mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 09:05:31 +00:00
intblast with lazy expansion of shl, ashr, lshr
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
50e0fd3ba6
commit
d0a59f3740
10 changed files with 321 additions and 83 deletions
|
@ -205,58 +205,117 @@ namespace arith {
|
|||
add_clause(dgez, neg);
|
||||
}
|
||||
|
||||
bool solver::check_band_term(app* n) {
|
||||
bool solver::check_bv_term(app* n) {
|
||||
unsigned sz;
|
||||
expr* x, * y;
|
||||
expr* _x, * _y;
|
||||
if (!ctx.is_relevant(expr2enode(n)))
|
||||
return true;
|
||||
VERIFY(a.is_band(n, sz, x, y));
|
||||
expr_ref vx(m), vy(m),vn(m);
|
||||
if (!get_value(expr2enode(x), vx) || !get_value(expr2enode(y), vy) || !get_value(expr2enode(n), vn)) {
|
||||
rational valn, valx, valy;
|
||||
bool is_int;
|
||||
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
||||
if (!get_value(expr2enode(_x), vx) || !get_value(expr2enode(_y), vy) || !get_value(expr2enode(n), vn)) {
|
||||
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
||||
found_unsupported(n);
|
||||
return true;
|
||||
}
|
||||
rational valn, valx, valy;
|
||||
bool is_int;
|
||||
if (!a.is_numeral(vn, valn, is_int) || !is_int || !a.is_numeral(vx, valx, is_int) || !is_int || !a.is_numeral(vy, valy, is_int) || !is_int) {
|
||||
IF_VERBOSE(2, verbose_stream() << "could not get value of " << mk_pp(n, m) << "\n");
|
||||
found_unsupported(n);
|
||||
return true;
|
||||
}
|
||||
// verbose_stream() << "band: " << mk_pp(n, m) << " " << valn << " := " << valx << "&" << valy << "\n";
|
||||
rational N = rational::power_of_two(sz);
|
||||
valx = mod(valx, N);
|
||||
valy = mod(valy, N);
|
||||
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
||||
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
||||
SASSERT(0 <= valn && valn < N);
|
||||
|
||||
|
||||
// x mod 2^{i + 1} >= 2^i means the i'th bit is 1.
|
||||
auto bitof = [&](expr* x, unsigned i) {
|
||||
expr_ref r(m);
|
||||
r = a.mk_ge(a.mk_mod(x, a.mk_int(rational::power_of_two(i+1))), a.mk_int(rational::power_of_two(i)));
|
||||
return mk_literal(r);
|
||||
};
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool xb = valx.get_bit(i);
|
||||
bool yb = valy.get_bit(i);
|
||||
bool nb = valn.get_bit(i);
|
||||
if (xb && yb && !nb)
|
||||
add_clause(~bitof(x, i), ~bitof(y, i), bitof(n, i));
|
||||
else if (nb && !xb)
|
||||
add_clause(~bitof(n, i), bitof(x, i));
|
||||
else if (nb && !yb)
|
||||
add_clause(~bitof(n, i), bitof(y, i));
|
||||
else
|
||||
continue;
|
||||
|
||||
if (a.is_band(n)) {
|
||||
IF_VERBOSE(2, verbose_stream() << "band: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << "&" << valy << "\n");
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool xb = valx.get_bit(i);
|
||||
bool yb = valy.get_bit(i);
|
||||
bool nb = valn.get_bit(i);
|
||||
if (xb && yb && !nb)
|
||||
add_clause(~bitof(x, i), ~bitof(y, i), bitof(n, i));
|
||||
else if (nb && !xb)
|
||||
add_clause(~bitof(n, i), bitof(x, i));
|
||||
else if (nb && !yb)
|
||||
add_clause(~bitof(n, i), bitof(y, i));
|
||||
else
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (a.is_shl(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal eq = eq_internalize(n, a.mk_mod(a.mk_mul(_x, a.mk_int(rational::power_of_two(k))), a.mk_int(N)));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), eq);
|
||||
IF_VERBOSE(2, verbose_stream() << "shl: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " << " << valy << "\n");
|
||||
return false;
|
||||
}
|
||||
if (a.is_lshr(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal eq = eq_internalize(n, a.mk_idiv(x, a.mk_int(rational::power_of_two(k))));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), eq);
|
||||
IF_VERBOSE(2, verbose_stream() << "lshr: " << mk_bounded_pp(n, m) << " " << valn << " := " << valx << " >>l " << valy << "\n");
|
||||
return false;
|
||||
}
|
||||
if (a.is_ashr(n)) {
|
||||
SASSERT(valy >= 0);
|
||||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
sat::literal signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
||||
sat::literal eq;
|
||||
expr* xdiv2k;
|
||||
switch (s().value(signx)) {
|
||||
case l_true:
|
||||
// x < 0 & y = k -> n = (x div 2^k - 2^{N-k}) mod 2^N
|
||||
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
||||
eq = eq_internalize(n, a.mk_mod(a.mk_add(xdiv2k, a.mk_int(-rational::power_of_two(sz - k))), a.mk_int(N)));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
break;
|
||||
case l_false:
|
||||
// x >= 0 & y = k -> n = x div 2^k
|
||||
xdiv2k = a.mk_idiv(x, a.mk_int(rational::power_of_two(k)));
|
||||
eq = eq_internalize(n, xdiv2k);
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
break;
|
||||
case l_undef:
|
||||
ctx.mark_relevant(signx);
|
||||
return false;
|
||||
}
|
||||
add_clause(~eq_internalize(y, a.mk_int(k)), ~signx, eq);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool solver::check_band_terms() {
|
||||
for (app* n : m_band_terms) {
|
||||
if (!check_band_term(n)) {
|
||||
++m_stats.m_band_axioms;
|
||||
bool solver::check_bv_terms() {
|
||||
for (app* n : m_bv_terms) {
|
||||
if (!check_bv_term(n)) {
|
||||
++m_stats.m_bv_axioms;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -268,15 +327,43 @@ namespace arith {
|
|||
* x&y <= x
|
||||
* x&y <= y
|
||||
*/
|
||||
void solver::mk_band_axiom(app* n) {
|
||||
void solver::mk_bv_axiom(app* n) {
|
||||
unsigned sz;
|
||||
expr* x, * y;
|
||||
VERIFY(a.is_band(n, sz, x, y));
|
||||
expr* _x, * _y;
|
||||
VERIFY(a.is_band(n, sz, _x, _y) || a.is_shl(n, sz, _x, _y) || a.is_ashr(n, sz, _x, _y) || a.is_lshr(n, sz, _x, _y));
|
||||
rational N = rational::power_of_two(sz);
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_mod(x, a.mk_int(N)))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_mod(y, a.mk_int(N)))));
|
||||
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
||||
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
||||
|
||||
if (a.is_band(n)) {
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
add_clause(mk_literal(a.mk_le(n, x)));
|
||||
add_clause(mk_literal(a.mk_le(n, y)));
|
||||
}
|
||||
else if (a.is_shl(n)) {
|
||||
// y >= sz => n = 0
|
||||
// y = 0 => n = x
|
||||
add_clause(~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else if (a.is_lshr(n)) {
|
||||
// y >= sz => n = 0
|
||||
// y = 0 => n = x
|
||||
add_clause(~mk_literal(a.mk_ge(y, a.mk_int(sz))), mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_eq(y, a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else if (a.is_ashr(n)) {
|
||||
// y >= sz & x < 2^{sz-1} => n = 0
|
||||
// y >= sz & x >= 2^{sz-1} => n = -1
|
||||
// y = 0 => n = x
|
||||
auto signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
||||
add_clause(~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), signx, mk_literal(m.mk_eq(n, a.mk_int(0))));
|
||||
add_clause(~mk_literal(a.mk_ge(a.mk_mod(y, a.mk_int(N)), a.mk_int(sz))), ~signx, mk_literal(m.mk_eq(n, a.mk_int(N-1))));
|
||||
add_clause(~mk_literal(a.mk_eq(a.mk_mod(y, a.mk_int(N)), a.mk_int(0))), mk_literal(m.mk_eq(n, x)));
|
||||
}
|
||||
else
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
void solver::mk_bound_axioms(api_bound& b) {
|
||||
|
|
|
@ -252,10 +252,10 @@ namespace arith {
|
|||
st.to_ensure_var().push_back(n1);
|
||||
st.to_ensure_var().push_back(n2);
|
||||
}
|
||||
else if (a.is_band(n)) {
|
||||
m_band_terms.push_back(to_app(n));
|
||||
mk_band_axiom(to_app(n));
|
||||
ctx.push(push_back_vector(m_band_terms));
|
||||
else if (a.is_band(n) || a.is_shl(n) || a.is_ashr(n) || a.is_lshr(n)) {
|
||||
m_bv_terms.push_back(to_app(n));
|
||||
ctx.push(push_back_vector(m_bv_terms));
|
||||
mk_bv_axiom(to_app(n));
|
||||
ensure_arg_vars(to_app(n));
|
||||
}
|
||||
else if (!a.is_div0(n) && !a.is_mod0(n) && !a.is_idiv0(n) && !a.is_rem0(n) && !a.is_power0(n)) {
|
||||
|
|
|
@ -1053,7 +1053,7 @@ namespace arith {
|
|||
if (!check_delayed_eqs())
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
|
||||
if (!int_undef && !check_band_terms())
|
||||
if (!int_undef && !check_bv_terms())
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
|
||||
if (ctx.get_config().m_arith_ignore_int && int_undef)
|
||||
|
|
|
@ -214,7 +214,7 @@ namespace arith {
|
|||
expr* m_not_handled = nullptr;
|
||||
ptr_vector<app> m_underspecified;
|
||||
ptr_vector<expr> m_idiv_terms;
|
||||
ptr_vector<app> m_band_terms;
|
||||
ptr_vector<app> m_bv_terms;
|
||||
vector<ptr_vector<api_bound> > m_use_list; // bounds where variables are used.
|
||||
|
||||
// attributes for incremental version:
|
||||
|
@ -318,7 +318,7 @@ namespace arith {
|
|||
void mk_bound_axioms(api_bound& b);
|
||||
void mk_bound_axiom(api_bound& b1, api_bound& b2);
|
||||
void mk_power0_axioms(app* t, app* n);
|
||||
void mk_band_axiom(app* n);
|
||||
void mk_bv_axiom(app* n);
|
||||
void flush_bound_axioms();
|
||||
void add_farkas_clause(sat::literal l1, sat::literal l2);
|
||||
|
||||
|
@ -410,8 +410,8 @@ namespace arith {
|
|||
bool check_delayed_eqs();
|
||||
lbool check_lia();
|
||||
lbool check_nla();
|
||||
bool check_band_terms();
|
||||
bool check_band_term(app* n);
|
||||
bool check_bv_terms();
|
||||
bool check_bv_term(app* n);
|
||||
void add_lemmas();
|
||||
void propagate_nla();
|
||||
void add_equality(lpvar v, rational const& k, lp::explanation const& exp);
|
||||
|
|
|
@ -656,24 +656,58 @@ namespace intblast {
|
|||
break;
|
||||
}
|
||||
case OP_BSHL: {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_mul(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
r = a.mk_shl(bv.get_bv_size(e), arg(0),arg(1));
|
||||
else {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
IF_VERBOSE(2, verbose_stream() << "shl " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_mul(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OP_BNOT:
|
||||
r = bnot(arg(0));
|
||||
break;
|
||||
case OP_BLSHR: {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_idiv(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
case OP_BLSHR:
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
r = a.mk_lshr(bv.get_bv_size(e), arg(0), arg(1));
|
||||
else {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
IF_VERBOSE(2, verbose_stream() << "lshr " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_idiv(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
}
|
||||
break;
|
||||
case OP_BASHR:
|
||||
if (!a.is_numeral(arg(1)))
|
||||
r = a.mk_ashr(bv.get_bv_size(e), arg(0), arg(1));
|
||||
else {
|
||||
|
||||
//
|
||||
// ashr(x, y)
|
||||
// if y = k & x >= 0 -> x / 2^k
|
||||
// if y = k & x < 0 -> (x / 2^k) - 2^{N-k}
|
||||
//
|
||||
unsigned sz = bv.get_bv_size(e);
|
||||
rational N = bv_size(e);
|
||||
expr* x = umod(e, 0), *y = umod(e, 1);
|
||||
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
|
||||
r = m.mk_ite(signx, a.mk_int(- 1), a.mk_int(0));
|
||||
IF_VERBOSE(1, verbose_stream() << "ashr " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
expr* d = a.mk_idiv(x, a.mk_int(rational::power_of_two(i)));
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)),
|
||||
m.mk_ite(signx, a.mk_add(d, a.mk_int(- rational::power_of_two(sz-i))), d),
|
||||
r);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OP_BOR: {
|
||||
// p | q := (p + q) - band(p, q)
|
||||
IF_VERBOSE(2, verbose_stream() << "bor " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
r = arg(0);
|
||||
for (unsigned i = 1; i < args.size(); ++i)
|
||||
r = a.mk_sub(a.mk_add(r, arg(i)), a.mk_band(bv.get_bv_size(e), r, arg(i)));
|
||||
|
@ -683,12 +717,14 @@ namespace intblast {
|
|||
r = bnot(band(args));
|
||||
break;
|
||||
case OP_BAND:
|
||||
IF_VERBOSE(2, verbose_stream() << "band " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
r = band(args);
|
||||
break;
|
||||
case OP_BXNOR:
|
||||
case OP_BXOR: {
|
||||
// p ^ q := (p + q) - 2*band(p, q);
|
||||
unsigned sz = bv.get_bv_size(e);
|
||||
IF_VERBOSE(2, verbose_stream() << "bxor " << bv.get_bv_size(e) << "\n");
|
||||
r = arg(0);
|
||||
for (unsigned i = 1; i < args.size(); ++i) {
|
||||
expr* q = arg(i);
|
||||
|
@ -698,25 +734,6 @@ namespace intblast {
|
|||
r = bnot(r);
|
||||
break;
|
||||
}
|
||||
case OP_BASHR: {
|
||||
//
|
||||
// ashr(x, y)
|
||||
// if y = k & x >= 0 -> x / 2^k
|
||||
// if y = k & x < 0 -> (x / 2^k) - 1 + 2^{N-k}
|
||||
//
|
||||
unsigned sz = bv.get_bv_size(e);
|
||||
rational N = bv_size(e);
|
||||
expr* x = umod(e, 0), *y = umod(e, 1);
|
||||
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
|
||||
r = m.mk_ite(signx, a.mk_int(- 1), a.mk_int(0));
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
expr* d = a.mk_idiv(x, a.mk_int(rational::power_of_two(i)));
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)),
|
||||
m.mk_ite(signx, a.mk_add(d, a.mk_int(- rational::power_of_two(sz-i))), d),
|
||||
r);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OP_ZERO_EXT:
|
||||
bv_expr = e->get_arg(0);
|
||||
r = umod(bv_expr, 0);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue