(-1)) {
func_decl * fd = to_evaluate2[new_const];
score = serious_score(fd, new_value);
continue;
}
}
}
// randomize if no increasing move was found
if (new_const == static_cast<unsigned>(-1)) {
score = old_score;
if (m_walksat_repick)
m_evaluator.randomize_local(m_assertions);
else
m_evaluator.randomize_local(to_evaluate);
score = m_tracker.get_top_sum();
// update assertion weights if a weigthing is enabled (sp < 1024)
if (m_paws)
{
for (unsigned i = 0; i < sz; i++)
{
expr * q = m_assertions[i];
// smooth weights with probability sp / 1024
if (m_tracker.get_random_uint(10) < m_paws_sp)
{
if (m_mpz_manager.eq(m_tracker.get_value(q),m_one))
m_tracker.decrease_weight(q);
}
// increase weights otherwise
else
{
if (m_mpz_manager.eq(m_tracker.get_value(q),m_zero))
m_tracker.increase_weight(q);
}
}
}
}
// otherwise, apply most increasing move
else {
func_decl * fd = to_evaluate[new_const];
score = serious_score(fd, new_value);
}
}
bailout:
m_mpz_manager.del(new_value);
return res;
}
void sls_engine::operator()(goal_ref const & g, model_converter_ref & mc) {
if (g->inconsistent()) {
mc = 0;
return;
}
m_produce_models = g->models_enabled();
for (unsigned i = 0; i < g->size(); i++)
assert_expr(g->form(i));
lbool res = operator()();
if (res == l_true) {
report_tactic_progress("Number of flips:", m_stats.m_moves);
for (unsigned i = 0; i < g->size(); i++)
if (!m_mpz_manager.is_one(m_tracker.get_value(g->form(i))))
{
verbose_stream() << "Terminated before all assertions were SAT!" << std::endl;
NOT_IMPLEMENTED_YET();
}
if (m_produce_models) {
model_ref mdl = m_tracker.get_model();
mc = model2model_converter(mdl.get());
TRACE("sls_model", mc->display(tout););
}
g->reset();
}
else
mc = 0;
}
lbool sls_engine::operator()() {
m_tracker.initialize(m_assertions);
lbool res = l_undef;
do {
checkpoint();
report_tactic_progress("Searching... restarts left:", m_max_restarts - m_stats.m_restarts);
res = search();
if (res == l_undef)
{
if (m_restart_init)
m_tracker.randomize(m_assertions);
else
m_tracker.reset(m_assertions);
}
} while (res != l_true && m_stats.m_restarts++ < m_max_restarts);
verbose_stream() << "(restarts: " << m_stats.m_restarts << " flips: " << m_stats.m_moves << " time: " << std::fixed << std::setprecision(2) << m_stats.m_stopwatch.get_current_seconds() << " fps: " << (m_stats.m_moves / m_stats.m_stopwatch.get_current_seconds()) << ")" << std::endl;
return res;
}
/* Andreas: Needed for Armin's restart scheme if we don't want to use loops.
double sls_engine::get_restart_armin(unsigned cnt_restarts)
{
unsigned outer_id = (unsigned)(0.5 + sqrt(0.25 + 2 * cnt_restarts));
unsigned inner_id = cnt_restarts - (outer_id - 1) * outer_id / 2;
return pow((double) _RESTART_CONST_ARMIN_, (int) inner_id + 1);
}
*/
unsigned sls_engine::check_restart(unsigned curr_value)
{
if (curr_value > m_restart_next)
{
/* Andreas: My own scheme (= 1) seems to work best. Other schemes are disabled so that we save one parameter.
I leave the other versions as comments in case you want to try it again somewhen.
#if _RESTART_SCHEME_ == 5
m_restart_next += (unsigned)(m_restart_base * pow(_RESTART_CONST_ARMIN_, m_stats.m_restarts));
#elif _RESTART_SCHEME_ == 4
m_restart_next += (m_stats.m_restarts & (m_stats.m_restarts + 1)) ? m_restart_base : (m_restart_base * m_stats.m_restarts + 1);
#elif _RESTART_SCHEME_ == 3
m_restart_next += (unsigned)get_restart_armin(m_stats.m_restarts + 1) * m_restart_base;
#elif _RESTART_SCHEME_ == 2
m_restart_next += get_luby(m_stats.m_restarts + 1) * m_restart_base;
#elif _RESTART_SCHEME_ == 1
if (m_stats.m_restarts & 1)
m_restart_next += m_restart_base;
else
m_restart_next += (2 << (m_stats.m_restarts >> 1)) * m_restart_base;
#else
m_restart_limit += m_restart_base;
#endif */
if (m_stats.m_restarts & 1)
m_restart_next += m_restart_base;
else
m_restart_next += (2 << (m_stats.m_restarts >> 1)) * m_restart_base;
return 0;
}
return 1;
}

143
src/tactic/sls/sls_engine.h Normal file
View file

@ -0,0 +1,143 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
sls_engine.h
Abstract:
A Stochastic Local Search (SLS) engine
Author:
Christoph (cwinter) 2014-03-19
Notes:
--*/
#ifndef _SLS_ENGINE_H_
#define _SLS_ENGINE_H_
#include"stopwatch.h"
#include"lbool.h"
#include"model_converter.h"
#include"goal.h"
#include"sls_tracker.h"
#include"sls_evaluator.h"
class sls_engine {
public:
class stats {
public:
unsigned m_restarts;
stopwatch m_stopwatch;
unsigned m_full_evals;
unsigned m_incr_evals;
unsigned m_moves, m_flips, m_incs, m_decs, m_invs;
stats() :
m_restarts(0),
m_full_evals(0),
m_incr_evals(0),
m_moves(0),
m_flips(0),
m_incs(0),
m_decs(0),
m_invs(0) {
m_stopwatch.reset();
m_stopwatch.start();
}
void reset() {
m_full_evals = m_flips = m_incr_evals = 0;
m_stopwatch.reset();
m_stopwatch.start();
}
};
protected:
ast_manager & m_manager;
stats m_stats;
unsynch_mpz_manager m_mpz_manager;
powers m_powers;
mpz m_zero, m_one, m_two;
bool m_produce_models;
volatile bool m_cancel;
bv_util m_bv_util;
sls_tracker m_tracker;
sls_evaluator m_evaluator;
ptr_vector<expr> m_assertions;
unsigned m_max_restarts;
unsigned m_walksat;
unsigned m_walksat_repick;
unsigned m_wp;
unsigned m_vns_mc;
unsigned m_vns_repick;
unsigned m_paws;
unsigned m_paws_sp;
unsigned m_restart_base;
unsigned m_restart_next;
unsigned m_restart_init;
unsigned m_early_prune;
unsigned m_random_offset;
unsigned m_rescore;
typedef enum { MV_FLIP = 0, MV_INC, MV_DEC, MV_INV } move_type;
public:
sls_engine(ast_manager & m, params_ref const & p);
~sls_engine();
ast_manager & m() const { return m_manager; }
void set_cancel(bool f) { m_cancel = f; }
void cancel() { set_cancel(true); }
void reset_cancel() { set_cancel(false); }
void updt_params(params_ref const & _p);
void assert_expr(expr * e) { m_assertions.push_back(e); }
stats const & get_stats(void) { return m_stats; }
void reset_statistics(void) { m_stats.reset(); }
bool full_eval(model & mdl);
void mk_add(unsigned bv_sz, const mpz & old_value, mpz & add_value, mpz & result);
void mk_inc(unsigned bv_sz, const mpz & old_value, mpz & incremented);
void mk_dec(unsigned bv_sz, const mpz & old_value, mpz & decremented);
void mk_inv(unsigned bv_sz, const mpz & old_value, mpz & inverted);
void mk_flip(sort * s, const mpz & old_value, unsigned bit, mpz & flipped);
lbool search(void);
lbool operator()();
void operator()(goal_ref const & g, model_converter_ref & mc);
protected:
void checkpoint();
bool what_if(func_decl * fd, const unsigned & fd_inx, const mpz & temp,
double & best_score, unsigned & best_const, mpz & best_value);
double top_score();
double rescore();
double serious_score(func_decl * fd, const mpz & new_value);
double incremental_score(func_decl * fd, const mpz & new_value);
double incremental_score_prune(func_decl * fd, const mpz & new_value);
double find_best_move(ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move);
double find_best_move_mc(ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value);
void mk_random_move(ptr_vector<func_decl> & unsat_constants);
//double get_restart_armin(unsigned cnt_restarts);
unsigned check_restart(unsigned curr_value);
};
#endif

View file

@ -20,6 +20,8 @@ Notes:
#ifndef _SLS_EVALUATOR_H_
#define _SLS_EVALUATOR_H_
#include"model_evaluator.h"
#include"sls_powers.h"
#include"sls_tracker.h"
@ -34,6 +36,7 @@ class sls_evaluator {
powers & m_powers;
expr_ref_buffer m_temp_exprs;
vector<ptr_vector<expr> > m_traversal_stack;
vector<ptr_vector<expr> > m_traversal_stack_bool;
public:
sls_evaluator(ast_manager & m, bv_util & bvu, sls_tracker & t, unsynch_mpz_manager & mm, powers & p) :
@ -93,7 +96,7 @@ public:
SASSERT(n_args == 1);
const mpz & child = m_tracker.get_value(args[0]);
SASSERT(m_mpz_manager.is_one(child) || m_mpz_manager.is_zero(child));
m_mpz_manager.set(result, (m_mpz_manager.is_zero(child)) ? m_one : m_zero);
m_mpz_manager.set(result, (m_mpz_manager.is_zero(child)) ? m_one : m_zero);
break;
}
case OP_EQ: {
@ -519,11 +522,13 @@ public:
}
}
void run_update(unsigned cur_depth) {
void run_serious_update(unsigned cur_depth) {
// precondition: m_traversal_stack contains the entry point(s)
expr_fast_mark1 visited;
mpz new_value;
double new_score;
SASSERT(cur_depth < m_traversal_stack.size());
while (cur_depth != static_cast<unsigned>(-1)) {
ptr_vector<expr> & cur_depth_exprs = m_traversal_stack[cur_depth];
@ -533,8 +538,61 @@ public:
(*this)(to_app(cur), new_value);
m_tracker.set_value(cur, new_value);
m_tracker.set_score(cur, m_tracker.score(cur));
new_score = m_tracker.score(cur);
if (m_tracker.is_top_expr(cur))
{
m_tracker.adapt_top_sum(cur, new_score, m_tracker.get_score(cur));
if (m_mpz_manager.eq(new_value,m_one))
m_tracker.make_assertion(cur);
else
m_tracker.break_assertion(cur);
}
m_tracker.set_score(cur, new_score);
m_tracker.set_score_prune(cur, new_score);
if (m_tracker.has_uplinks(cur)) {
ptr_vector<expr> & ups = m_tracker.get_uplinks(cur);
for (unsigned j = 0; j < ups.size(); j++) {
expr * next = ups[j];
unsigned next_d = m_tracker.get_distance(next);
SASSERT(next_d < cur_depth);
if (!visited.is_marked(next)) {
m_traversal_stack[next_d].push_back(next);
visited.mark(next);
}
}
}
}
cur_depth_exprs.reset();
cur_depth--;
}
m_mpz_manager.del(new_value);
}
void run_update(unsigned cur_depth) {
// precondition: m_traversal_stack contains the entry point(s)
expr_fast_mark1 visited;
mpz new_value;
double new_score;
SASSERT(cur_depth < m_traversal_stack.size());
while (cur_depth != static_cast<unsigned>(-1)) {
ptr_vector<expr> & cur_depth_exprs = m_traversal_stack[cur_depth];
for (unsigned i = 0; i < cur_depth_exprs.size(); i++) {
expr * cur = cur_depth_exprs[i];
(*this)(to_app(cur), new_value);
m_tracker.set_value(cur, new_value);
new_score = m_tracker.score(cur);
if (m_tracker.is_top_expr(cur))
m_tracker.adapt_top_sum(cur, new_score, m_tracker.get_score(cur));
m_tracker.set_score(cur, new_score);
if (m_tracker.has_uplinks(cur)) {
ptr_vector<expr> & ups = m_tracker.get_uplinks(cur);
for (unsigned j = 0; j < ups.size(); j++) {
@ -569,8 +627,7 @@ public:
m_traversal_stack[cur_depth].push_back(ep);
if (cur_depth > max_depth) max_depth = cur_depth;
}
run_update(max_depth);
run_serious_update(max_depth);
}
void update(func_decl * fd, const mpz & new_value) {
@ -584,36 +641,174 @@ public:
run_update(cur_depth);
}
void randomize_local(goal_ref const & g) {
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g);
void serious_update(func_decl * fd, const mpz & new_value) {
m_tracker.set_value(fd, new_value);
expr * ep = m_tracker.get_entry_point(fd);
unsigned cur_depth = m_tracker.get_distance(ep);
if (m_traversal_stack.size() <= cur_depth)
m_traversal_stack.resize(cur_depth+1);
m_traversal_stack[cur_depth].push_back(ep);
// Randomize _all_ candidates:
run_serious_update(cur_depth);
}
//// bool did_something = false;
//for (unsigned i = 0; i < unsat_constants.size(); i++) {
// func_decl * fd = unsat_constants[i];
// mpz temp = m_tracker.get_random(fd->get_range());
// // if (m_mpz_manager.neq(temp, m_tracker.get_value(fd))) {
// // did_something = true;
// // }
// update(fd, temp);
// m_mpz_manager.del(temp);
//}
unsigned run_update_bool_prune(unsigned cur_depth) {
expr_fast_mark1 visited;
double prune_score, new_score;
unsigned pot_benefits = 0;
SASSERT(cur_depth < m_traversal_stack_bool.size());
ptr_vector<expr> & cur_depth_exprs = m_traversal_stack_bool[cur_depth];
for (unsigned i = 0; i < cur_depth_exprs.size(); i++) {
expr * cur = cur_depth_exprs[i];
new_score = m_tracker.score(cur);
if (m_tracker.is_top_expr(cur))
m_tracker.adapt_top_sum(cur, new_score, m_tracker.get_score(cur));
prune_score = m_tracker.get_score_prune(cur);
m_tracker.set_score(cur, new_score);
if ((new_score > prune_score) && (m_tracker.has_pos_occ(cur)))
pot_benefits = 1;
if ((new_score <= prune_score) && (m_tracker.has_neg_occ(cur)))
pot_benefits = 1;
if (m_tracker.has_uplinks(cur)) {
ptr_vector<expr> & ups = m_tracker.get_uplinks(cur);
for (unsigned j = 0; j < ups.size(); j++) {
expr * next = ups[j];
unsigned next_d = m_tracker.get_distance(next);
SASSERT(next_d < cur_depth);
if (!visited.is_marked(next)) {
m_traversal_stack_bool[next_d].push_back(next);
visited.mark(next);
}
}
}
}
cur_depth_exprs.reset();
cur_depth--;
while (cur_depth != static_cast<unsigned>(-1)) {
ptr_vector<expr> & cur_depth_exprs = m_traversal_stack_bool[cur_depth];
if (pot_benefits)
{
unsigned cur_size = cur_depth_exprs.size();
for (unsigned i = 0; i < cur_size; i++) {
expr * cur = cur_depth_exprs[i];
new_score = m_tracker.score(cur);
if (m_tracker.is_top_expr(cur))
m_tracker.adapt_top_sum(cur, new_score, m_tracker.get_score(cur));
m_tracker.set_score(cur, new_score);
if (m_tracker.has_uplinks(cur)) {
ptr_vector<expr> & ups = m_tracker.get_uplinks(cur);
for (unsigned j = 0; j < ups.size(); j++) {
expr * next = ups[j];
unsigned next_d = m_tracker.get_distance(next);
SASSERT(next_d < cur_depth);
if (!visited.is_marked(next)) {
m_traversal_stack_bool[next_d].push_back(next);
visited.mark(next);
}
}
}
}
}
cur_depth_exprs.reset();
cur_depth--;
}
return pot_benefits;
}
void run_update_prune(unsigned max_depth) {
// precondition: m_traversal_stack contains the entry point(s)
expr_fast_mark1 visited;
mpz new_value;
unsigned cur_depth = max_depth;
SASSERT(cur_depth < m_traversal_stack.size());
while (cur_depth != static_cast<unsigned>(-1)) {
ptr_vector<expr> & cur_depth_exprs = m_traversal_stack[cur_depth];
for (unsigned i = 0; i < cur_depth_exprs.size(); i++) {
expr * cur = cur_depth_exprs[i];
(*this)(to_app(cur), new_value);
m_tracker.set_value(cur, new_value);
// Andreas: Should actually always have uplinks ...
if (m_tracker.has_uplinks(cur)) {
ptr_vector<expr> & ups = m_tracker.get_uplinks(cur);
for (unsigned j = 0; j < ups.size(); j++) {
expr * next = ups[j];
unsigned next_d = m_tracker.get_distance(next);
SASSERT(next_d < cur_depth);
if (!visited.is_marked(next)) {
if (m_manager.is_bool(next))
m_traversal_stack_bool[max_depth].push_back(next);
else
m_traversal_stack[next_d].push_back(next);
visited.mark(next);
}
}
}
}
cur_depth_exprs.reset();
cur_depth--;
}
m_mpz_manager.del(new_value);
}
unsigned update_prune(func_decl * fd, const mpz & new_value) {
m_tracker.set_value(fd, new_value);
expr * ep = m_tracker.get_entry_point(fd);
unsigned cur_depth = m_tracker.get_distance(ep);
if (m_traversal_stack_bool.size() <= cur_depth)
m_traversal_stack_bool.resize(cur_depth+1);
if (m_traversal_stack.size() <= cur_depth)
m_traversal_stack.resize(cur_depth+1);
if (m_manager.is_bool(ep))
m_traversal_stack_bool[cur_depth].push_back(ep);
else
{
m_traversal_stack[cur_depth].push_back(ep);
run_update_prune(cur_depth);
}
return run_update_bool_prune(cur_depth);
}
void randomize_local(ptr_vector<func_decl> & unsat_constants) {
// Randomize _one_ candidate:
unsigned r = m_tracker.get_random_uint(16) % unsat_constants.size();
func_decl * fd = unsat_constants[r];
mpz temp = m_tracker.get_random(fd->get_range());
update(fd, temp);
serious_update(fd, temp);
m_mpz_manager.del(temp);
TRACE("sls", /*tout << "Randomization candidates: ";
for (unsigned i = 0; i < unsat_constants.size(); i++)
tout << unsat_constants[i]->get_name() << ", ";
tout << std::endl;*/
tout << "Randomization candidate: " << unsat_constants[r]->get_name() << std::endl;
TRACE("sls", tout << "Randomization candidate: " << unsat_constants[r]->get_name() << std::endl;
tout << "Locally randomized model: " << std::endl;
m_tracker.show_model(tout); );
}
void randomize_local(expr * e) {
randomize_local(m_tracker.get_constants(e));
}
void randomize_local(ptr_vector<expr> const & as) {
randomize_local(m_tracker.get_unsat_constants(as));
}
};

View file

@ -2,7 +2,25 @@ def_module_params('sls',
export=True,
description='Experimental Stochastic Local Search Solver (for QFBV only).',
params=(max_memory_param(),
('restarts', UINT, UINT_MAX, '(max) number of restarts'),
('plateau_limit', UINT, 10, 'pleateau limit'),
('random_seed', UINT, 0, 'random seed')
('max_restarts', UINT, UINT_MAX, 'maximum number of restarts'),
('walksat', BOOL, 1, 'use walksat assertion selection (instead of gsat)'),
('walksat_ucb', BOOL, 1, 'use bandit heuristic for walksat assertion selection (instead of random)'),
('walksat_ucb_constant', DOUBLE, 20.0, 'the ucb constant c in the term score + c * f(touched)'),
('walksat_ucb_init', BOOL, 0, 'initialize total ucb touched to formula size'),
('walksat_ucb_forget', DOUBLE, 1.0, 'scale touched by this factor every base restart interval'),
('walksat_ucb_noise', DOUBLE, 0.0002, 'add noise 0 <= 256 * ucb_noise to ucb score for assertion selection'),
('walksat_repick', BOOL, 1, 'repick assertion if randomizing in local minima'),
('scale_unsat', DOUBLE, 0.5, 'scale score of unsat expressions by this factor'),
('paws_init', UINT, 40, 'initial/minimum assertion weights'),
('paws_sp', UINT, 52, 'smooth assertion weights with probability paws_sp / 1024'),
('wp', UINT, 100, 'random walk with probability wp / 1024'),
('vns_mc', UINT, 0, 'in local minima, try Monte Carlo sampling vns_mc many 2-bit-flips per bit'),
('vns_repick', BOOL, 0, 'in local minima, try picking a different assertion (only for walksat)'),
('restart_base', UINT, 100, 'base restart interval given by moves per run'),
('restart_init', BOOL, 0, 'initialize to 0 or random value (= 1) after restart'),
('early_prune', BOOL, 1, 'use early pruning for score prediction'),
('random_offset', BOOL, 1, 'use random offset for candidate evaluation'),
('rescore', BOOL, 1, 'rescore/normalize top-level score every base restart interval'),
('track_unsat', BOOL, 0, 'keep a list of unsat assertions as done in SAT - currently disabled internally'),
('random_seed', UINT, 0, 'random seed')
))

View file

@ -16,507 +16,30 @@ Author:
Notes:
--*/
#include<iomanip>
#include"map.h"
#include"nnf.h"
#include"cooperate.h"
#include"ast_smt2_pp.h"
#include"ast_pp.h"
#include"var_subst.h"
#include"model_pp.h"
#include"model_evaluator.h"
#include"solve_eqs_tactic.h"
#include"elim_uncnstr_tactic.h"
#include"bv_size_reduction_tactic.h"
#include"max_bv_sharing_tactic.h"
#include"simplify_tactic.h"
#include"stopwatch.h"
#include"propagate_values_tactic.h"
#include"sls_tactic.h"
#include"ctx_simplify_tactic.h"
#include"elim_uncnstr_tactic.h"
#include"nnf_tactic.h"
#include"stopwatch.h"
#include"sls_tactic.h"
#include"sls_params.hpp"
#include"sls_evaluator.h"
#include"sls_tracker.h"
#include"sls_engine.h"
class sls_tactic : public tactic {
class stats {
public:
unsigned m_restarts;
stopwatch m_stopwatch;
unsigned m_full_evals;
unsigned m_incr_evals;
unsigned m_moves, m_flips, m_incs, m_decs, m_invs;
stats() :
m_restarts(0),
m_full_evals(0),
m_incr_evals(0),
m_moves(0),
m_flips(0),
m_incs(0),
m_decs(0),
m_invs(0) {
m_stopwatch.reset();
m_stopwatch.start();
}
void reset() {
m_full_evals = m_flips = m_incr_evals = 0;
m_stopwatch.reset();
m_stopwatch.start();
}
};
struct imp {
ast_manager & m_manager;
stats & m_stats;
unsynch_mpz_manager m_mpz_manager;
powers m_powers;
mpz m_zero, m_one, m_two;
bool m_produce_models;
volatile bool m_cancel;
bv_util m_bv_util;
sls_tracker m_tracker;
sls_evaluator m_evaluator;
unsigned m_max_restarts;
unsigned m_plateau_limit;
typedef enum { MV_FLIP = 0, MV_INC, MV_DEC, MV_INV } move_type;
imp(ast_manager & m, params_ref const & p, stats & s) :
m_manager(m),
m_stats(s),
m_powers(m_mpz_manager),
m_zero(m_mpz_manager.mk_z(0)),
m_one(m_mpz_manager.mk_z(1)),
m_two(m_mpz_manager.mk_z(2)),
m_cancel(false),
m_bv_util(m),
m_tracker(m, m_bv_util, m_mpz_manager, m_powers),
m_evaluator(m, m_bv_util, m_tracker, m_mpz_manager, m_powers)
{
updt_params(p);
}
~imp() {
m_mpz_manager.del(m_zero);
m_mpz_manager.del(m_one);
m_mpz_manager.del(m_two);
}
ast_manager & m() const { return m_manager; }
void set_cancel(bool f) { m_cancel = f; }
void cancel() { set_cancel(true); }
void reset_cancel() { set_cancel(false); }
static void collect_param_descrs(param_descrs & r) {
sls_params::collect_param_descrs(r);
}
void updt_params(params_ref const & _p) {
sls_params p(_p);
m_produce_models = _p.get_bool("model", false);
m_max_restarts = p.restarts();
m_tracker.set_random_seed(p.random_seed());
m_plateau_limit = p.plateau_limit();
}
void checkpoint() {
if (m_cancel)
throw tactic_exception(TACTIC_CANCELED_MSG);
cooperate("sls");
}
bool full_eval(goal_ref const & g, model & mdl) {
bool res = true;
unsigned sz = g->size();
for (unsigned i = 0; i < sz && res; i++) {
checkpoint();
expr_ref o(m_manager);
if (!mdl.eval(g->form(i), o, true))
exit(ERR_INTERNAL_FATAL);
res = m_manager.is_true(o.get());
}
TRACE("sls", tout << "Evaluation: " << res << std::endl;);
return res;
}
double top_score(goal_ref const & g) {
#if 0
double min = m_tracker.get_score(g->form(0));
unsigned sz = g->size();
for (unsigned i = 1; i < sz; i++) {
double q = m_tracker.get_score(g->form(i));
if (q < min) min = q;
}
TRACE("sls_top", tout << "Score distribution:";
for (unsigned i = 0; i < sz; i++)
tout << " " << m_tracker.get_score(g->form(i));
tout << " MIN: " << min << std::endl; );
return min;
#else
double top_sum = 0.0;
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
top_sum += m_tracker.get_score(g->form(i));
}
TRACE("sls_top", tout << "Score distribution:";
for (unsigned i = 0; i < sz; i++)
tout << " " << m_tracker.get_score(g->form(i));
tout << " AVG: " << top_sum / (double) sz << std::endl; );
return top_sum / (double) sz;
#endif
}
double rescore(goal_ref const & g) {
m_evaluator.update_all();
m_stats.m_full_evals++;
return top_score(g);
}
double incremental_score(goal_ref const & g, func_decl * fd, const mpz & new_value) {
m_evaluator.update(fd, new_value);
m_stats.m_incr_evals++;
return top_score(g);
}
bool what_if(goal_ref const & g, func_decl * fd, const unsigned & fd_inx, const mpz & temp,
double & best_score, unsigned & best_const, mpz & best_value) {
#ifdef Z3DEBUG
mpz old_value;
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
#endif
double r = incremental_score(g, fd, temp);
#ifdef Z3DEBUG
TRACE("sls_whatif", tout << "WHAT IF " << fd->get_name() << " WERE " << m_mpz_manager.to_string(temp) <<
" --> " << r << std::endl; );
m_mpz_manager.del(old_value);
#endif
if (r >= best_score) {
best_score = r;
best_const = fd_inx;
m_mpz_manager.set(best_value, temp);
return true;
}
return false;
}
void mk_inc(unsigned bv_sz, const mpz & old_value, mpz & incremented) {
unsigned shift;
m_mpz_manager.add(old_value, m_one, incremented);
if (m_mpz_manager.is_power_of_two(incremented, shift) && shift == bv_sz)
m_mpz_manager.set(incremented, m_zero);
}
void mk_dec(unsigned bv_sz, const mpz & old_value, mpz & decremented) {
if (m_mpz_manager.is_zero(old_value)) {
m_mpz_manager.set(decremented, m_powers(bv_sz));
m_mpz_manager.dec(decremented);
}
else
m_mpz_manager.sub(old_value, m_one, decremented);
}
void mk_inv(unsigned bv_sz, const mpz & old_value, mpz & inverted) {
m_mpz_manager.bitwise_not(bv_sz, old_value, inverted);
}
void mk_flip(sort * s, const mpz & old_value, unsigned bit, mpz & flipped) {
m_mpz_manager.set(flipped, m_zero);
if (m_bv_util.is_bv_sort(s)) {
mpz mask;
m_mpz_manager.set(mask, m_powers(bit));
m_mpz_manager.bitwise_xor(old_value, mask, flipped);
m_mpz_manager.del(mask);
}
else if (m_manager.is_bool(s))
m_mpz_manager.set(flipped, (m_mpz_manager.is_zero(old_value)) ? m_one : m_zero);
else
NOT_IMPLEMENTED_YET();
}
void mk_random_move(goal_ref const & g) {
unsigned rnd_mv = 0;
if (m_mpz_manager.is_one(m_tracker.get_random_bool())) rnd_mv=2;
if (m_mpz_manager.is_one(m_tracker.get_random_bool())) rnd_mv++;
move_type mt = (move_type) rnd_mv;
// inversion doesn't make sense, let's do a flip instead.
if (mt == MV_INV) mt = MV_FLIP;
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g);
unsigned ucc = unsat_constants.size();
unsigned rc = (m_tracker.get_random_uint((ucc < 16) ? 4 : (ucc < 256) ? 8 : (ucc < 4096) ? 12 : (ucc < 65536) ? 16 : 32)) % ucc;
func_decl * fd = unsat_constants[rc];
mpz new_value;
unsigned bit = 0;
switch (mt)
{
case MV_FLIP: {
unsigned bv_sz = m_bv_util.get_bv_size(fd->get_range());
bit = (m_tracker.get_random_uint((bv_sz < 16) ? 4 : (bv_sz < 256) ? 8 : (bv_sz < 4096) ? 12 : (bv_sz < 65536) ? 16 : 32)) % bv_sz;
mk_flip(fd->get_range(), m_tracker.get_value(fd), bit, new_value);
break;
}
case MV_INC:
mk_inc(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
case MV_DEC:
mk_dec(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
case MV_INV:
mk_inv(m_bv_util.get_bv_size(fd->get_range()), m_tracker.get_value(fd), new_value);
break;
default:
NOT_IMPLEMENTED_YET();
}
m_evaluator.update(fd, new_value);
TRACE("sls", tout << "Randomization candidates: ";
for (unsigned i = 0; i < unsat_constants.size(); i++)
tout << unsat_constants[i]->get_name() << ", ";
tout << std::endl;
tout << "Random move: ";
switch (mt) {
case MV_FLIP: tout << "Flip #" << bit << " in " << fd->get_name() << std::endl; break;
case MV_INC: tout << "+1 for " << fd->get_name() << std::endl; break;
case MV_DEC: tout << "-1 for " << fd->get_name() << std::endl; break;
case MV_INV: tout << "NEG for " << fd->get_name() << std::endl; break;
}
tout << "Locally randomized model: " << std::endl; m_tracker.show_model(tout); );
m_mpz_manager.del(new_value);
}
double find_best_move(goal_ref const & g, ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move) {
mpz old_value, temp;
unsigned bv_sz;
double new_score = score;
for (unsigned i = 0; i < to_evaluate.size() && new_score < 1.0 ; i++) {
func_decl * fd = to_evaluate[i];
sort * srt = fd->get_range();
bv_sz = (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
// first try to flip every bit
for (unsigned j = 0; j < bv_sz && new_score < 1.0; j++) {
// What would happen if we flipped bit #i ?
mk_flip(srt, old_value, j, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value)) {
new_bit = j;
move = MV_FLIP;
}
}
if (m_bv_util.is_bv_sort(srt) && bv_sz > 1) {
if (!m_mpz_manager.is_even(old_value)) {
// for odd values, try +1
mk_inc(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_INC;
}
else {
// for even values, try -1
mk_dec(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_DEC;
}
// try inverting
mk_inv(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_INV;
}
// reset to what it was before
double check = incremental_score(g, fd, old_value);
SASSERT(check == score);
}
m_mpz_manager.del(old_value);
m_mpz_manager.del(temp);
return new_score;
}
lbool search(goal_ref const & g) {
lbool res = l_undef;
double score = 0.0, old_score = 0.0;
unsigned new_const = (unsigned)-1, new_bit = 0;
mpz new_value;
move_type move;
score = rescore(g);
TRACE("sls", tout << "Starting search, initial score = " << std::setprecision(32) << score << std::endl;
tout << "Score distribution:";
for (unsigned i = 0; i < g->size(); i++)
tout << " " << std::setprecision(3) << m_tracker.get_score(g->form(i));
tout << " TOP: " << score << std::endl; );
unsigned plateau_cnt = 0;
while (plateau_cnt < m_plateau_limit) {
do {
checkpoint();
old_score = score;
new_const = (unsigned)-1;
ptr_vector<func_decl> & to_evaluate = m_tracker.get_unsat_constants(g);
TRACE("sls_constants", tout << "Evaluating these constants: " << std::endl;
for (unsigned i = 0 ; i < to_evaluate.size(); i++)
tout << to_evaluate[i]->get_name() << std::endl; );
score = find_best_move(g, to_evaluate, score, new_const, new_value, new_bit, move);
if (new_const == static_cast<unsigned>(-1)) {
TRACE("sls", tout << "Local maximum reached; unsatisfied constraints: " << std::endl;
for (unsigned i = 0; i < g->size(); i++) {
if (!m_mpz_manager.is_one(m_tracker.get_value(g->form(i))))
tout << mk_ismt2_pp(g->form(i), m_manager) << std::endl;
});
TRACE("sls_max", m_tracker.show_model(tout);
tout << "Scores: " << std::endl;
for (unsigned i = 0; i < g->size(); i++)
tout << mk_ismt2_pp(g->form(i), m_manager) << " ---> " <<
m_tracker.get_score(g->form(i)) << std::endl; );
score = old_score;
}
else {
m_stats.m_moves++;
func_decl * fd = to_evaluate[new_const];
TRACE("sls", tout << "Setting " << fd->get_name() << " to " << m_mpz_manager.to_string(new_value) << " (Move: ";
switch (move) {
case MV_FLIP:
tout << "Flip";
if (!m_manager.is_bool(fd->get_range())) tout << " #" << new_bit;
break;
case MV_INC:
tout << "+1";
break;
case MV_DEC:
tout << "-1";
break;
case MV_INV:
tout << "NEG";
break;
};
tout << ") ; new score = " << std::setprecision(32) << score << std::endl; );
switch (move) {
case MV_FLIP: m_stats.m_flips++; break;
case MV_INC: m_stats.m_incs++; break;
case MV_DEC: m_stats.m_decs++; break;
case MV_INV: m_stats.m_invs++; break;
}
score = incremental_score(g, fd, new_value);
TRACE("sls", tout << "Score distribution:";
for (unsigned i = 0; i < g->size(); i++)
tout << " " << std::setprecision(3) << m_tracker.get_score(g->form(i));
tout << " TOP: " << score << std::endl; );
}
if (score >= 1.0) {
// score could theoretically be imprecise.
bool all_true = true;
for (unsigned i = 0; i < g->size() && all_true; i++)
if (!m_mpz_manager.is_one(m_tracker.get_value(g->form(i))))
all_true=false;
if (all_true) {
res = l_true; // sat
goto bailout;
} else
TRACE("sls", tout << "Imprecise 1.0 score" << std::endl;);
}
}
while (score > old_score && res == l_undef);
if (score != old_score)
plateau_cnt = 0;
else {
plateau_cnt++;
if (plateau_cnt < m_plateau_limit) {
TRACE("sls", tout << "In a plateau (" << plateau_cnt << "/" << m_plateau_limit << "); randomizing locally." << std::endl; );
m_evaluator.randomize_local(g);
//mk_random_move(g);
score = top_score(g);
}
}
}
bailout:
m_mpz_manager.del(new_value);
return res;
}
void operator()(goal_ref const & g, model_converter_ref & mc) {
if (g->inconsistent()) {
mc = 0;
return;
}
m_tracker.initialize(g);
lbool res = l_undef;
do {
checkpoint();
if ((m_stats.m_restarts % 100) == 0)
report_tactic_progress("Searching... restarts left:", m_max_restarts - m_stats.m_restarts);
res = search(g);
if (res == l_undef)
m_tracker.randomize();
}
while (res != l_true && m_stats.m_restarts++ < m_max_restarts);
if (res == l_true) {
if (m_produce_models) {
model_ref mdl = m_tracker.get_model();
mc = model2model_converter(mdl.get());
TRACE("sls_model", mc->display(tout); );
}
g->reset();
}
else
mc = 0;
}
};
class sls_tactic : public tactic {
ast_manager & m;
params_ref m_params;
imp * m_imp;
stats m_stats;
sls_engine * m_engine;
public:
sls_tactic(ast_manager & _m, params_ref const & p):
m(_m),
m_params(p) {
m_imp = alloc(imp, m, p, m_stats);
m_engine = alloc(sls_engine, m, p);
}
virtual tactic * translate(ast_manager & m) {
@ -524,16 +47,16 @@ public:
}
virtual ~sls_tactic() {
dealloc(m_imp);
dealloc(m_engine);
}
virtual void updt_params(params_ref const & p) {
m_params = p;
m_imp->updt_params(p);
m_engine->updt_params(p);
}
virtual void collect_param_descrs(param_descrs & r) {
imp::collect_param_descrs(r);
sls_params::collect_param_descrs(r);
}
virtual void operator()(goal_ref const & g,
@ -541,14 +64,13 @@ public:
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
SASSERT(g->is_well_sorted());
m_imp->m_produce_models = g->models_enabled();
SASSERT(g->is_well_sorted());
mc = 0; pc = 0; core = 0; result.reset();
TRACE("sls", g->display(tout););
tactic_report report("sls", *g);
m_imp->operator()(g, mc);
m_engine->operator()(g, mc);
g->inc_depth();
result.push_back(g.get());
@ -557,35 +79,36 @@ public:
}
virtual void cleanup() {
imp * d = alloc(imp, m, m_params, m_stats);
sls_engine * d = alloc(sls_engine, m, m_params);
#pragma omp critical (tactic_cancel)
{
std::swap(d, m_imp);
std::swap(d, m_engine);
}
dealloc(d);
}
virtual void collect_statistics(statistics & st) const {
double seconds = m_stats.m_stopwatch.get_current_seconds();
st.update("sls restarts", m_stats.m_restarts);
st.update("sls full evals", m_stats.m_full_evals);
st.update("sls incr evals", m_stats.m_incr_evals);
st.update("sls incr evals/sec", m_stats.m_incr_evals/ seconds);
st.update("sls FLIP moves", m_stats.m_flips);
st.update("sls INC moves", m_stats.m_incs);
st.update("sls DEC moves", m_stats.m_decs);
st.update("sls INV moves", m_stats.m_invs);
st.update("sls moves", m_stats.m_moves);
st.update("sls moves/sec", m_stats.m_moves / seconds);
sls_engine::stats const & stats = m_engine->get_stats();
double seconds = stats.m_stopwatch.get_current_seconds();
st.update("sls restarts", stats.m_restarts);
st.update("sls full evals", stats.m_full_evals);
st.update("sls incr evals", stats.m_incr_evals);
st.update("sls incr evals/sec", stats.m_incr_evals / seconds);
st.update("sls FLIP moves", stats.m_flips);
st.update("sls INC moves", stats.m_incs);
st.update("sls DEC moves", stats.m_decs);
st.update("sls INV moves", stats.m_invs);
st.update("sls moves", stats.m_moves);
st.update("sls moves/sec", stats.m_moves / seconds);
}
virtual void reset_statistics() {
m_stats.reset();
m_engine->reset_statistics();
}
virtual void set_cancel(bool f) {
if (m_imp)
m_imp->set_cancel(f);
if (m_engine)
m_engine->set_cancel(f);
}
};
@ -620,6 +143,9 @@ tactic * mk_preamble(ast_manager & m, params_ref const & p) {
// conservative gaussian elimination.
gaussian_p.set_uint("gaussian_max_occs", 2);
params_ref ctx_p;
ctx_p.set_uint("max_depth", 32);
ctx_p.set_uint("max_steps", 5000000);
return and_then(and_then(mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
using_params(mk_solve_eqs_tactic(m), gaussian_p),
@ -632,7 +158,7 @@ tactic * mk_preamble(ast_manager & m, params_ref const & p) {
}
tactic * mk_qfbv_sls_tactic(ast_manager & m, params_ref const & p) {
tactic * t = and_then(mk_preamble(m, p), mk_sls_tactic(m));
tactic * t = and_then(mk_preamble(m, p), mk_sls_tactic(m, p));
t->updt_params(p);
return t;
}

View file

@ -23,8 +23,8 @@ Notes:
class ast_manager;
class tactic;
tactic * mk_sls_tactic(ast_manager & m, params_ref const & p = params_ref());
tactic * mk_qfbv_sls_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("qfbv-sls", "(try to) solve using stochastic local search for QF_BV.", "mk_qfbv_sls_tactic(m, p)")
*/

View file

@ -20,6 +20,16 @@ Notes:
#ifndef _SLS_TRACKER_H_
#define _SLS_TRACKER_H_
#include<math.h>
#include"for_each_expr.h"
#include"ast_smt2_pp.h"
#include"bv_decl_plugin.h"
#include"model.h"
#include"sls_params.hpp"
#include"sls_powers.h"
class sls_tracker {
ast_manager & m_manager;
unsynch_mpz_manager & m_mpz_manager;
@ -28,21 +38,26 @@ class sls_tracker {
random_gen m_rng;
unsigned m_random_bits;
unsigned m_random_bits_cnt;
mpz m_zero, m_one, m_two;
mpz m_zero, m_one, m_two;
struct value_score {
value_score() : m(0), value(unsynch_mpz_manager::mk_z(0)), score(0.0), distance(0) { };
value_score() : m(0), value(unsynch_mpz_manager::mk_z(0)), score(0.0), score_prune(0.0), has_pos_occ(0), has_neg_occ(0), distance(0), touched(1) {};
~value_score() { if (m) m->del(value); }
unsynch_mpz_manager * m;
mpz value;
double score;
double score_prune;
unsigned has_pos_occ;
unsigned has_neg_occ;
unsigned distance; // max distance from any root
unsigned touched;
value_score & operator=(const value_score & other) {
SASSERT(m == 0 || m == other.m);
if (m) m->set(value, 0); else m = other.m;
m->set(value, other.value);
score = other.score;
distance = other.distance;
touched = other.touched;
return *this;
}
};
@ -54,12 +69,29 @@ private:
typedef obj_map<expr, value_score> scores_type;
typedef obj_map<expr, ptr_vector<expr> > uplinks_type;
typedef obj_map<expr, ptr_vector<func_decl> > occ_type;
obj_hashtable<expr> m_top_expr;
scores_type m_scores;
uplinks_type m_uplinks;
entry_point_type m_entry_points;
ptr_vector<func_decl> m_constants;
ptr_vector<func_decl> m_temp_constants;
occ_type m_constants_occ;
unsigned m_last_pos;
unsigned m_walksat;
unsigned m_ucb;
double m_ucb_constant;
unsigned m_ucb_init;
double m_ucb_forget;
double m_ucb_noise;
unsigned m_touched;
double m_scale_unsat;
unsigned m_paws_init;
obj_map<expr, unsigned> m_where_false;
expr** m_list_false;
unsigned m_track_unsat;
obj_map<expr, unsigned> m_weights;
double m_top_sum;
obj_hashtable<expr> m_temp_seen;
public:
sls_tracker(ast_manager & m, bv_util & bvu, unsynch_mpz_manager & mm, powers & p) :
@ -79,6 +111,59 @@ public:
m_mpz_manager.del(m_two);
}
void updt_params(params_ref const & _p) {
sls_params p(_p);
m_walksat = p.walksat();
m_ucb = p.walksat_ucb();
m_ucb_constant = p.walksat_ucb_constant();
m_ucb_init = p.walksat_ucb_init();
m_ucb_forget = p.walksat_ucb_forget();
m_ucb_noise = p.walksat_ucb_noise();
m_scale_unsat = p.scale_unsat();
m_paws_init = p.paws_init();
// Andreas: track_unsat is currently disabled because I cannot guarantee that it is not buggy.
// If you want to use it, you will also need to change comments in the assertion selection.
m_track_unsat = 0;//p.track_unsat();
}
/* Andreas: Tried to give some measure for the formula size by the following two methods but both are not used currently.
unsigned get_formula_size() {
return m_scores.size();
}
double get_avg_bw(goal_ref const & g) {
double sum = 0.0;
unsigned count = 0;
for (unsigned i = 0; i < g->size(); i++)
{
m_temp_constants.reset();
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(g->form(i));
unsigned sz = this_decls.size();
for (unsigned i = 0; i < sz; i++) {
func_decl * fd = this_decls[i];
m_temp_constants.push_back(fd);
sort * srt = fd->get_range();
sum += (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
count++;
}
}
return sum / count;
}*/
inline void adapt_top_sum(expr * e, double add, double sub) {
m_top_sum += m_weights.find(e) * (add - sub);
}
inline void set_top_sum(double new_score) {
m_top_sum = new_score;
}
inline double get_top_sum() {
return m_top_sum;
}
inline void set_value(expr * n, const mpz & r) {
SASSERT(m_scores.contains(n));
m_mpz_manager.set(m_scores.find(n).value, r);
@ -123,6 +208,26 @@ public:
return get_score(ep);
}
inline void set_score_prune(expr * n, double score) {
SASSERT(m_scores.contains(n));
m_scores.find(n).score_prune = score;
}
inline double & get_score_prune(expr * n) {
SASSERT(m_scores.contains(n));
return m_scores.find(n).score_prune;
}
inline unsigned has_pos_occ(expr * n) {
SASSERT(m_scores.contains(n));
return m_scores.find(n).has_pos_occ;
}
inline unsigned has_neg_occ(expr * n) {
SASSERT(m_scores.contains(n));
return m_scores.find(n).has_neg_occ;
}
inline unsigned get_distance(expr * n) {
SASSERT(m_scores.contains(n));
return m_scores.find(n).distance;
@ -146,11 +251,32 @@ public:
return m_uplinks.contains(n);
}
inline bool is_top_expr(expr * n) {
return m_top_expr.contains(n);
}
inline ptr_vector<expr> & get_uplinks(expr * n) {
SASSERT(m_uplinks.contains(n));
return m_uplinks.find(n);
}
inline void ucb_forget(ptr_vector<expr> & as) {
if (m_ucb_forget < 1.0)
{
expr * e;
unsigned touched_old, touched_new;
for (unsigned i = 0; i < as.size(); i++)
{
e = as[i];
touched_old = m_scores.find(e).touched;
touched_new = (unsigned)((touched_old - 1) * m_ucb_forget + 1);
m_scores.find(e).touched = touched_new;
m_touched += touched_new - touched_old;
}
}
}
void initialize(app * n) {
// Build score table
if (!m_scores.contains(n)) {
@ -226,12 +352,12 @@ public:
}
};
void calculate_expr_distances(goal_ref const & g) {
void calculate_expr_distances(ptr_vector<expr> const & as) {
// precondition: m_scores is set up.
unsigned sz = g->size();
unsigned sz = as.size();
ptr_vector<app> stack;
for (unsigned i = 0; i < sz; i++)
stack.push_back(to_app(g->form(i)));
stack.push_back(to_app(as[i]));
while (!stack.empty()) {
app * cur = stack.back();
stack.pop_back();
@ -249,19 +375,53 @@ public:
}
}
void initialize(goal_ref const & g) {
/* Andreas: Used this at some point to have values for the non-top-level expressions.
However, it did not give better performance but even cause some additional m/o - is not used currently.
void initialize_recursive(init_proc proc, expr_mark visited, expr * e) {
if (m_manager.is_and(e) || m_manager.is_or(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
unsigned int sz = a->get_num_args();
for (unsigned int i = 0; i < sz; i++) {
expr * q = args[i];
initialize_recursive(proc, visited, q);
}
}
for_each_expr(proc, visited, e);
}
void initialize_recursive(expr * e) {
if (m_manager.is_and(e) || m_manager.is_or(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
unsigned int sz = a->get_num_args();
for (unsigned int i = 0; i < sz; i++) {
expr * q = args[i];
initialize_recursive(q);
}
}
ptr_vector<func_decl> t;
m_constants_occ.insert_if_not_there(e, t);
find_func_decls_proc ffd_proc(m_manager, m_constants_occ.find(e));
expr_fast_mark1 visited;
quick_for_each_expr(ffd_proc, visited, e);
}*/
void initialize(ptr_vector<expr> const & as) {
init_proc proc(m_manager, *this);
expr_mark visited;
unsigned sz = g->size();
unsigned sz = as.size();
for (unsigned i = 0; i < sz; i++) {
expr * e = g->form(i);
expr * e = as[i];
if (!m_top_expr.contains(e))
m_top_expr.insert(e);
for_each_expr(proc, visited, e);
}
visited.reset();
for (unsigned i = 0; i < sz; i++) {
expr * e = g->form(i);
expr * e = as[i];
ptr_vector<func_decl> t;
m_constants_occ.insert_if_not_there(e, t);
find_func_decls_proc ffd_proc(m_manager, m_constants_occ.find(e));
@ -269,9 +429,82 @@ public:
quick_for_each_expr(ffd_proc, visited, e);
}
calculate_expr_distances(g);
calculate_expr_distances(as);
TRACE("sls", tout << "Initial model:" << std::endl; show_model(tout); );
if (m_track_unsat)
{
m_list_false = new expr*[sz];
for (unsigned i = 0; i < sz; i++)
{
if (m_mpz_manager.eq(get_value(as[i]), m_zero))
break_assertion(as[i]);
}
}
m_temp_seen.reset();
for (unsigned i = 0; i < sz; i++)
{
expr * e = as[i];
// initialize weights
if (!m_weights.contains(e))
m_weights.insert(e, m_paws_init);
// positive/negative occurences used for early pruning
setup_occs(as[i]);
}
// initialize ucb total touched value (individual ones are always initialized to 1)
m_touched = m_ucb_init ? as.size() : 1;
}
void increase_weight(expr * e)
{
m_weights.find(e)++;
}
void decrease_weight(expr * e)
{
unsigned old_weight = m_weights.find(e);
m_weights.find(e) = old_weight > m_paws_init ? old_weight - 1 : m_paws_init;
}
unsigned get_weight(expr * e)
{
return m_weights.find(e);
}
void make_assertion(expr * e)
{
if (m_track_unsat)
{
if (m_where_false.contains(e))
{
unsigned pos = m_where_false.find(e);
m_where_false.erase(e);
if (pos != m_where_false.size())
{
expr * q = m_list_false[m_where_false.size()];
m_list_false[pos] = q;
m_where_false.find(q) = pos;
}
}
}
}
void break_assertion(expr * e)
{
if (m_track_unsat)
{
if (!m_where_false.contains(e))
{
unsigned pos = m_where_false.size();
m_list_false[pos] = e;
m_where_false.insert(e, pos);
}
}
}
void show_model(std::ostream & out) {
@ -368,7 +601,7 @@ public:
NOT_IMPLEMENTED_YET(); // This only works for bit-vectors for now.
}
void randomize() {
void randomize(ptr_vector<expr> const & as) {
TRACE("sls", tout << "Abandoned model:" << std::endl; show_model(tout); );
for (entry_point_type::iterator it = m_entry_points.begin(); it != m_entry_points.end(); it++) {
@ -382,7 +615,54 @@ public:
TRACE("sls", tout << "Randomized model:" << std::endl; show_model(tout); );
}
#define _SCORE_AND_MIN
void reset(ptr_vector<expr> const & as) {
TRACE("sls", tout << "Abandoned model:" << std::endl; show_model(tout); );
for (entry_point_type::iterator it = m_entry_points.begin(); it != m_entry_points.end(); it++) {
mpz temp = m_zero;
set_value(it->m_value, temp);
m_mpz_manager.del(temp);
}
}
void setup_occs(expr * n, bool negated = false) {
if (m_manager.is_bool(n))
{
if (m_manager.is_and(n) || m_manager.is_or(n))
{
SASSERT(!negated);
app * a = to_app(n);
expr * const * args = a->get_args();
for (unsigned i = 0; i < a->get_num_args(); i++)
{
expr * child = args[i];
if (!m_temp_seen.contains(child))
{
setup_occs(child, false);
m_temp_seen.insert(child);
}
}
}
else if (m_manager.is_not(n))
{
SASSERT(!negated);
app * a = to_app(n);
SASSERT(a->get_num_args() == 1);
expr * child = a->get_arg(0);
SASSERT(!m_manager.is_and(child) && !m_manager.is_or(child));
setup_occs(child, true);
}
else
{
if (negated)
m_scores.find(n).has_neg_occ = 1;
else
m_scores.find(n).has_pos_occ = 1;
}
}
else
NOT_IMPLEMENTED_YET();
}
double score_bool(expr * n, bool negated = false) {
TRACE("sls_score", tout << ((negated)?"NEG ":"") << "BOOL: " << mk_ismt2_pp(n, m_manager) << std::endl; );
@ -400,19 +680,17 @@ public:
SASSERT(!negated);
app * a = to_app(n);
expr * const * args = a->get_args();
#ifdef _SCORE_AND_MIN
/* Andreas: Seems to have no effect. But maybe you want to try it again at some point.
double sum = 0.0;
for (unsigned i = 0; i < a->get_num_args(); i++)
sum += get_score(args[i]);
res = sum / (double) a->get_num_args(); */
double min = 1.0;
for (unsigned i = 0; i < a->get_num_args(); i++) {
double cur = get_score(args[i]);
if (cur < min) min = cur;
}
res = min;
#else
double sum = 0.0;
for (unsigned i = 0; i < a->get_num_args(); i++)
sum += get_score(args[i]);
res = sum / (double) a->get_num_args();
#endif
}
else if (m_manager.is_or(n)) {
SASSERT(!negated);
@ -441,7 +719,7 @@ public:
expr * arg1 = a->get_arg(1);
const mpz & v0 = get_value(arg0);
const mpz & v1 = get_value(arg1);
if (negated) {
res = (m_mpz_manager.eq(v0, v1)) ? 0.0 : 1.0;
TRACE("sls_score", tout << "V0 = " << m_mpz_manager.to_string(v0) << " ; V1 = " <<
@ -457,24 +735,14 @@ public:
m_mpz_manager.bitwise_xor(v0, v1, diff);
unsigned hamming_distance = 0;
unsigned bv_sz = m_bv_util.get_bv_size(arg0);
#if 1 // unweighted hamming distance
// unweighted hamming distance
while (!m_mpz_manager.is_zero(diff)) {
//m_mpz_manager.set(diff_m1, diff);
//m_mpz_manager.dec(diff_m1);
//m_mpz_manager.bitwise_and(diff, diff_m1, diff);
//hamming_distance++;
if (!m_mpz_manager.is_even(diff)) {
hamming_distance++;
}
m_mpz_manager.machine_div(diff, m_two, diff);
}
res = 1.0 - (hamming_distance / (double) bv_sz);
#else
rational r(diff);
r /= m_powers(bv_sz);
double dbl = r.get_double();
res = (dbl < 0.0) ? 1.0 : (dbl > 1.0) ? 0.0 : 1.0 - dbl;
#endif
res = 1.0 - (hamming_distance / (double) bv_sz);
TRACE("sls_score", tout << "V0 = " << m_mpz_manager.to_string(v0) << " ; V1 = " <<
m_mpz_manager.to_string(v1) << " ; HD = " << hamming_distance <<
" ; SZ = " << bv_sz << std::endl; );
@ -489,7 +757,7 @@ public:
SASSERT(a->get_num_args() == 2);
const mpz & x = get_value(a->get_arg(0));
const mpz & y = get_value(a->get_arg(1));
unsigned bv_sz = m_bv_util.get_bv_size(a->get_decl()->get_domain()[0]);
int bv_sz = m_bv_util.get_bv_size(a->get_decl()->get_domain()[0]);
if (negated) {
if (m_mpz_manager.gt(x, y))
@ -515,7 +783,7 @@ public:
rational n(diff);
n /= rational(m_powers(bv_sz));
double dbl = n.get_double();
res = (dbl > 1.0) ? 1.0 : (dbl < 0.0) ? 0.0 : dbl;
res = (dbl > 1.0) ? 0.0 : (dbl < 0.0) ? 1.0 : 1.0 - dbl;
m_mpz_manager.del(diff);
}
}
@ -535,7 +803,7 @@ public:
if (negated) {
if (x > y)
res = 1.0;
res = 1.0;
else {
mpz diff;
m_mpz_manager.sub(y, x, diff);
@ -551,14 +819,15 @@ public:
}
else {
if (x <= y)
res = 1.0;
res = 1.0;
else {
mpz diff;
m_mpz_manager.sub(x, y, diff);
SASSERT(!m_mpz_manager.is_neg(diff));
rational n(diff);
n /= p;
double dbl = n.get_double();
res = (dbl > 1.0) ? 1.0 : (dbl < 0.0) ? 0.0 : dbl;
res = (dbl > 1.0) ? 0.0 : (dbl < 0.0) ? 1.0 : 1.0 - dbl;
m_mpz_manager.del(diff);
}
TRACE("sls_score", tout << "x = " << m_mpz_manager.to_string(x) << " ; y = " <<
@ -572,7 +841,9 @@ public:
app * a = to_app(n);
SASSERT(a->get_num_args() == 1);
expr * child = a->get_arg(0);
if (m_manager.is_and(child) || m_manager.is_or(child)) // Precondition: Assertion set is in NNF.
// Precondition: Assertion set is in NNF.
// Also: careful about the unsat assertion scaling further down.
if (m_manager.is_and(child) || m_manager.is_or(child))
NOT_IMPLEMENTED_YET();
res = score_bool(child, true);
}
@ -598,10 +869,16 @@ public:
SASSERT(res >= 0.0 && res <= 1.0);
app * a = to_app(n);
family_id afid = a->get_family_id();
if (afid == m_bv_util.get_family_id())
if (res < 1.0) res *= m_scale_unsat;
TRACE("sls_score", tout << "SCORE = " << res << std::endl; );
return res;
}
double score_bv(expr * n) {
return 0.0; // a bv-expr is always scored as 0.0; we won't use those scores.
}
@ -647,29 +924,143 @@ public:
NOT_IMPLEMENTED_YET();
}
ptr_vector<func_decl> & get_unsat_constants(goal_ref const & g) {
unsigned sz = g->size();
if (sz == 1) {
return get_constants();
ptr_vector<func_decl> & get_constants(expr * e) {
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(e);
unsigned sz = this_decls.size();
for (unsigned i = 0; i < sz; i++) {
func_decl * fd = this_decls[i];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
else {
m_temp_constants.reset();
for (unsigned i = 0; i < sz; i++) {
expr * q = g->form(i);
if (m_mpz_manager.eq(get_value(q), m_one))
continue;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(q);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
return m_temp_constants;
}
ptr_vector<func_decl> & get_unsat_constants_gsat(ptr_vector<expr> const & as) {
unsigned sz = as.size();
if (sz == 1) {
if (m_mpz_manager.neq(get_value(as[0]), m_one))
return get_constants();
}
m_temp_constants.reset();
for (unsigned i = 0; i < sz; i++) {
expr * q = as[i];
if (m_mpz_manager.eq(get_value(q), m_one))
continue;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(q);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
}
return m_temp_constants;
}
ptr_vector<func_decl> & get_unsat_constants_walksat(expr * e) {
if (!e || m_temp_constants.size())
return m_temp_constants;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(e);
unsigned sz = this_decls.size();
for (unsigned j = 0; j < sz; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
return m_temp_constants;
}
ptr_vector<func_decl> & get_unsat_constants(ptr_vector<expr> const & as) {
if (m_walksat)
{
expr * e = get_unsat_assertion(as);
if (!e)
{
m_temp_constants.reset();
return m_temp_constants;
}
return get_unsat_constants_walksat(e);
}
else
return get_unsat_constants_gsat(as);
}
expr * get_unsat_assertion(ptr_vector<expr> const & as) {
unsigned sz = as.size();
if (sz == 1) {
if (m_mpz_manager.neq(get_value(as[0]), m_one))
return as[0];
else
return 0;
}
m_temp_constants.reset();
unsigned pos = -1;
if (m_ucb)
{
value_score vscore;
double max = -1.0;
// Andreas: Commented things here might be used for track_unsat data structures as done in SLS for SAT. But seems to have no benefit.
/* for (unsigned i = 0; i < m_where_false.size(); i++) {
expr * e = m_list_false[i]; */
for (unsigned i = 0; i < sz; i++) {
expr * e = as[i];
if (m_mpz_manager.neq(get_value(e), m_one))
{
vscore = m_scores.find(e);
// Andreas: Select the assertion with the greatest ucb score. Potentially add some noise.
// double q = vscore.score + m_ucb_constant * sqrt(log((double)m_touched) / vscore.touched);
double q = vscore.score + m_ucb_constant * sqrt(log((double)m_touched) / vscore.touched) + m_ucb_noise * get_random_uint(8);
if (q > max) { max = q; pos = i; }
}
}
if (pos == static_cast<unsigned>(-1))
return 0;
m_touched++;
m_scores.find(as[pos]).touched++;
// Andreas: Also part of track_unsat data structures. Additionally disable the previous line!
/* m_last_pos = pos;
m_scores.find(m_list_false[pos]).touched++;
return m_list_false[pos]; */
}
else
{
// Andreas: The track_unsat data structures for random assertion selection.
/* sz = m_where_false.size();
if (sz == 0)
return 0;
return m_list_false[get_random_uint(16) % sz]; */
unsigned cnt_unsat = 0;
for (unsigned i = 0; i < sz; i++)
if (m_mpz_manager.neq(get_value(as[i]), m_one) && (get_random_uint(16) % ++cnt_unsat == 0)) pos = i;
if (pos == static_cast<unsigned>(-1))
return 0;
}
m_last_pos = pos;
return as[pos];
}
expr * get_new_unsat_assertion(ptr_vector<expr> const & as) {
unsigned sz = as.size();
if (sz == 1)
return 0;
m_temp_constants.reset();
unsigned cnt_unsat = 0, pos = -1;
for (unsigned i = 0; i < sz; i++)
if ((i != m_last_pos) && m_mpz_manager.neq(get_value(as[i]), m_one) && (get_random_uint(16) % ++cnt_unsat == 0)) pos = i;
if (pos == static_cast<unsigned>(-1))
return 0;
return as[pos];
}
};
#endif
#endif