mirror of
https://github.com/Z3Prover/z3
synced 2025-04-30 04:15:51 +00:00
intblast with lazy expansion of shl, ashr, lshr
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
50e0fd3ba6
commit
d0a59f3740
10 changed files with 321 additions and 83 deletions
|
@ -205,58 +205,117 @@ namespace arith {
|
|||
add_clause(dgez, neg);
|
||||
}
|
||||
|
||||
bool solver::check_band_term(app* n) {
|
||||
bool solver::check_bv_term(app* n) {
|
||||
unsigned sz;
|
||||
expr* x, * y;
|
||||
expr* _x, * _y;
|
||||
if (!ctx.is_relevant(expr2enode(n)))
|
||||
return true;
|
||||
VERIFY(a.is_band(n, sz, x, y));
|
||||
expr_ref vx(m), vy(m),vn(m);
|
||||
if (!get_value(expr2enode(x), vx) || !get_value(expr2enode(y), vy) || !get_value(expr2enode(n), vn)) {
|
||||
rational valn, valx, valy;
|
||||
bool is_int;
|
||||
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
||||
if (!get_value(expr2enode(_x), vx) || !get_value(expr2enode(_y), vy) || !get_value(expr2enode(n), vn)) {
|
||||
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
||||
found_unsupported(n);
|
||||
return true;
|
||||
}
|
||||
rational valn, valx, valy;
|
||||
bool is_int;
|
||||
if (!a.is_numeral(vn, valn, is_int) || !is_int || !a.is_numeral(vx, valx, is_int) || !is_int || !a.is_numeral(vy, valy, is_int) || !is_int) {
|
||||
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
||||
found_unsupported(n);
|
||||
return true;
|
||||
}
|
||||
// verbose_stream() << "band: " << mk_pp(n, m) << " " << valn << " := " << valx << "&" << valy << "\n";
|
||||
rational N = rational::power_of_two(sz);
|
||||
valx = mod(valx, N);
|
||||
valy = mod(valy, N);
|
||||
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
||||
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
||||
SASSERT(0 <= valn && valn < N);
|
||||
|
||||
|
||||
// x mod 2^{i + 1} >= 2^i means the i'th bit is 1.
|
||||
auto bitof = [&](expr* x, unsigned i) {
|
||||
expr_ref r(m);
|
||||
r = a.mk_ge(a.mk_mod(x, a.mk_int(rational::power_of_two(i+1))), a.mk_int(rational::power_of_two(i)));
|
||||
return mk_literal(r);
|
||||
};
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool xb = valx.get_bit(i);
|
||||
bool yb = valy.get_bit(i);
|
||||
bool nb = valn.get_bit(i);
|
||||
if (xb && yb && !nb)
|
||||
add_clause(~bitof(x, i), ~bitof(y, i), bitof(n, i));
|
||||
else if (nb && !xb)
|
||||
add_clause(~bitof(n, i), bitof(x, i));
|
||||
else if (nb && !yb)
|
||||
add_clause(~bitof(n, i), bitof(y, i));
|
||||
else
|
||||
continue;
|
||||
|
||||
if (a.is_band(n)) {
|
||||
IF_VERBOSE(2, verbose_stream() << "band: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << "&" << valy << "\n");
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool xb = valx.get_bit(i);
|
||||
bool yb = valy.get_bit(i);
|
||||
bool nb = valn.get_bit(i);
|
||||
if (xb && yb && !nb)
|
||||
add_clause(~bitof(x, i), ~bitof(y, i), bitof(n, i));
|
||||
else if (nb && !xb)
|
||||
add_clause(~bitof(n, i), bitof(x, i));
|
||||
else if (nb && !yb)
|
||||
add_clause(~bitof(n, i), bitof(y, i));
|
||||
else
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (a.is_shl(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal eq = eq_internalize(n, a.mk_mod(a.mk_mul(_x, a.mk_int(rational::power_of_two(k))), a.mk_int(N)));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), eq);
|
||||
IF_VERBOSE(2, verbose_stream() << "shl: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " << " << valy << "\n");
|
||||
return false;
|
||||
}
|
||||
if (a.is_lshr(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal eq = eq_internalize(n, a.mk_idiv(x, a.mk_int(rational::power_of_two(k))));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), eq);
|
||||
IF_VERBOSE(2, verbose_stream() << "lshr: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " >>l " << valy << "\n");
|
||||
return false;
|
||||
}
|
||||
if (a.is_ashr(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
||||
sat::literal eq;
|
||||
expr* xdiv2k;
|
||||
switch (s().value(signx)) {
|
||||
case l_true:
|
||||
// x < 0 & y = k -> n = (x div 2^k - 2^{N-k}) mod 2^N
|
||||
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
||||
eq = eq_internalize(n, a.mk_mod(a.mk_add(xdiv2k, a.mk_int(-rational::power_of_two(sz - k))), a.mk_int(N)));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
break;
|
||||
case l_false:
|
||||
// x >= 0 & y = k -> n = x div 2^k
|
||||
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
||||
eq = eq_internalize(n, xdiv2k);
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
break;
|
||||
case l_undef:
|
||||
ctx.mark_relevant(signx);
|
||||
return false;
|
||||
}
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), ~signx, eq);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool solver::check_band_terms() {
|
||||
for (app* n : m_band_terms) {
|
||||
if (!check_band_term(n)) {
|
||||
++m_stats.m_band_axioms;
|
||||
bool solver::check_bv_terms() {
|
||||
for (app* n : m_bv_terms) {
|
||||
if (!check_bv_term(n)) {
|
||||
++m_stats.m_bv_axioms;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -268,15 +327,43 @@ namespace arith {
|
|||
* x&y <= x
|
||||
* x&y <= y
|
||||
*/
|
||||
void solver::mk_band_axiom(app* n) {
|
||||
void solver::mk_bv_axiom(app* n) {
|
||||
unsigned sz;
|
||||
expr* x, * y;
|
||||
VERIFY(a.is_band(n, sz, x, y));
|
||||
expr* _x, * _y;
|
||||
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
||||
rational N = rational::power_of_two(sz);
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_mod(x, a.mk_int(N)))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_mod(y, a.mk_int(N)))));
|
||||
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
||||
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
||||
|
||||
if (a.is_band(n)) {
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
add_clause(mk_literal(a.mk_le(n, x)));
|
||||
add_clause(mk_literal(a.mk_le(n, y)));
|
||||
}
|
||||
else if (a.is_shl(n)) {
|
||||
// y >= sz => n = 0
|
||||
// y = 0 => n = x
|
||||
add_clause(~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else if (a.is_lshr(n)) {
|
||||
// y >= sz => n = 0
|
||||
// y = 0 => n = x
|
||||
add_clause(~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else if (a.is_ashr(n)) {
|
||||
// y >= sz & x < 2^{sz-1} => n = 0
|
||||
// y >= sz & x >= 2^{sz-1} => n = -1
|
||||
// y = 0 => n = x
|
||||
auto signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
||||
add_clause(~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), signx, mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), ~signx, mk_literal(m.mk_eq(n, a.mk_int(N-1))));
|
||||
add_clause(~mk_literal(a.mk_eq(a.mk_mod(y, a.mk_int(N)), a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
void solver::mk_bound_axioms(api_bound& b) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue