3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-05 13:51:23 +00:00

-whitespace

This commit is contained in:
Christoph M. Wintersteiger 2015-11-09 13:22:33 +00:00
parent 6625f7a749
commit cffff18373

View file

@ -864,7 +864,7 @@ sig
(** Access the array default value.
Produces the default range value, for arrays that can be represented as
finite maps with a default range value. *)
finite maps with a default range value. *)
val mk_term_array : context -> Expr.expr -> Expr.expr
end
@ -1185,36 +1185,36 @@ sig
val mk_const_s : context -> string -> Expr.expr
(** Create an expression representing [t1 mod t2].
The arguments must have int type. *)
The arguments must have int type. *)
val mk_mod : context -> Expr.expr -> Expr.expr -> Expr.expr
(** Create an expression representing [t1 rem t2].
The arguments must have int type. *)
The arguments must have int type. *)
val mk_rem : context -> Expr.expr -> Expr.expr -> Expr.expr
(** Create an integer numeral. *)
val mk_numeral_s : context -> string -> Expr.expr
(** Create an integer numeral.
@return A Term with the given value and sort Integer *)
@return A Term with the given value and sort Integer *)
val mk_numeral_i : context -> int -> Expr.expr
(** Coerce an integer to a real.
There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
You can take the floor of a real by creating an auxiliary integer Term [k] and
and asserting [MakeInt2Real(k) <= t1 < MkInt2Real(k)+1].
The argument must be of integer sort. *)
You can take the floor of a real by creating an auxiliary integer Term [k] and
and asserting [MakeInt2Real(k) <= t1 < MkInt2Real(k)+1].
The argument must be of integer sort. *)
val mk_int2real : context -> Expr.expr -> Expr.expr
(** Create an n-bit bit-vector from an integer argument.
NB. This function is essentially treated as uninterpreted.
So you cannot expect Z3 to precisely reflect the semantics of this function
when solving constraints with this function.
NB. This function is essentially treated as uninterpreted.
So you cannot expect Z3 to precisely reflect the semantics of this function
when solving constraints with this function.
The argument must be of integer sort. *)
The argument must be of integer sort. *)
val mk_int2bv : context -> int -> Expr.expr -> Expr.expr
end
@ -1234,7 +1234,7 @@ sig
val get_ratio : Expr.expr -> Ratio.ratio
(** Returns a string representation in decimal notation.
The result has at most as many decimal places as indicated by the int argument.*)
The result has at most as many decimal places as indicated by the int argument.*)
val to_decimal_string : Expr.expr-> int -> string
(** Returns a string representation of a numeral. *)
@ -1247,16 +1247,16 @@ sig
val mk_const_s : context -> string -> Expr.expr
(** Create a real numeral from a fraction.
@return A Term with rational value and sort Real
{!mk_numeral_s} *)
@return A Term with rational value and sort Real
{!mk_numeral_s} *)
val mk_numeral_nd : context -> int -> int -> Expr.expr
(** Create a real numeral.
@return A Term with the given value and sort Real *)
@return A Term with the given value and sort Real *)
val mk_numeral_s : context -> string -> Expr.expr
(** Create a real numeral.
@return A Term with the given value and sort Real *)
@return A Term with the given value and sort Real *)
val mk_numeral_i : context -> int -> Expr.expr
(** Creates an expression that checks whether a real number is an integer. *)
@ -1264,27 +1264,27 @@ sig
(** Coerce a real to an integer.
The semantics of this function follows the SMT-LIB standard for the function to_int.
The argument must be of real sort. *)
The semantics of this function follows the SMT-LIB standard for the function to_int.
The argument must be of real sort. *)
val mk_real2int : context -> Expr.expr -> Expr.expr
(** Algebraic Numbers *)
module AlgebraicNumber :
sig
(** Return a upper bound for a given real algebraic number.
The interval isolating the number is smaller than 1/10^precision.
{!is_algebraic_number}
@return A numeral Expr of sort Real *)
The interval isolating the number is smaller than 1/10^precision.
{!is_algebraic_number}
@return A numeral Expr of sort Real *)
val to_upper : Expr.expr -> int -> Expr.expr
(** Return a lower bound for the given real algebraic number.
The interval isolating the number is smaller than 1/10^precision.
{!is_algebraic_number}
@return A numeral Expr of sort Real *)
The interval isolating the number is smaller than 1/10^precision.
{!is_algebraic_number}
@return A numeral Expr of sort Real *)
val to_lower : Expr.expr -> int -> Expr.expr
(** Returns a string representation in decimal notation.
The result has at most as many decimal places as the int argument provided.*)
The result has at most as many decimal places as the int argument provided.*)
val to_decimal_string : Expr.expr -> int -> string
(** Returns a string representation of a numeral. *)
@ -1849,40 +1849,40 @@ sig
(** Rounding Modes *)
module RoundingMode :
sig
(** Create the RoundingMode sort. *)
(** Create the RoundingMode sort. *)
val mk_sort : context -> Sort.sort
(** Indicates whether the terms is of floating-point rounding mode sort. *)
(** Indicates whether the terms is of floating-point rounding mode sort. *)
val is_fprm : Expr.expr -> bool
(** Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. *)
val mk_round_nearest_ties_to_even : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. *)
val mk_rne : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. *)
val mk_round_nearest_ties_to_away : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. *)
val mk_rna : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. *)
val mk_round_toward_positive : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. *)
val mk_rtp : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. *)
val mk_rtp : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. *)
val mk_round_toward_negative : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. *)
val mk_rtn : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. *)
val mk_round_toward_zero : context -> Expr.expr
(** Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. *)
(** Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. *)
val mk_rtz : context -> Expr.expr
end
@ -1924,7 +1924,7 @@ sig
(** Create an expression of FloatingPoint sort from three bit-vector expressions.
This is the operator named `fp' in the SMT FP theory definition.
This is the operator named `fp' in the SMT FP theory definition.
Note that \c sign is required to be a bit-vector of size 1. Significand and exponent
are required to be greater than 1 and 2 respectively. The FloatingPoint sort
of the resulting expression is automatically determined from the bit-vector sizes
@ -2079,8 +2079,8 @@ sig
(** Floating-point roundToIntegral.
Rounds a floating-point number to the closest integer,
again represented as a floating-point number. *)
Rounds a floating-point number to the closest integer,
again represented as a floating-point number. *)
val mk_round_to_integral : context -> Expr.expr -> Expr.expr -> Expr.expr
(** Minimum of floating-point numbers. *)
@ -2162,7 +2162,7 @@ sig
val get_numeral_significand_string : context -> Expr.expr -> string
(** Return the significand value of a floating-point numeral as a uint64.
Remark: This function extracts the significand bits, without the
Remark: This function extracts the significand bits, without the
hidden bit or normalization. Throws an exception if the
significand does not fit into a uint64. *)
val get_numeral_significand_uint : context -> Expr.expr -> bool * int
@ -2675,7 +2675,7 @@ sig
(** Function interpretations entries
An Entry object represents an element in the finite map used to a function interpretation. *)
An Entry object represents an element in the finite map used to a function interpretation. *)
module FuncEntry :
sig
type func_entry
@ -2865,8 +2865,8 @@ sig
val get_subgoal : apply_result -> int -> Goal.goal
(** Convert a model for a subgoal into a model for the original
goal [g], that the ApplyResult was obtained from.
#return A model for [g] *)
goal [g], that the ApplyResult was obtained from.
#return A model for [g] *)
val convert_model : apply_result -> int -> Model.model -> Model.model
(** A string representation of the ApplyResult. *)
@ -2959,7 +2959,7 @@ sig
type statistics
(** Statistical data is organized into pairs of \[Key, Entry\], where every
Entry is either a floating point or integer value. *)
Entry is either a floating point or integer value. *)
module Entry :
sig
type statistics_entry