3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-10-10 13:43:38 -07:00
parent 338d7b3283
commit d04807e8c3
8 changed files with 122 additions and 85 deletions

View file

@ -172,7 +172,8 @@ namespace lp {
lia_move int_solver::check(lp::explanation * e) {
SASSERT(lra.ax_is_correct());
if (!has_inf_int()) return lia_move::sat;
if (!has_inf_int())
return lia_move::sat;
m_t.clear();
m_k.reset();
@ -181,7 +182,8 @@ namespace lp {
m_upper = false;
lia_move r = lia_move::undef;
if (m_gcd.should_apply()) r = m_gcd();
if (m_gcd.should_apply())
r = m_gcd();
check_return_helper pc(lra);
@ -298,7 +300,6 @@ namespace lp {
return m_number_of_calls % settings().m_int_find_cube_period == 0;
}
bool int_solver::should_gomory_cut() {
return m_number_of_calls % settings().m_int_gomory_cut_period == 0;
}

View file

@ -19,34 +19,38 @@ Revision History:
--*/
#pragma once
namespace lp {
enum class lia_move {
sat,
branch,
cut,
conflict,
continue_with_check,
undef,
unsat
};
inline std::string lia_move_to_string(lia_move m) {
switch (m) {
case lia_move::sat:
return "sat";
case lia_move::branch:
return "branch";
case lia_move::cut:
return "cut";
case lia_move::conflict:
return "conflict";
case lia_move::continue_with_check:
return "continue_with_check";
case lia_move::undef:
return "undef";
case lia_move::unsat:
return "unsat";
default:
UNREACHABLE();
enum class lia_move {
sat,
branch,
cut,
conflict,
continue_with_check,
undef,
unsat
};
return "strange";
}
inline std::string lia_move_to_string(lia_move m) {
switch (m) {
case lia_move::sat:
return "sat";
case lia_move::branch:
return "branch";
case lia_move::cut:
return "cut";
case lia_move::conflict:
return "conflict";
case lia_move::continue_with_check:
return "continue_with_check";
case lia_move::undef:
return "undef";
case lia_move::unsat:
return "unsat";
default:
UNREACHABLE();
};
return "strange";
}
inline std::ostream& operator<<(std::ostream& out, lia_move const& m) {
return out << lia_move_to_string(m);
}
}

View file

@ -58,38 +58,42 @@ namespace nla {
auto const& upper = dep.upper(range);
auto cmp = dep.upper_is_open(range) ? llc::LT : llc::LE;
++c().lra.settings().stats().m_nla_propagate_bounds;
#if UNIT_PROPAGATE_BOUNDS
auto* d = dep.get_upper_dep(range);
c().lra.update_column_type_and_bound(v, cmp, upper, d);
#else
lp::explanation ex;
dep.get_upper_dep(range, ex);
if (is_too_big(upper))
return false;
new_lemma lemma(c(), "propagate value - upper bound of range is below value");
lemma &= ex;
lemma |= ineq(v, cmp, upper);
TRACE("nla_solver", dep.display(tout << c().val(v) << " > ", range) << "\n" << lemma << "\n";);
#endif
if (c().params().arith_nl_internal_bounds()) {
auto* d = dep.get_upper_dep(range);
TRACE("arith", tout << "upper " << cmp << " " << upper << "\n");
propagate_bound(v, cmp, upper, d);
}
else {
lp::explanation ex;
dep.get_upper_dep(range, ex);
if (is_too_big(upper))
return false;
new_lemma lemma(c(), "propagate value - upper bound of range is below value");
lemma &= ex;
lemma |= ineq(v, cmp, upper);
TRACE("nla_solver", dep.display(tout << c().val(v) << " > ", range) << "\n" << lemma << "\n";);
}
return true;
}
else if (dep.is_above(range, val)) {
auto const& lower = dep.lower(range);
auto cmp = dep.lower_is_open(range) ? llc::GT : llc::GE;
++c().lra.settings().stats().m_nla_propagate_bounds;
#if UNIT_PROPAGATE_BOUNDS
auto* d = dep.get_lower_dep(range);
c().lra.update_column_type_and_bound(v, cmp, lower, d);
#else
lp::explanation ex;
dep.get_lower_dep(range, ex);
if (is_too_big(lower))
return false;
new_lemma lemma(c(), "propagate value - lower bound of range is above value");
lemma &= ex;
lemma |= ineq(v, cmp, lower);
TRACE("nla_solver", dep.display(tout << c().val(v) << " < ", range) << "\n" << lemma << "\n";);
#endif
if (c().params().arith_nl_internal_bounds()) {
auto* d = dep.get_lower_dep(range);
propagate_bound(v, cmp, lower, d);
TRACE("arith", tout << v << " " << cmp << " " << lower << "\n");
}
else {
lp::explanation ex;
dep.get_lower_dep(range, ex);
if (is_too_big(lower))
return false;
new_lemma lemma(c(), "propagate value - lower bound of range is above value");
lemma &= ex;
lemma |= ineq(v, cmp, lower);
TRACE("nla_solver", dep.display(tout << c().val(v) << " < ", range) << "\n" << lemma << "\n";);
}
return true;
}
else {
@ -97,6 +101,28 @@ namespace nla {
}
}
/**
* Ensure that bounds are integral when the variable is integer.
*/
void monomial_bounds::propagate_bound(lpvar v, lp::lconstraint_kind cmp, rational const& q, u_dependency* d) {
SASSERT(cmp != llc::EQ && cmp != llc::NE);
if (!c().var_is_int(v))
c().lra.update_column_type_and_bound(v, cmp, q, d);
else if (q.is_int()) {
if (cmp == llc::GT)
c().lra.update_column_type_and_bound(v, llc::GE, q + 1, d);
else if(cmp == llc::LT)
c().lra.update_column_type_and_bound(v, llc::LE, q - 1, d);
else
c().lra.update_column_type_and_bound(v, cmp, q, d);
}
else if (cmp == llc::GE || cmp == llc::GT)
c().lra.update_column_type_and_bound(v, llc::GE, ceil(q), d);
else
c().lra.update_column_type_and_bound(v, llc::LE, floor(q), d);
}
/**
* val(v)^p should be in range.
* if val(v)^p > upper(range) add
@ -129,28 +155,30 @@ namespace nla {
if ((p % 2 == 1) || val_v.is_pos()) {
++c().lra.settings().stats().m_nla_propagate_bounds;
auto le = dep.upper_is_open(range) ? llc::LT : llc::LE;
#if UNIT_PROPAGATE_BOUNDS
auto* d = dep.get_upper_dep();
c().lra.update_column_type_and_bound(v, le, r, d);
#else
new_lemma lemma(c(), "propagate value - root case - upper bound of range is below value");
lemma &= ex;
lemma |= ineq(v, le, r);
#endif
if (c().params().arith_nl_internal_bounds()) {
auto* d = dep.get_upper_dep(range);
propagate_bound(v, le, r, d);
}
else {
new_lemma lemma(c(), "propagate value - root case - upper bound of range is below value");
lemma &= ex;
lemma |= ineq(v, le, r);
}
return true;
}
if (p % 2 == 0 && val_v.is_neg()) {
++c().lra.settings().stats().m_nla_propagate_bounds;
SASSERT(!r.is_neg());
auto ge = dep.upper_is_open(range) ? llc::GT : llc::GE;
#if UNIT_PROPAGATE_BOUNDS
auto* d = dep.get_upper_dep();
c().lra.update_column_type_and_bound(v, ge, -r, d);
#else
new_lemma lemma(c(), "propagate value - root case - upper bound of range is below negative value");
lemma &= ex;
lemma |= ineq(v, ge, -r);
#endif
if (c().params().arith_nl_internal_bounds()) {
auto* d = dep.get_upper_dep(range);
propagate_bound(v, ge, -r, d);
}
else {
new_lemma lemma(c(), "propagate value - root case - upper bound of range is below negative value");
lemma &= ex;
lemma |= ineq(v, ge, -r);
}
return true;
}
}
@ -306,10 +334,11 @@ namespace nla {
if (m.is_propagated())
return;
lpvar w, fixed_to_zero;
if (!is_linear(m, w, fixed_to_zero)) {
#if UNIT_PROPAGATE_BOUNDS
propagate(m);
#endif
if (!is_linear(m)) {
if (c().params().arith_nl_internal_bounds()) {
propagate(m);
}
return;
}

View file

@ -17,6 +17,7 @@ namespace nla {
class monomial_bounds : common {
dep_intervals& dep;
void propagate_bound(lpvar v, lp::lconstraint_kind cmp, rational const& q, u_dependency* d);
void var2interval(lpvar v, scoped_dep_interval& i);
bool is_too_big(mpq const& q) const;
bool propagate_down(monic const& m, lpvar u);

View file

@ -83,6 +83,7 @@ def_module_params(module_name='smt',
('arith.nl.optimize_bounds', BOOL, True, 'enable bounds optimization'),
('arith.nl.cross_nested', BOOL, True, 'enable cross-nested consistency checking'),
('arith.propagate_eqs', BOOL, True, 'propagate (cheap) equalities'),
('arith.nl.internal_bounds', BOOL, False, 'use internal bounds propagation'),
('arith.propagation_mode', UINT, 1, '0 - no propagation, 1 - propagate existing literals, 2 - refine finite bounds'),
('arith.branch_cut_ratio', UINT, 2, 'branch/cut ratio for linear integer arithmetic'),
('arith.int_eq_branch', BOOL, False, 'branching using derived integer equations'),

View file

@ -39,6 +39,7 @@ void theory_arith_params::updt_params(params_ref const & _p) {
m_nl_arith_propagate_linear_monomials = p.arith_nl_propagate_linear_monomials();
m_nl_arith_optimize_bounds = p.arith_nl_optimize_bounds();
m_nl_arith_cross_nested = p.arith_nl_cross_nested();
m_nl_arith_internal_bounds = p.arith_nl_internal_bounds();
arith_rewriter_params ap(_p);
m_arith_eq2ineq = ap.eq2ineq();
@ -95,4 +96,5 @@ void theory_arith_params::display(std::ostream & out) const {
DISPLAY_PARAM(m_nl_arith_propagate_linear_monomials);
DISPLAY_PARAM(m_nl_arith_optimize_bounds);
DISPLAY_PARAM(m_nl_arith_cross_nested);
DISPLAY_PARAM(m_nl_arith_internal_bounds);
}

View file

@ -108,6 +108,7 @@ struct theory_arith_params {
bool m_nl_arith_propagate_linear_monomials = true;
bool m_nl_arith_optimize_bounds = true;
bool m_nl_arith_cross_nested = true;
bool m_nl_arith_internal_bounds = false;
theory_arith_params(params_ref const & p = params_ref()) {

View file

@ -2113,7 +2113,6 @@ public:
bool propagate_core() {
m_model_is_initialized = false;
flush_bound_axioms();
// disabled in master:
propagate_nla();
if (ctx().inconsistent())
return true;
@ -3175,14 +3174,13 @@ public:
ctx().display_detailed_literal(tout << ctx().get_assign_level(c.var()) << " " << c << " ", c) << "\n";
for (auto e : m_eqs)
tout << pp(e.first, m) << " = " << pp(e.second, m) << "\n";
tout << " ==> ";
tout << pp(x, m) << " = " << pp(y, m) << "\n";
tout << " ==> " << pp(x, m) << " = " << pp(y, m) << "\n";
);
std::function<expr*(void)> fn = [&]() { return m.mk_eq(x->get_expr(), y->get_expr()); };
scoped_trace_stream _sts(th, fn);
//VERIFY(validate_eq(x, y));
// VERIFY(validate_eq(x, y));
ctx().assign_eq(x, y, eq_justification(js));
}
@ -3291,11 +3289,11 @@ public:
tout << "lemma scope: " << ctx().get_scope_level();
for (auto const& p : m_params) tout << " " << p;
tout << "\n";
display_evidence(tout, m_explanation);
display(tout << "is-conflict: " << is_conflict << "\n"););
display_evidence(tout, m_explanation););
for (auto ev : m_explanation)
set_evidence(ev.ci(), m_core, m_eqs);
SASSERT(!m_core.empty() || !m_eqs.empty());
// SASSERT(validate_conflict(m_core, m_eqs));
if (is_conflict) {
@ -3517,7 +3515,7 @@ public:
cancel_eh<reslimit> eh(m.limit());
scoped_timer timer(1000, &eh);
bool result = l_true != nctx.check();
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, core.size(), core.data(), eqs.size(), eqs.data(), false_literal););
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, core.size(), core.data(), eqs.size(), eqs.data(), false_literal););
return result;
}