3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

use ast_manager as an attribute

This commit is contained in:
Nikolaj Bjorner 2022-12-02 07:53:32 -08:00
parent 5073959ae0
commit cf7bba6288
6 changed files with 311 additions and 316 deletions

View file

@ -24,7 +24,7 @@ Notes:
seq_util& arith_rewriter_core::seq() {
if (!m_seq) {
m_seq = alloc(seq_util, m());
m_seq = alloc(seq_util, m);
}
return *m_seq;
}
@ -93,9 +93,9 @@ br_status arith_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * c
case OP_TANH: SASSERT(num_args == 1); st = mk_tanh_core(args[0], result); break;
default: st = BR_FAILED; break;
}
CTRACE("arith_rewriter", st != BR_FAILED, tout << st << ": " << mk_pp(f, m());
for (unsigned i = 0; i < num_args; ++i) tout << mk_pp(args[i], m()) << " ";
tout << "\n==>\n" << mk_pp(result.get(), m()) << "\n";
CTRACE("arith_rewriter", st != BR_FAILED, tout << st << ": " << mk_pp(f, m);
for (unsigned i = 0; i < num_args; ++i) tout << mk_pp(args[i], m) << " ";
tout << "\n==>\n" << mk_pp(result.get(), m) << "\n";
if (is_app(result)) tout << "args: " << to_app(result)->get_num_args() << "\n";
);
return st;
@ -133,7 +133,7 @@ bool arith_rewriter::div_polynomial(expr * t, numeral const & g, const_treatment
SASSERT(!g.is_one());
unsigned sz;
expr * const * ms = get_monomials(t, sz);
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
numeral a;
for (unsigned i = 0; i < sz; i++) {
expr * arg = ms[i];
@ -196,10 +196,10 @@ bool arith_rewriter::is_bound(expr * arg1, expr * arg2, op_kind kind, expr_ref &
switch (kind) {
case LE: c = floor(c); break;
case GE: c = ceil(c); break;
case EQ: result = m().mk_false(); return true;
case EQ: result = m.mk_false(); return true;
}
}
expr_ref k(m_util.mk_numeral(c, is_int), m());
expr_ref k(m_util.mk_numeral(c, is_int), m);
switch (kind) {
case LE: result = m_util.mk_le(pp, k); return true;
case GE: result = m_util.mk_ge(pp, k); return true;
@ -223,24 +223,24 @@ bool arith_rewriter::is_bound(expr * arg1, expr * arg2, op_kind kind, expr_ref &
if (c.is_neg()) {
switch (kind) {
case EQ:
case LE: result = m().mk_false(); return true;
case GE: result = m().mk_true(); return true;
case LE: result = m.mk_false(); return true;
case GE: result = m.mk_true(); return true;
}
}
if (c.is_zero() && kind == GE) {
result = m().mk_true();
result = m.mk_true();
return true;
}
if (c.is_pos() && c >= abs(b)) {
switch (kind) {
case LE: result = m().mk_true(); return true;
case LE: result = m.mk_true(); return true;
case EQ:
case GE: result = m().mk_false(); return true;
case GE: result = m.mk_false(); return true;
}
}
// mod x b <= b - 1
if (c + rational::one() == abs(b) && kind == LE) {
result = m().mk_true();
result = m.mk_true();
return true;
}
}
@ -304,7 +304,7 @@ br_status arith_rewriter::is_separated(expr* arg1, expr* arg2, op_kind kind, exp
if (kind != LE && kind != GE)
return BR_FAILED;
rational bound(0), r1, r2;
expr_ref narg(m());
expr_ref narg(m);
bool has_bound = true;
if (!m_util.is_numeral(arg2, r2))
return BR_FAILED;
@ -335,47 +335,47 @@ br_status arith_rewriter::is_separated(expr* arg1, expr* arg2, op_kind kind, exp
if (kind == GE && r1 > r2)
return BR_FAILED;
if (kind == LE && r1 > r2) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
if (kind == GE && r1 < r2) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
SASSERT(r1 == r2);
expr_ref zero(m_util.mk_numeral(rational(0), arg1->get_sort()), m());
expr_ref zero(m_util.mk_numeral(rational(0), arg1->get_sort()), m);
if (r1.is_zero() && m_util.is_mul(arg1)) {
expr_ref_buffer eqs(m());
expr_ref_buffer eqs(m);
ptr_buffer<expr> args;
flat_mul(arg1, args);
for (expr* arg : args) {
if (m_util.is_numeral(arg))
continue;
eqs.push_back(m().mk_eq(arg, zero));
eqs.push_back(m.mk_eq(arg, zero));
}
result = m().mk_or(eqs);
result = m.mk_or(eqs);
return BR_REWRITE2;
}
if (kind == LE && m_util.is_add(arg1)) {
expr_ref_buffer leqs(m());
expr_ref_buffer leqs(m);
for (expr* arg : *to_app(arg1)) {
if (!m_util.is_numeral(arg))
leqs.push_back(m_util.mk_le(arg, zero));
}
result = m().mk_and(leqs);
result = m.mk_and(leqs);
return BR_REWRITE2;
}
if (kind == GE && m_util.is_add(arg1)) {
expr_ref_buffer geqs(m());
expr_ref_buffer geqs(m);
for (expr* arg : *to_app(arg1)) {
if (!m_util.is_numeral(arg))
geqs.push_back(m_util.mk_ge(arg, zero));
}
result = m().mk_and(geqs);
result = m.mk_and(geqs);
return BR_REWRITE2;
}
@ -399,8 +399,8 @@ bool arith_rewriter::elim_to_real_var(expr * var, expr_ref & new_var) {
bool arith_rewriter::elim_to_real_mon(expr * monomial, expr_ref & new_monomial) {
if (m_util.is_mul(monomial)) {
expr_ref_buffer new_vars(m());
expr_ref new_var(m());
expr_ref_buffer new_vars(m);
expr_ref new_var(m);
unsigned num = to_app(monomial)->get_num_args();
for (unsigned i = 0; i < num; i++) {
if (!elim_to_real_var(to_app(monomial)->get_arg(i), new_var))
@ -417,8 +417,8 @@ bool arith_rewriter::elim_to_real_mon(expr * monomial, expr_ref & new_monomial)
bool arith_rewriter::elim_to_real_pol(expr * p, expr_ref & new_p) {
if (m_util.is_add(p)) {
expr_ref_buffer new_monomials(m());
expr_ref new_monomial(m());
expr_ref_buffer new_monomials(m);
expr_ref new_monomial(m);
for (expr* arg : *to_app(p)) {
if (!elim_to_real_mon(arg, new_monomial))
return false;
@ -507,14 +507,14 @@ br_status arith_rewriter::reduce_power(expr * arg1, expr * arg2, op_kind kind, e
switch (kind) {
case LE: result = m_util.mk_le(new_arg1, new_arg2); return BR_REWRITE1;
case GE: result = m_util.mk_ge(new_arg1, new_arg2); return BR_REWRITE1;
default: result = m().mk_eq(new_arg1, new_arg2); return BR_REWRITE1;
default: result = m.mk_eq(new_arg1, new_arg2); return BR_REWRITE1;
}
}
br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kind, expr_ref & result) {
expr *orig_arg1 = arg1, *orig_arg2 = arg2;
expr_ref new_arg1(m());
expr_ref new_arg2(m());
expr_ref new_arg1(m);
expr_ref new_arg2(m);
if ((is_zero(arg1) && is_reduce_power_target(arg2, kind == EQ)) ||
(is_zero(arg2) && is_reduce_power_target(arg1, kind == EQ)))
return reduce_power(arg1, arg2, kind, result);
@ -524,29 +524,29 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
arg1 = new_arg1;
arg2 = new_arg2;
}
expr_ref new_new_arg1(m());
expr_ref new_new_arg2(m());
expr_ref new_new_arg1(m);
expr_ref new_new_arg2(m);
if (m_elim_to_real && elim_to_real(arg1, arg2, new_new_arg1, new_new_arg2)) {
arg1 = new_new_arg1;
arg2 = new_new_arg2;
CTRACE("elim_to_real", m_elim_to_real, tout << "after_elim_to_real\n" << mk_ismt2_pp(arg1, m()) << "\n" << mk_ismt2_pp(arg2, m()) << "\n";);
CTRACE("elim_to_real", m_elim_to_real, tout << "after_elim_to_real\n" << mk_ismt2_pp(arg1, m) << "\n" << mk_ismt2_pp(arg2, m) << "\n";);
if (st == BR_FAILED)
st = BR_DONE;
}
numeral a1, a2;
if (is_numeral(arg1, a1) && is_numeral(arg2, a2)) {
switch (kind) {
case LE: result = a1 <= a2 ? m().mk_true() : m().mk_false(); return BR_DONE;
case GE: result = a1 >= a2 ? m().mk_true() : m().mk_false(); return BR_DONE;
default: result = a1 == a2 ? m().mk_true() : m().mk_false(); return BR_DONE;
case LE: result = a1 <= a2 ? m.mk_true() : m.mk_false(); return BR_DONE;
case GE: result = a1 >= a2 ? m.mk_true() : m.mk_false(); return BR_DONE;
default: result = a1 == a2 ? m.mk_true() : m.mk_false(); return BR_DONE;
}
}
#define ANUM_LE_GE_EQ() { \
switch (kind) { \
case LE: result = am.le(v1, v2) ? m().mk_true() : m().mk_false(); return BR_DONE; \
case GE: result = am.ge(v1, v2) ? m().mk_true() : m().mk_false(); return BR_DONE; \
default: result = am.eq(v1, v2) ? m().mk_true() : m().mk_false(); return BR_DONE; \
case LE: result = am.le(v1, v2) ? m.mk_true() : m.mk_false(); return BR_DONE; \
case GE: result = am.ge(v1, v2) ? m.mk_true() : m.mk_false(); return BR_DONE; \
default: result = am.eq(v1, v2) ? m.mk_true() : m.mk_false(); return BR_DONE; \
} \
}
@ -593,12 +593,12 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
if (!first && !g.is_one() && num_consts <= 1) {
bool is_sat = div_polynomial(arg1, g, (kind == LE ? CT_CEIL : (kind == GE ? CT_FLOOR : CT_FALSE)), new_arg1);
if (!is_sat) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
is_sat = div_polynomial(arg2, g, (kind == LE ? CT_FLOOR : (kind == GE ? CT_CEIL : CT_FALSE)), new_arg2);
if (!is_sat) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
arg1 = new_arg1.get();
@ -607,25 +607,25 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
}
}
expr* c = nullptr, *t = nullptr, *e = nullptr;
if (m().is_ite(arg1, c, t, e) && is_numeral(t, a1) && is_numeral(arg2, a2)) {
if (m.is_ite(arg1, c, t, e) && is_numeral(t, a1) && is_numeral(arg2, a2)) {
switch (kind) {
case LE: result = a1 <= a2 ? m().mk_or(c, m_util.mk_le(e, arg2)) : m().mk_and(m().mk_not(c), m_util.mk_le(e, arg2)); return BR_REWRITE2;
case GE: result = a1 >= a2 ? m().mk_or(c, m_util.mk_ge(e, arg2)) : m().mk_and(m().mk_not(c), m_util.mk_ge(e, arg2)); return BR_REWRITE2;
case EQ: result = a1 == a2 ? m().mk_or(c, m().mk_eq(e, arg2)) : m().mk_and(m().mk_not(c), m_util.mk_eq(e, arg2)); return BR_REWRITE2;
case LE: result = a1 <= a2 ? m.mk_or(c, m_util.mk_le(e, arg2)) : m.mk_and(m.mk_not(c), m_util.mk_le(e, arg2)); return BR_REWRITE2;
case GE: result = a1 >= a2 ? m.mk_or(c, m_util.mk_ge(e, arg2)) : m.mk_and(m.mk_not(c), m_util.mk_ge(e, arg2)); return BR_REWRITE2;
case EQ: result = a1 == a2 ? m.mk_or(c, m.mk_eq(e, arg2)) : m.mk_and(m.mk_not(c), m_util.mk_eq(e, arg2)); return BR_REWRITE2;
}
}
if (m().is_ite(arg1, c, t, e) && is_numeral(e, a1) && is_numeral(arg2, a2)) {
if (m.is_ite(arg1, c, t, e) && is_numeral(e, a1) && is_numeral(arg2, a2)) {
switch (kind) {
case LE: result = a1 <= a2 ? m().mk_or(m().mk_not(c), m_util.mk_le(t, arg2)) : m().mk_and(c, m_util.mk_le(t, arg2)); return BR_REWRITE2;
case GE: result = a1 >= a2 ? m().mk_or(m().mk_not(c), m_util.mk_ge(t, arg2)) : m().mk_and(c, m_util.mk_ge(t, arg2)); return BR_REWRITE2;
case EQ: result = a1 == a2 ? m().mk_or(m().mk_not(c), m().mk_eq(t, arg2)) : m().mk_and(c, m_util.mk_eq(t, arg2)); return BR_REWRITE2;
case LE: result = a1 <= a2 ? m.mk_or(m.mk_not(c), m_util.mk_le(t, arg2)) : m.mk_and(c, m_util.mk_le(t, arg2)); return BR_REWRITE2;
case GE: result = a1 >= a2 ? m.mk_or(m.mk_not(c), m_util.mk_ge(t, arg2)) : m.mk_and(c, m_util.mk_ge(t, arg2)); return BR_REWRITE2;
case EQ: result = a1 == a2 ? m.mk_or(m.mk_not(c), m.mk_eq(t, arg2)) : m.mk_and(c, m_util.mk_eq(t, arg2)); return BR_REWRITE2;
}
}
if (m().is_ite(arg1, c, t, e) && arg1->get_ref_count() == 1) {
if (m.is_ite(arg1, c, t, e) && arg1->get_ref_count() == 1) {
switch (kind) {
case LE: result = m().mk_ite(c, m_util.mk_le(t, arg2), m_util.mk_le(e, arg2)); return BR_REWRITE2;
case GE: result = m().mk_ite(c, m_util.mk_ge(t, arg2), m_util.mk_ge(e, arg2)); return BR_REWRITE2;
case EQ: result = m().mk_ite(c, m().mk_eq(t, arg2), m().mk_eq(e, arg2)); return BR_REWRITE2;
case LE: result = m.mk_ite(c, m_util.mk_le(t, arg2), m_util.mk_le(e, arg2)); return BR_REWRITE2;
case GE: result = m.mk_ite(c, m_util.mk_ge(t, arg2), m_util.mk_ge(e, arg2)); return BR_REWRITE2;
case EQ: result = m.mk_ite(c, m.mk_eq(t, arg2), m.mk_eq(e, arg2)); return BR_REWRITE2;
}
}
if (m_util.is_to_int(arg2) && is_numeral(arg1)) {
@ -642,7 +642,7 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
return BR_REWRITE1;
case EQ:
result = m_util.mk_ge(t, m_util.mk_numeral(a2, false));
result = m().mk_and(m_util.mk_lt(t, m_util.mk_numeral(a2+1, false)), result);
result = m.mk_and(m_util.mk_lt(t, m_util.mk_numeral(a2+1, false)), result);
return BR_REWRITE3;
}
}
@ -663,7 +663,7 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
switch (kind) {
case LE: result = m_util.mk_le(arg1, arg2); return BR_DONE;
case GE: result = m_util.mk_ge(arg1, arg2); return BR_DONE;
default: result = m().mk_eq(arg1, arg2); return BR_DONE;
default: result = m.mk_eq(arg1, arg2); return BR_DONE;
}
}
return BR_FAILED;
@ -674,7 +674,7 @@ br_status arith_rewriter::mk_le_core(expr * arg1, expr * arg2, expr_ref & result
}
br_status arith_rewriter::mk_lt_core(expr * arg1, expr * arg2, expr_ref & result) {
result = m().mk_not(m_util.mk_le(arg2, arg1));
result = m.mk_not(m_util.mk_le(arg2, arg1));
return BR_REWRITE2;
}
@ -683,7 +683,7 @@ br_status arith_rewriter::mk_ge_core(expr * arg1, expr * arg2, expr_ref & result
}
br_status arith_rewriter::mk_gt_core(expr * arg1, expr * arg2, expr_ref & result) {
result = m().mk_not(m_util.mk_le(arg1, arg2));
result = m.mk_not(m_util.mk_le(arg1, arg2));
return BR_REWRITE2;
}
@ -694,7 +694,7 @@ bool arith_rewriter::is_arith_term(expr * n) const {
br_status arith_rewriter::mk_eq_core(expr * arg1, expr * arg2, expr_ref & result) {
br_status st = BR_FAILED;
if (m_eq2ineq) {
result = m().mk_and(m_util.mk_le(arg1, arg2), m_util.mk_ge(arg1, arg2));
result = m.mk_and(m_util.mk_le(arg1, arg2), m_util.mk_ge(arg1, arg2));
st = BR_REWRITE2;
}
else if (m_arith_lhs || is_arith_term(arg1) || is_arith_term(arg2)) {
@ -724,7 +724,7 @@ br_status arith_rewriter::mk_and_core(unsigned n, expr* const* args, expr_ref& r
}
if (rest.size() < n - 1) {
rest.push_back(arg0);
result = m().mk_and(rest);
result = m.mk_and(rest);
return BR_REWRITE1;
}
}
@ -742,8 +742,8 @@ bool arith_rewriter::mk_eq_mod(expr* arg1, expr* arg2, expr_ref& result) {
rational a, b;
rational g = gcd(p, k, a, b);
if (g == 1) {
expr_ref nb(m_util.mk_numeral(b, true), m());
result = m().mk_eq(m_util.mk_mod(u, y),
expr_ref nb(m_util.mk_numeral(b, true), m);
result = m.mk_eq(m_util.mk_mod(u, y),
m_util.mk_mod(m_util.mk_mul(nb, arg2), y));
return true;
}
@ -752,7 +752,7 @@ bool arith_rewriter::mk_eq_mod(expr* arg1, expr* arg2, expr_ref& result) {
}
expr_ref arith_rewriter::neg_monomial(expr* e) const {
expr_ref_vector args(m());
expr_ref_vector args(m);
rational a1;
if (m_util.is_numeral(e, a1))
args.push_back(m_util.mk_numeral(-a1, e->get_sort()));
@ -773,10 +773,10 @@ expr_ref arith_rewriter::neg_monomial(expr* e) const {
args.push_back(e);
}
if (args.size() == 1) {
return expr_ref(args.back(), m());
return expr_ref(args.back(), m);
}
else {
return expr_ref(m_util.mk_mul(args.size(), args.data()), m());
return expr_ref(m_util.mk_mul(args.size(), args.data()), m);
}
}
@ -793,7 +793,7 @@ bool arith_rewriter::is_neg_poly(expr* t, expr_ref& neg) const {
expr * t2 = to_app(t)->get_arg(0);
if (m_util.is_mul(t2) && is_numeral(to_app(t2)->get_arg(0), r) && r.is_neg()) {
expr_ref_vector args1(m());
expr_ref_vector args1(m);
for (expr* e1 : *to_app(t)) {
args1.push_back(neg_monomial(e1));
}
@ -826,7 +826,7 @@ bool arith_rewriter::is_anum_simp_target(unsigned num_args, expr * const * args)
br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
if (is_anum_simp_target(num_args, args)) {
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
anum_manager & am = m_util.am();
scoped_anum r(am);
scoped_anum arg(am);
@ -864,7 +864,7 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
new_args.push_back(m_util.mk_numeral(am, r, false));
br_status st = poly_rewriter<arith_rewriter_core>::mk_add_core(new_args.size(), new_args.data(), result);
if (st == BR_FAILED) {
result = m().mk_app(get_fid(), OP_ADD, new_args.size(), new_args.data());
result = m.mk_app(get_fid(), OP_ADD, new_args.size(), new_args.data());
return BR_DONE;
}
return st;
@ -876,7 +876,7 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, expr_ref & result) {
if (is_anum_simp_target(num_args, args)) {
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
anum_manager & am = m_util.am();
scoped_anum r(am);
scoped_anum arg(am);
@ -913,7 +913,7 @@ br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, ex
br_status st = poly_rewriter<arith_rewriter_core>::mk_mul_core(new_args.size(), new_args.data(), result);
if (st == BR_FAILED) {
result = m().mk_app(get_fid(), OP_MUL, new_args.size(), new_args.data());
result = m.mk_app(get_fid(), OP_MUL, new_args.size(), new_args.data());
return BR_DONE;
}
return st;
@ -998,7 +998,7 @@ br_status arith_rewriter::mk_div_core(expr * arg1, expr * arg2, expr_ref & resul
else {
numeral k(1);
k /= v2;
result = m().mk_app(get_fid(), OP_MUL,
result = m.mk_app(get_fid(), OP_MUL,
m_util.mk_numeral(k, false),
arg1);
return BR_REWRITE1;
@ -1028,8 +1028,8 @@ br_status arith_rewriter::mk_div_core(expr * arg1, expr * arg2, expr_ref & resul
v1 /= v2;
result = m_util.mk_mul(m_util.mk_numeral(v1, false),
m_util.mk_div(b, d));
expr_ref z(m_util.mk_real(0), m());
result = m().mk_ite(m().mk_eq(d, z), m_util.mk_div(arg1, z), result);
expr_ref z(m_util.mk_real(0), m);
result = m.mk_ite(m.mk_eq(d, z), m_util.mk_div(arg1, z), result);
return BR_REWRITE2;
}
}
@ -1039,7 +1039,7 @@ br_status arith_rewriter::mk_div_core(expr * arg1, expr * arg2, expr_ref & resul
}
br_status arith_rewriter::mk_idivides(unsigned k, expr * arg, expr_ref & result) {
result = m().mk_eq(m_util.mk_mod(arg, m_util.mk_int(k)), m_util.mk_int(0));
result = m.mk_eq(m_util.mk_mod(arg, m_util.mk_int(k)), m_util.mk_int(0));
return BR_REWRITE2;
}
@ -1063,12 +1063,12 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
return BR_FAILED;
}
if (arg1 == arg2) {
expr_ref zero(m_util.mk_int(0), m());
result = m().mk_ite(m().mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
expr_ref zero(m_util.mk_int(0), m);
result = m.mk_ite(m.mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
return BR_REWRITE3;
}
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_pos() && m_util.is_add(arg1)) {
expr_ref_buffer args(m());
expr_ref_buffer args(m);
bool change = false;
rational add(0);
for (expr* arg : *to_app(arg1)) {
@ -1083,15 +1083,15 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
}
}
if (change) {
result = m_util.mk_idiv(m().mk_app(to_app(arg1)->get_decl(), args.size(), args.data()), arg2);
result = m_util.mk_idiv(m.mk_app(to_app(arg1)->get_decl(), args.size(), args.data()), arg2);
result = m_util.mk_add(m_util.mk_numeral(add, true), result);
TRACE("div_bug", tout << "mk_div result: " << result << "\n";);
return BR_REWRITE3;
}
}
if (divides(arg1, arg2, result)) {
expr_ref zero(m_util.mk_int(0), m());
result = m().mk_ite(m().mk_eq(zero, arg2), m_util.mk_idiv(arg1, zero), result);
expr_ref zero(m_util.mk_int(0), m);
result = m.mk_ite(m.mk_eq(zero, arg2), m_util.mk_idiv(arg1, zero), result);
return BR_REWRITE_FULL;
}
return BR_FAILED;
@ -1150,17 +1150,17 @@ expr_ref arith_rewriter::remove_divisor(expr* arg, expr* num, expr* den) {
flat_mul(den, args2);
remove_divisor(arg, args1);
remove_divisor(arg, args2);
expr_ref zero(m_util.mk_int(0), m());
expr_ref zero(m_util.mk_int(0), m);
num = args1.empty() ? m_util.mk_int(1) : m_util.mk_mul(args1.size(), args1.data());
den = args2.empty() ? m_util.mk_int(1) : m_util.mk_mul(args2.size(), args2.data());
expr_ref d(m_util.mk_idiv(num, den), m());
expr_ref nd(m_util.mk_idiv(m_util.mk_uminus(num), m_util.mk_uminus(den)), m());
return expr_ref(m().mk_ite(m().mk_eq(zero, arg),
expr_ref d(m_util.mk_idiv(num, den), m);
expr_ref nd(m_util.mk_idiv(m_util.mk_uminus(num), m_util.mk_uminus(den)), m);
return expr_ref(m.mk_ite(m.mk_eq(zero, arg),
m_util.mk_idiv(zero, zero),
m().mk_ite(m_util.mk_ge(arg, zero),
m.mk_ite(m_util.mk_ge(arg, zero),
d,
nd)),
m());
m);
}
void arith_rewriter::flat_mul(expr* e, ptr_buffer<expr>& args) {
@ -1208,8 +1208,8 @@ br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & resul
}
if (arg1 == arg2 && !m_util.is_numeral(arg2)) {
expr_ref zero(m_util.mk_int(0), m());
result = m().mk_ite(m().mk_eq(arg2, zero), m_util.mk_mod(zero, zero), zero);
expr_ref zero(m_util.mk_int(0), m);
result = m.mk_ite(m.mk_eq(arg2, zero), m_util.mk_mod(zero, zero), zero);
return BR_DONE;
}
@ -1222,8 +1222,8 @@ br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & resul
// propagate mod inside only if there is something to reduce.
if (m_util.is_numeral(arg2, v2, is_int) && is_int && v2.is_pos() && (is_add(arg1) || is_mul(arg1))) {
TRACE("mod_bug", tout << "mk_mod:\n" << mk_ismt2_pp(arg1, m()) << "\n" << mk_ismt2_pp(arg2, m()) << "\n";);
expr_ref_buffer args(m());
TRACE("mod_bug", tout << "mk_mod:\n" << mk_ismt2_pp(arg1, m) << "\n" << mk_ismt2_pp(arg2, m) << "\n";);
expr_ref_buffer args(m);
bool change = false;
for (expr* arg : *to_app(arg1)) {
rational arg_v;
@ -1246,8 +1246,8 @@ br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & resul
if (!change) {
return BR_FAILED; // did not find any target for applying simplification
}
result = m_util.mk_mod(m().mk_app(to_app(arg1)->get_decl(), args.size(), args.data()), arg2);
TRACE("mod_bug", tout << "mk_mod result: " << mk_ismt2_pp(result, m()) << "\n";);
result = m_util.mk_mod(m.mk_app(to_app(arg1)->get_decl(), args.size(), args.data()), arg2);
TRACE("mod_bug", tout << "mk_mod result: " << mk_ismt2_pp(result, m) << "\n";);
return BR_REWRITE3;
}
@ -1290,10 +1290,10 @@ br_status arith_rewriter::mk_rem_core(expr * arg1, expr * arg2, expr_ref & resul
}
else if (m_elim_rem) {
expr * mod = m_util.mk_mod(arg1, arg2);
result = m().mk_ite(m_util.mk_ge(arg2, m_util.mk_numeral(rational(0), true)),
result = m.mk_ite(m_util.mk_ge(arg2, m_util.mk_numeral(rational(0), true)),
mod,
m_util.mk_uminus(mod));
TRACE("elim_rem", tout << "result: " << mk_ismt2_pp(result, m()) << "\n";);
TRACE("elim_rem", tout << "result: " << mk_ismt2_pp(result, m) << "\n";);
return BR_REWRITE3;
}
return BR_FAILED;
@ -1322,7 +1322,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
bool is_num_y = m_util.is_numeral(arg2, y);
auto ensure_real = [&](expr* e) { return m_util.is_int(e) ? m_util.mk_to_real(e) : e; };
TRACE("arith", tout << mk_pp(arg1, m()) << " " << mk_pp(arg2, m()) << "\n";);
TRACE("arith", tout << mk_pp(arg1, m) << " " << mk_pp(arg2, m) << "\n";);
if (is_num_x && x.is_one()) {
result = m_util.mk_numeral(x, false);
return BR_DONE;
@ -1377,7 +1377,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
if (is_num_y && y.is_minus_one()) {
result = m_util.mk_div(m_util.mk_real(1), ensure_real(arg1));
result = m().mk_ite(m().mk_eq(arg1, m_util.mk_numeral(rational(0), m_util.is_int(arg1))),
result = m.mk_ite(m.mk_eq(arg1, m_util.mk_numeral(rational(0), m_util.is_int(arg1))),
m_util.mk_real(0),
result);
return BR_REWRITE2;
@ -1387,7 +1387,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
// (^ t -k) --> (^ (/ 1 t) k)
result = m_util.mk_power(m_util.mk_div(m_util.mk_numeral(rational(1), false), arg1),
m_util.mk_numeral(-y, false));
result = m().mk_ite(m().mk_eq(arg1, m_util.mk_numeral(rational(0), m_util.is_int(arg1))),
result = m.mk_ite(m.mk_eq(arg1, m_util.mk_numeral(rational(0), m_util.is_int(arg1))),
m_util.mk_real(0),
result);
return BR_REWRITE3;
@ -1504,7 +1504,7 @@ br_status arith_rewriter::mk_to_int_core(expr * arg, expr_ref & result) {
// Try to apply simplifications such as:
// (to_int (+ 1.0 (to_real x)) y) --> (+ 1 x (to_int y))
expr_ref_buffer int_args(m()), real_args(m());
expr_ref_buffer int_args(m), real_args(m);
for (expr* c : *to_app(arg)) {
if (m_util.is_numeral(c, a) && a.is_int()) {
int_args.push_back(m_util.mk_numeral(a, true));
@ -1520,17 +1520,17 @@ br_status arith_rewriter::mk_to_int_core(expr * arg, expr_ref & result) {
return BR_FAILED;
if (real_args.empty()) {
result = m().mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), int_args.size(), int_args.data());
result = m.mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), int_args.size(), int_args.data());
return BR_REWRITE1;
}
if (!int_args.empty() && m_util.is_add(arg)) {
decl_kind k = to_app(arg)->get_decl()->get_decl_kind();
expr_ref t1(m().mk_app(get_fid(), k, int_args.size(), int_args.data()), m());
expr_ref t2(m().mk_app(get_fid(), k, real_args.size(), real_args.data()), m());
expr_ref t1(m.mk_app(get_fid(), k, int_args.size(), int_args.data()), m);
expr_ref t2(m.mk_app(get_fid(), k, real_args.size(), real_args.data()), m);
int_args.reset();
int_args.push_back(t1);
int_args.push_back(m_util.mk_to_int(t2));
result = m().mk_app(get_fid(), k, int_args.size(), int_args.data());
result = m.mk_app(get_fid(), k, int_args.size(), int_args.data());
return BR_REWRITE3;
}
}
@ -1550,9 +1550,9 @@ br_status arith_rewriter::mk_to_real_core(expr * arg, expr_ref & result) {
for (expr* e : *to_app(arg))
new_args.push_back(m_util.mk_to_real(e));
if (m_util.is_add(arg))
result = m().mk_app(get_fid(), OP_ADD, new_args.size(), new_args.data());
result = m.mk_app(get_fid(), OP_ADD, new_args.size(), new_args.data());
else
result = m().mk_app(get_fid(), OP_MUL, new_args.size(), new_args.data());
result = m.mk_app(get_fid(), OP_MUL, new_args.size(), new_args.data());
return BR_REWRITE2;
}
}
@ -1562,23 +1562,23 @@ br_status arith_rewriter::mk_to_real_core(expr * arg, expr_ref & result) {
br_status arith_rewriter::mk_is_int(expr * arg, expr_ref & result) {
numeral a;
if (m_util.is_numeral(arg, a)) {
result = a.is_int() ? m().mk_true() : m().mk_false();
result = a.is_int() ? m.mk_true() : m.mk_false();
return BR_DONE;
}
else if (m_util.is_to_real(arg)) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
else {
result = m().mk_eq(m().mk_app(get_fid(), OP_TO_REAL,
m().mk_app(get_fid(), OP_TO_INT, arg)),
result = m.mk_eq(m.mk_app(get_fid(), OP_TO_REAL,
m.mk_app(get_fid(), OP_TO_INT, arg)),
arg);
return BR_REWRITE3;
}
}
br_status arith_rewriter::mk_abs_core(expr * arg, expr_ref & result) {
result = m().mk_ite(m_util.mk_ge(arg, m_util.mk_numeral(rational(0), m_util.is_int(arg))), arg, m_util.mk_uminus(arg));
result = m.mk_ite(m_util.mk_ge(arg, m_util.mk_numeral(rational(0), m_util.is_int(arg))), arg, m_util.mk_uminus(arg));
return BR_REWRITE2;
}
@ -1647,9 +1647,9 @@ bool arith_rewriter::is_pi_integer(expr * t) {
a = c;
b = d;
}
TRACE("tan", tout << "is_pi_integer " << mk_ismt2_pp(t, m()) << "\n";
tout << "a: " << mk_ismt2_pp(a, m()) << "\n";
tout << "b: " << mk_ismt2_pp(b, m()) << "\n";);
TRACE("tan", tout << "is_pi_integer " << mk_ismt2_pp(t, m) << "\n";
tout << "a: " << mk_ismt2_pp(a, m) << "\n";
tout << "b: " << mk_ismt2_pp(b, m) << "\n";);
return
(m_util.is_pi(a) && m_util.is_to_real(b)) ||
(m_util.is_to_real(a) && m_util.is_pi(b));
@ -1861,7 +1861,7 @@ br_status arith_rewriter::mk_tan_core(expr * arg, expr_ref & result) {
}
if (is_pi_multiple(arg, k)) {
expr_ref n(m()), d(m());
expr_ref n(m), d(m);
n = mk_sin_value(k);
if (n.get() == nullptr)
goto end;

View file

@ -25,13 +25,13 @@ Notes:
class arith_rewriter_core {
protected:
typedef rational numeral;
ast_manager& m;
arith_util m_util;
scoped_ptr<seq_util> m_seq;
bool m_expand_power{ false };
bool m_mul2power{ false };
bool m_expand_tan{ false };
bool m_expand_power = false;
bool m_mul2power = false;
bool m_expand_tan = false;
ast_manager & m() const { return m_util.get_manager(); }
family_id get_fid() const { return m_util.get_family_id(); }
seq_util& seq();
@ -47,7 +47,7 @@ protected:
app* mk_power(expr* x, rational const& r, sort* s);
expr* coerce(expr* x, sort* s);
public:
arith_rewriter_core(ast_manager & m):m_util(m) {}
arith_rewriter_core(ast_manager & m):m(m), m_util(m) {}
bool is_zero(expr * n) const { return m_util.is_zero(n); }
};
@ -120,7 +120,7 @@ public:
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
void mk_app(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_app_core(f, num_args, args, result) == BR_FAILED)
result = m().mk_app(f, num_args, args);
result = m.mk_app(f, num_args, args);
}
br_status mk_eq_core(expr * arg1, expr * arg2, expr_ref & result);
@ -159,30 +159,30 @@ public:
br_status mk_power_core(expr* arg1, expr* arg2, expr_ref & result);
void mk_div(expr * arg1, expr * arg2, expr_ref & result) {
if (mk_div_core(arg1, arg2, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_DIV, arg1, arg2);
result = m.mk_app(get_fid(), OP_DIV, arg1, arg2);
}
void mk_idiv(expr * arg1, expr * arg2, expr_ref & result) {
if (mk_idiv_core(arg1, arg2, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_IDIV, arg1, arg2);
result = m.mk_app(get_fid(), OP_IDIV, arg1, arg2);
}
void mk_mod(expr * arg1, expr * arg2, expr_ref & result) {
if (mk_mod_core(arg1, arg2, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_MOD, arg1, arg2);
result = m.mk_app(get_fid(), OP_MOD, arg1, arg2);
}
void mk_rem(expr * arg1, expr * arg2, expr_ref & result) {
if (mk_rem_core(arg1, arg2, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_REM, arg1, arg2);
result = m.mk_app(get_fid(), OP_REM, arg1, arg2);
}
br_status mk_to_int_core(expr * arg, expr_ref & result);
br_status mk_to_real_core(expr * arg, expr_ref & result);
void mk_to_int(expr * arg, expr_ref & result) {
if (mk_to_int_core(arg, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_TO_INT, 1, &arg);
result = m.mk_app(get_fid(), OP_TO_INT, 1, &arg);
}
void mk_to_real(expr * arg, expr_ref & result) {
if (mk_to_real_core(arg, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_TO_REAL, 1, &arg);
result = m.mk_app(get_fid(), OP_TO_REAL, 1, &arg);
}
br_status mk_is_int(expr * arg, expr_ref & result);

View file

@ -217,7 +217,7 @@ br_status bv_rewriter::mk_uge(expr * a, expr * b, expr_ref & result) {
}
br_status bv_rewriter::mk_ult(expr * a, expr * b, expr_ref & result) {
result = m().mk_not(m_util.mk_ule(b, a));
result = m.mk_not(m_util.mk_ule(b, a));
return BR_REWRITE2;
}
@ -234,7 +234,7 @@ br_status bv_rewriter::mk_sge(expr * a, expr * b, expr_ref & result) {
}
br_status bv_rewriter::mk_slt(expr * a, expr * b, expr_ref & result) {
result = m().mk_not(m_util.mk_sle(b, a));
result = m.mk_not(m_util.mk_sle(b, a));
return BR_REWRITE2;
}
@ -300,7 +300,7 @@ bool bv_rewriter::are_eq_upto_num(expr * _a, expr * _b,
if (has_num_b) is_numeral(b->get_arg(0), b0_val, b0_sz);
SASSERT(a0_sz == m_util.get_bv_size(a) && b0_sz == m_util.get_bv_size(a));
if (has_num_a && numa > 2) {
common = m().mk_app(m_util.get_fid(), add_decl_kind(), numa - 1, a->get_args() + 1);
common = m.mk_app(m_util.get_fid(), add_decl_kind(), numa - 1, a->get_args() + 1);
}
else {
common = has_num_a ? a->get_arg(1) : a;
@ -311,13 +311,13 @@ bool bv_rewriter::are_eq_upto_num(expr * _a, expr * _b,
// simplifies expressions as (bvuleq (X + c1) (X + c2)) for some common expression X and numerals c1, c2
br_status bv_rewriter::rw_leq_overflow(bool is_signed, expr * a, expr * b, expr_ref & result) {
if (is_signed) return BR_FAILED;
expr_ref common(m());
expr_ref common(m);
numeral a0_val, b0_val;
if (!are_eq_upto_num(a, b, common, a0_val, b0_val)) return BR_FAILED;
SASSERT(a0_val.is_nonneg() && b0_val.is_nonneg());
const unsigned sz = m_util.get_bv_size(a);
if (a0_val == b0_val) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (a0_val < b0_val) {
@ -329,14 +329,14 @@ br_status bv_rewriter::rw_leq_overflow(bool is_signed, expr * a, expr * b, expr_
const numeral lower = rational::power_of_two(sz) - a0_val;
const numeral upper = rational::power_of_two(sz) - b0_val - numeral::one();
if (lower == upper) {
result = m().mk_eq(common, mk_numeral(lower, sz));
result = m.mk_eq(common, mk_numeral(lower, sz));
}
else if (b0_val.is_zero()) {
result = m_util.mk_ule(mk_numeral(lower, sz), common);
}
else {
SASSERT(lower.is_pos());
result = m().mk_and(m_util.mk_ule(mk_numeral(lower, sz), common),
result = m.mk_and(m_util.mk_ule(mk_numeral(lower, sz), common),
m_util.mk_ule(common, mk_numeral(upper, sz)));
}
return BR_REWRITE2;
@ -363,11 +363,11 @@ br_status bv_rewriter::rw_leq_concats(bool is_signed, expr * _a, expr * _b, expr
const numeral hi_bf = m_util.norm(bf_sz > sz_min ? div(bf, rational::power_of_two(bf_sz - sz_min)) : bf,
sz_min, is_signed);
if (hi_af != hi_bf) {
result = hi_af < hi_bf ? m().mk_true() : m().mk_false();
result = hi_af < hi_bf ? m.mk_true() : m.mk_false();
return BR_DONE;
}
expr_ref new_a(m());
expr_ref new_b(m());
expr_ref new_a(m);
expr_ref new_b(m);
if (af_sz > sz_min) {
ptr_buffer<expr> new_args;
new_args.push_back(mk_numeral(af, af_sz - sz_min));
@ -391,11 +391,11 @@ br_status bv_rewriter::rw_leq_concats(bool is_signed, expr * _a, expr * _b, expr
{ // common prefix
unsigned common = 0;
while (common < num_min && m().are_equal(a->get_arg(common), b->get_arg(common))) ++common;
while (common < num_min && m.are_equal(a->get_arg(common), b->get_arg(common))) ++common;
SASSERT((common == numa) == (common == numb));
if (common == numa) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (common > 0) {
@ -411,13 +411,13 @@ br_status bv_rewriter::rw_leq_concats(bool is_signed, expr * _a, expr * _b, expr
while (new_numa && new_numb) {
expr * const last_a = a->get_arg(new_numa - 1);
expr * const last_b = b->get_arg(new_numb - 1);
if (!m().are_equal(last_a, last_b)) break;
if (!m.are_equal(last_a, last_b)) break;
new_numa--;
new_numb--;
}
if (new_numa == 0) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (new_numa != numa) {
@ -438,7 +438,7 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
bool is_num2 = is_numeral(b, r2, sz);
if (a == b) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
@ -448,7 +448,7 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
r2 = m_util.norm(r2, sz, is_signed);
if (is_num1 && is_num2) {
result = m().mk_bool_val(r1 <= r2);
result = m.mk_bool_val(r1 <= r2);
return BR_DONE;
}
@ -467,11 +467,11 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
if (is_num2) {
if (r2 == lower) {
result = m().mk_eq(a, b);
result = m.mk_eq(a, b);
return BR_REWRITE1;
}
if (r2 == upper) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
}
@ -479,13 +479,13 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
if (is_num1) {
// 0 <= b is true
if (r1 == lower) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
// 2^n-1 <= b is a = b
if (r1 == upper) {
result = m().mk_eq(a, b);
result = m.mk_eq(a, b);
return BR_REWRITE1;
}
}
@ -512,12 +512,10 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
// other cases r1 > r2, r1 < r2 are TBD
if (!is_signed && is_num1 && m_util.is_bv_add(b, a1, a2) && is_numeral(a1, r2, sz)) {
result = m_util.mk_ule(a2, m_util.mk_numeral(-r2 - 1, sz));
if (r1 > r2) {
result = m().mk_and(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
}
else if (r1 < r2) {
result = m().mk_or(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
}
if (r1 > r2)
result = m.mk_and(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
else if (r1 < r2)
result = m.mk_or(result, m_util.mk_ule(m_util.mk_numeral(r1-r2, sz), a2));
return BR_REWRITE2;
}
@ -525,7 +523,7 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
const br_status cst = rw_leq_concats(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_ismt2_pp(a, m(), 2) << "\n" << mk_ismt2_pp(b, m(), 2) << "\n--->\n"<< mk_ismt2_pp(result, m(), 2) << "\n";);
<< mk_ismt2_pp(a, m, 2) << "\n" << mk_ismt2_pp(b, m, 2) << "\n--->\n"<< mk_ismt2_pp(result, m, 2) << "\n";);
return cst;
}
}
@ -534,7 +532,7 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
const br_status cst = rw_leq_overflow(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_ismt2_pp(a, m(), 2) << "\n" << mk_ismt2_pp(b, m(), 2) << "\n--->\n"<< mk_ismt2_pp(result, m(), 2) << "\n";);
<< mk_ismt2_pp(a, m, 2) << "\n" << mk_ismt2_pp(b, m, 2) << "\n--->\n"<< mk_ismt2_pp(result, m, 2) << "\n";);
return cst;
}
}
@ -548,7 +546,7 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
expr * b_2 = to_app(b)->get_arg(1);
unsigned sz1 = get_bv_size(b_1);
unsigned sz2 = get_bv_size(b_2);
result = m().mk_and(m().mk_eq(m_mk_extract(sz2+sz1-1, sz2, a), b_1),
result = m.mk_and(m.mk_eq(m_mk_extract(sz2+sz1-1, sz2, a), b_1),
m_util.mk_ule(m_mk_extract(sz2-1, 0, a), b_2));
return BR_REWRITE3;
}
@ -572,11 +570,11 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
if (first_non_zero == UINT_MAX) {
// all bits are zero
result = m().mk_eq(a, m_util.mk_numeral(numeral(0), bv_sz));
result = m.mk_eq(a, m_util.mk_numeral(numeral(0), bv_sz));
return BR_REWRITE1;
}
else if (first_non_zero < bv_sz - 1 && m_le2extract) {
result = m().mk_and(m().mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), m_util.mk_numeral(numeral(0), bv_sz - first_non_zero - 1)),
result = m.mk_and(m.mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), m_util.mk_numeral(numeral(0), bv_sz - first_non_zero - 1)),
m_util.mk_ule(m_mk_extract(first_non_zero, 0, a), m_mk_extract(first_non_zero, 0, b)));
return BR_REWRITE3;
}
@ -673,7 +671,7 @@ unsigned bv_rewriter::propagate_extract(unsigned high, expr * arg, expr_ref & re
}
if (new_arg) new_args.push_back(new_arg);
}
result = m().mk_app(get_fid(), a->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
result = m.mk_app(get_fid(), a->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
SASSERT(m_util.is_bv(result));
return removable;
}
@ -777,17 +775,17 @@ br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_
expr * curr = to_app(arg)->get_arg(i);
new_args.push_back(m_mk_extract(high, low, curr));
}
result = m().mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
result = m.mk_app(get_fid(), to_app(arg)->get_decl()->get_decl_kind(), new_args.size(), new_args.data());
return BR_REWRITE2;
}
if (m_extract_prop && (high >= low)) {
expr_ref ep_res(m());
expr_ref ep_res(m);
const unsigned ep_rm = propagate_extract(high, arg, ep_res);
if (ep_rm != 0) {
result = m_mk_extract(high, low, ep_res);
TRACE("extract_prop", tout << mk_ismt2_pp(arg, m()) << "\n[" << high <<"," << low << "]\n" << ep_rm << "---->\n"
<< mk_ismt2_pp(result.get(), m()) << "\n";);
TRACE("extract_prop", tout << mk_ismt2_pp(arg, m) << "\n[" << high <<"," << low << "]\n" << ep_rm << "---->\n"
<< mk_ismt2_pp(result.get(), m) << "\n";);
return BR_REWRITE2;
}
}
@ -797,9 +795,9 @@ br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_
// branch of ite to be expanded or if one of the expanded ite branches have a single
// reference count.
expr* c = nullptr, *t = nullptr, *e = nullptr;
if (m().is_ite(arg, c, t, e) &&
(t->get_ref_count() == 1 || e->get_ref_count() == 1 || !m().is_ite(t) || !m().is_ite(e))) {
result = m().mk_ite(c, m_mk_extract(high, low, t), m_mk_extract(high, low, e));
if (m.is_ite(arg, c, t, e) &&
(t->get_ref_count() == 1 || e->get_ref_count() == 1 || !m.is_ite(t) || !m.is_ite(e))) {
result = m.mk_ite(c, m_mk_extract(high, low, t), m_mk_extract(high, low, e));
return BR_REWRITE2;
}
@ -855,9 +853,9 @@ br_status bv_rewriter::mk_bv_shl(expr * arg1, expr * arg2, expr_ref & result) {
expr* x = nullptr, *y = nullptr;
if (m_util.is_bv_shl(arg1, x, y)) {
expr_ref sum(m_util.mk_bv_add(y, arg2), m());
expr_ref cond(m_util.mk_ule(y, sum), m());
result = m().mk_ite(cond,
expr_ref sum(m_util.mk_bv_add(y, arg2), m);
expr_ref cond(m_util.mk_ule(y, sum), m);
result = m.mk_ite(cond,
m_util.mk_bv_shl(x, sum),
mk_numeral(0, bv_size));
return BR_REWRITE3;
@ -989,7 +987,7 @@ br_status bv_rewriter::mk_bv_ashr(expr * arg1, expr * arg2, expr_ref & result) {
r1 += r2;
if (r1 > numeral(bv_size))
r1 = numeral(bv_size);
result = m().mk_app(get_fid(), OP_BASHR,
result = m.mk_app(get_fid(), OP_BASHR,
to_app(arg1)->get_arg(0),
mk_numeral(r1, bv_size));
return BR_REWRITE1; // not really needed at this time.
@ -1029,7 +1027,7 @@ br_status bv_rewriter::mk_bv_sdiv_core(expr * arg1, expr * arg2, bool hi_div0, e
}
else {
// The "hardware interpretation" for (bvsdiv x 0) is (ite (bvslt x #x0000) #x0001 #xffff)
result = m().mk_ite(m().mk_app(get_fid(), OP_SLT, arg1, mk_numeral(0, bv_size)),
result = m.mk_ite(m.mk_app(get_fid(), OP_SLT, arg1, mk_numeral(0, bv_size)),
mk_numeral(1, bv_size),
mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size));
return BR_REWRITE2;
@ -1057,7 +1055,7 @@ br_status bv_rewriter::mk_bv_sdiv_core(expr * arg1, expr * arg2, bool hi_div0, e
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
result = m.mk_ite(m.mk_eq(arg2, mk_numeral(0, bv_size)),
m_util.mk_bv_sdiv0(arg1),
m_util.mk_bv_sdiv_i(arg1, arg2));
return BR_REWRITE2;
@ -1097,7 +1095,7 @@ br_status bv_rewriter::mk_bv_udiv_core(expr * arg1, expr * arg2, bool hi_div0, e
unsigned shift;
if (r2.is_power_of_two(shift)) {
result = m().mk_app(get_fid(), OP_BLSHR, arg1, mk_numeral(shift, bv_size));
result = m.mk_app(get_fid(), OP_BLSHR, arg1, mk_numeral(shift, bv_size));
return BR_REWRITE1;
}
@ -1112,11 +1110,11 @@ br_status bv_rewriter::mk_bv_udiv_core(expr * arg1, expr * arg2, bool hi_div0, e
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
result = m.mk_ite(m.mk_eq(arg2, mk_numeral(0, bv_size)),
m_util.mk_bv_udiv0(arg1),
m_util.mk_bv_udiv_i(arg1, arg2));
TRACE("bv_udiv", tout << mk_ismt2_pp(arg1, m()) << "\n" << mk_ismt2_pp(arg2, m()) << "\n---->\n" << mk_ismt2_pp(result, m()) << "\n";);
TRACE("bv_udiv", tout << mk_ismt2_pp(arg1, m) << "\n" << mk_ismt2_pp(arg2, m) << "\n---->\n" << mk_ismt2_pp(result, m) << "\n";);
return BR_REWRITE2;
}
@ -1128,7 +1126,7 @@ br_status bv_rewriter::mk_bv_srem_core(expr * arg1, expr * arg2, bool hi_div0, e
r2 = m_util.norm(r2, bv_size, true);
if (r2.is_zero()) {
if (!hi_div0) {
result = m().mk_app(get_fid(), OP_BSREM0, arg1);
result = m.mk_app(get_fid(), OP_BSREM0, arg1);
return BR_REWRITE1;
}
else {
@ -1149,19 +1147,19 @@ br_status bv_rewriter::mk_bv_srem_core(expr * arg1, expr * arg2, bool hi_div0, e
return BR_DONE;
}
result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
result = m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
result = m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BSREM0, arg1),
m().mk_app(get_fid(), OP_BSREM_I, arg1, arg2));
result = m.mk_ite(m.mk_eq(arg2, mk_numeral(0, bv_size)),
m.mk_app(get_fid(), OP_BSREM0, arg1),
m.mk_app(get_fid(), OP_BSREM_I, arg1, arg2));
return BR_REWRITE2;
}
@ -1253,7 +1251,7 @@ br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, e
// urem(0, x) ==> ite(x = 0, urem0(x), 0)
if (is_num1 && r1.is_zero()) {
expr * zero = arg1;
result = m().mk_ite(m().mk_eq(arg2, zero),
result = m.mk_ite(m.mk_eq(arg2, zero),
m_util.mk_bv_urem0(zero),
zero);
return BR_REWRITE2;
@ -1265,7 +1263,7 @@ br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, e
bv_size = get_bv_size(arg1);
expr * x_minus_1 = arg1;
expr * minus_one = mk_numeral(rational::power_of_two(bv_size) - numeral(1), bv_size);
result = m().mk_ite(m().mk_eq(x, mk_numeral(0, bv_size)),
result = m.mk_ite(m.mk_eq(x, mk_numeral(0, bv_size)),
m_util.mk_bv_urem0(minus_one),
x_minus_1);
return BR_REWRITE2;
@ -1295,7 +1293,7 @@ br_status bv_rewriter::mk_bv_urem_core(expr * arg1, expr * arg2, bool hi_div0, e
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
result = m.mk_ite(m.mk_eq(arg2, mk_numeral(0, bv_size)),
m_util.mk_bv_urem0(arg1),
m_util.mk_bv_urem_i(arg1, arg2));
return BR_REWRITE2;
@ -1357,8 +1355,8 @@ br_status bv_rewriter::mk_bv_smod_core(expr * arg1, expr * arg2, bool hi_div0, e
!m_util.is_concat(a) &&
!m_util.is_concat(b)) {
unsigned nb = r2.get_num_bits();
expr_ref a1(m_util.mk_bv_smod(a, arg2), m());
expr_ref a2(m_util.mk_bv_smod(b, arg2), m());
expr_ref a1(m_util.mk_bv_smod(a, arg2), m);
expr_ref a2(m_util.mk_bv_smod(b, arg2), m);
a1 = m_util.mk_concat( mk_numeral(0, bv_size - nb), m_mk_extract(nb-1,0,a1));
a2 = m_util.mk_concat( mk_numeral(0, bv_size - nb), m_mk_extract(nb-1,0,a2));
result = m_util.mk_bv_mul(a1, a2);
@ -1371,14 +1369,14 @@ br_status bv_rewriter::mk_bv_smod_core(expr * arg1, expr * arg2, bool hi_div0, e
}
if (hi_div0) {
result = m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2);
result = m.mk_app(get_fid(), OP_BSMOD_I, arg1, arg2);
return BR_DONE;
}
bv_size = get_bv_size(arg2);
result = m().mk_ite(m().mk_eq(arg2, mk_numeral(0, bv_size)),
m().mk_app(get_fid(), OP_BSMOD0, arg1),
m().mk_app(get_fid(), OP_BSMOD_I, arg1, arg2));
result = m.mk_ite(m.mk_eq(arg2, mk_numeral(0, bv_size)),
m.mk_app(get_fid(), OP_BSMOD0, arg1),
m.mk_app(get_fid(), OP_BSMOD_I, arg1, arg2));
return BR_REWRITE2;
}
@ -1413,7 +1411,7 @@ br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
result = m_autil.mk_int(0);
return BR_DONE;
}
expr_ref_vector args(m());
expr_ref_vector args(m);
unsigned num_args = to_app(arg)->get_num_args();
for (expr* x : *to_app(arg)) {
@ -1421,7 +1419,7 @@ br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
}
unsigned sz = get_bv_size(to_app(arg)->get_arg(num_args-1));
for (unsigned i = num_args - 1; i > 0; ) {
expr_ref tmp(m());
expr_ref tmp(m);
--i;
tmp = args[i].get();
tmp = m_autil.mk_mul(m_autil.mk_numeral(power(numeral(2), sz), true), tmp);
@ -1432,13 +1430,13 @@ br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
return BR_REWRITE2;
}
if (is_mul_no_overflow(arg)) {
expr_ref_vector args(m());
expr_ref_vector args(m);
for (expr* x : *to_app(arg)) args.push_back(m_util.mk_bv2int(x));
result = m_autil.mk_mul(args.size(), args.data());
return BR_REWRITE2;
}
if (is_add_no_overflow(arg)) {
expr_ref_vector args(m());
expr_ref_vector args(m);
for (expr* x : *to_app(arg)) args.push_back(m_util.mk_bv2int(x));
result = m_autil.mk_add(args.size(), args.data());
return BR_REWRITE2;
@ -1507,7 +1505,7 @@ unsigned bv_rewriter::num_leading_zero_bits(expr* e) {
br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_ref & result) {
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
numeral v1;
numeral v2;
unsigned sz1, sz2;
@ -1554,11 +1552,11 @@ br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_re
if (!fused_numeral && !expanded && !fused_extract) {
expr* x, *y, *z;
if (eq_args) {
if (m().is_ite(new_args.back(), x, y, z)) {
if (m.is_ite(new_args.back(), x, y, z)) {
ptr_buffer<expr> args1, args2;
for (expr* arg : new_args)
args1.push_back(y), args2.push_back(z);
result = m().mk_ite(x, m_util.mk_concat(args1), m_util.mk_concat(args2));
result = m.mk_ite(x, m_util.mk_concat(args1), m_util.mk_concat(args2));
return BR_REWRITE2;
}
}
@ -1776,8 +1774,8 @@ br_status bv_rewriter::mk_bv_or(unsigned num, expr * const * args, expr_ref & re
std::reverse(exs.begin(), exs.end());
result = m_util.mk_concat(exs.size(), exs.data());
TRACE("mask_bug",
tout << "(assert (distinct (bvor (_ bv" << old_v1 << " " << sz << ")\n" << mk_ismt2_pp(t, m()) << ")\n";
tout << mk_ismt2_pp(result, m()) << "))\n";);
tout << "(assert (distinct (bvor (_ bv" << old_v1 << " " << sz << ")\n" << mk_ismt2_pp(t, m) << ")\n";
tout << mk_ismt2_pp(result, m) << "))\n";);
return BR_REWRITE2;
}
@ -1896,8 +1894,8 @@ br_status bv_rewriter::mk_bv_xor(unsigned num, expr * const * args, expr_ref & r
}
SASSERT(t != 0);
numeral two(2);
expr_ref_buffer exs(m());
expr_ref not_t(m());
expr_ref_buffer exs(m);
expr_ref not_t(m);
not_t = m_util.mk_bv_not(t);
unsigned low = 0;
unsigned i = 0;
@ -1936,7 +1934,7 @@ br_status bv_rewriter::mk_bv_xor(unsigned num, expr * const * args, expr_ref & r
}
ptr_buffer<expr> new_args;
expr_ref c(m()); // may not be used
expr_ref c(m); // may not be used
if (!v1.is_zero()) {
c = mk_numeral(v1, sz);
new_args.push_back(c);
@ -1990,13 +1988,13 @@ bool bv_rewriter::distribute_concat(decl_kind k, unsigned n, expr* const* args,
expr* e = to_app(arg)->get_arg(0);
unsigned sz1 = get_bv_size(e);
unsigned sz2 = get_bv_size(arg);
expr_ref_vector args1(m()), args2(m());
expr_ref_vector args1(m), args2(m);
for (unsigned j = 0; j < n; ++j) {
args1.push_back(m_mk_extract(sz2 - 1, sz2 - sz1, args[j]));
args2.push_back(m_mk_extract(sz2 - sz1 - 1, 0, args[j]));
}
expr* arg1 = m().mk_app(get_fid(), k, args1.size(), args1.data());
expr* arg2 = m().mk_app(get_fid(), k, args2.size(), args2.data());
expr* arg1 = m.mk_app(get_fid(), k, args1.size(), args1.data());
expr* arg2 = m.mk_app(get_fid(), k, args2.size(), args2.data());
result = m_util.mk_concat(arg1, arg2);
return true;
}
@ -2028,15 +2026,15 @@ br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) {
}
expr* x, *y, *z;
if (m().is_ite(arg, x, y, z) && m_util.is_numeral(y, val, bv_size)) {
if (m.is_ite(arg, x, y, z) && m_util.is_numeral(y, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = m().mk_ite(x, m_util.mk_numeral(val, bv_size), m_util.mk_bv_not(z));
result = m.mk_ite(x, m_util.mk_numeral(val, bv_size), m_util.mk_bv_not(z));
return BR_REWRITE2;
}
if (m().is_ite(arg, x, y, z) && m_util.is_numeral(z, val, bv_size)) {
if (m.is_ite(arg, x, y, z) && m_util.is_numeral(z, val, bv_size)) {
val = bitwise_not(bv_size, val);
result = m().mk_ite(x, m_util.mk_bv_not(y), m_util.mk_numeral(val, bv_size));
result = m.mk_ite(x, m_util.mk_bv_not(y), m_util.mk_numeral(val, bv_size));
return BR_REWRITE2;
}
@ -2051,13 +2049,13 @@ br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) {
}
}
if (m_util.is_bv_add(arg, s, t)) {
expr_ref ns(m());
expr_ref nt(m());
expr_ref ns(m);
expr_ref nt(m);
// ~(x + y) --> (~x + ~y + 1) when x and y are easy to negate
if (is_negatable(t, nt) && is_negatable(s, ns)) {
bv_size = m_util.get_bv_size(s);
expr * nargs[3] = { m_util.mk_numeral(rational::one(), bv_size), ns.get(), nt.get() };
result = m().mk_app(m_util.get_fid(), OP_BADD, 3, nargs);
result = m.mk_app(m_util.get_fid(), OP_BADD, 3, nargs);
return BR_REWRITE1;
}
}
@ -2092,7 +2090,7 @@ br_status bv_rewriter::mk_bv_nor(unsigned num_args, expr * const * args, expr_re
br_status bv_rewriter::mk_bv_xnor(unsigned num_args, expr * const * args, expr_ref & result) {
switch (num_args) {
case 0: result = m().mk_true(); break;
case 0: result = m.mk_true(); break;
case 1: result = m_util.mk_bv_not(args[0]); break;
case 2: result = m_util.mk_bv_not(m_util.mk_bv_xor(num_args, args)); break;
default:
@ -2176,7 +2174,7 @@ br_status bv_rewriter::mk_bv_comp(expr * arg1, expr * arg2, expr_ref & result) {
return BR_DONE;
}
result = m().mk_ite(m().mk_eq(arg1, arg2),
result = m.mk_ite(m.mk_eq(arg1, arg2),
mk_numeral(1, 1),
mk_numeral(0, 1));
return BR_REWRITE2;
@ -2214,7 +2212,7 @@ br_status bv_rewriter::mk_bv_add(unsigned num_args, expr * const * args, expr_re
return st;
}
result = m().mk_app(get_fid(), OP_BOR, x, y);
result = m.mk_app(get_fid(), OP_BOR, x, y);
return BR_REWRITE1;
#else
unsigned _num_args;
@ -2244,7 +2242,7 @@ br_status bv_rewriter::mk_bv_add(unsigned num_args, expr * const * args, expr_re
}
}
}
result = m().mk_app(get_fid(), OP_BOR, _num_args, _args);
result = m.mk_app(get_fid(), OP_BOR, _num_args, _args);
return BR_REWRITE1;
#endif
}
@ -2253,21 +2251,17 @@ bool bv_rewriter::is_zero_bit(expr * x, unsigned idx) {
numeral val;
unsigned bv_size;
loop:
if (is_numeral(x, val, bv_size)) {
if (val.is_zero())
return true;
div(val, rational::power_of_two(idx), val);
return (val % numeral(2)).is_zero();
}
if (is_numeral(x, val, bv_size))
return val.is_zero() || !val.get_bit(idx);
if (m_util.is_concat(x)) {
unsigned i = to_app(x)->get_num_args();
while (i > 0) {
--i;
expr * y = to_app(x)->get_arg(i);
bv_size = get_bv_size(y);
if (bv_size <= idx) {
if (bv_size <= idx)
idx -= bv_size;
}
else {
x = y;
goto loop;
@ -2363,7 +2357,7 @@ br_status bv_rewriter::mk_bit2bool(expr * n, int idx, expr_ref & result) {
return BR_FAILED;
div(v, rational::power_of_two(idx), bit);
mod(bit, rational(2), bit);
result = m().mk_bool_val(bit.is_one());
result = m.mk_bool_val(bit.is_one());
return BR_DONE;
}
@ -2381,61 +2375,62 @@ br_status bv_rewriter::mk_bit2bool(expr * lhs, expr * rhs, expr_ref & result) {
if (is_numeral(lhs)) {
SASSERT(is_numeral(rhs));
result = m().mk_bool_val(lhs == rhs);
result = m.mk_bool_val(lhs == rhs);
return BR_DONE;
}
expr* a = nullptr, *b = nullptr, *c = nullptr;
if (m().is_ite(lhs, a, b, c)) {
bool_rewriter rw(m());
expr_ref e1(rw.mk_eq(b, rhs), m());
expr_ref e2(rw.mk_eq(c, rhs), m());
if (m.is_ite(lhs, a, b, c)) {
bool_rewriter rw(m);
expr_ref e1(rw.mk_eq(b, rhs), m);
expr_ref e2(rw.mk_eq(c, rhs), m);
result = rw.mk_ite(a, e1, e2);
return BR_REWRITE2;
}
if (m_util.is_bv_not(lhs, a)) {
SASSERT(v.is_one() || v.is_zero());
result = m().mk_eq(a, mk_numeral(numeral(1) - v, 1));
result = m.mk_eq(a, mk_numeral(numeral(1) - v, 1));
return BR_REWRITE1;
}
bool is_one = v.is_one();
expr_ref bit1(m());
bit1 = is_one ? rhs : mk_numeral(numeral(1), 1);
if (m_util.is_bv_or(lhs)) {
if (!m_bit1)
m_bit1 = is_one ? rhs : mk_numeral(numeral(1), 1);
ptr_buffer<expr> new_args;
for (expr* arg : *to_app(lhs))
new_args.push_back(m().mk_eq(arg, bit1));
result = m().mk_or(new_args);
new_args.push_back(m.mk_eq(arg, m_bit1));
result = m.mk_or(new_args);
if (is_one) {
return BR_REWRITE2;
}
else {
result = m().mk_not(result);
result = m.mk_not(result);
return BR_REWRITE3;
}
}
if (m_util.is_bv_xor(lhs)) {
if (!m_bit1)
m_bit1 = is_one ? rhs : mk_numeral(numeral(1), 1);
ptr_buffer<expr> new_args;
for (expr* arg : *to_app(lhs))
new_args.push_back(m().mk_eq(arg, bit1));
new_args.push_back(m.mk_eq(arg, m_bit1));
// TODO: bool xor is not flat_assoc... must fix that.
result = m().mk_xor(new_args);
result = m.mk_xor(new_args);
if (is_one) {
return BR_REWRITE2;
}
else {
result = m().mk_not(result);
result = m.mk_not(result);
return BR_REWRITE3;
}
}
return BR_FAILED;
}
@ -2443,7 +2438,7 @@ br_status bv_rewriter::mk_blast_eq_value(expr * lhs, expr * rhs, expr_ref & resu
unsigned sz = get_bv_size(lhs);
if (sz == 1)
return BR_FAILED;
TRACE("blast_eq_value", tout << "sz: " << sz << "\n" << mk_ismt2_pp(lhs, m()) << "\n";);
TRACE("blast_eq_value", tout << "sz: " << sz << "\n" << mk_ismt2_pp(lhs, m) << "\n";);
if (is_numeral(lhs))
std::swap(lhs, rhs);
@ -2458,11 +2453,11 @@ br_status bv_rewriter::mk_blast_eq_value(expr * lhs, expr * rhs, expr_ref & resu
ptr_buffer<expr> new_args;
for (unsigned i = 0; i < sz; i++) {
bool bit0 = (v % two).is_zero();
new_args.push_back(m().mk_eq(m_mk_extract(i,i, lhs),
new_args.push_back(m.mk_eq(m_mk_extract(i,i, lhs),
mk_numeral(bit0 ? 0 : 1, 1)));
div(v, two, v);
}
result = m().mk_and(new_args);
result = m.mk_and(new_args);
return BR_REWRITE3;
}
@ -2503,7 +2498,7 @@ br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) {
unsigned rsz1 = sz1 - low1;
unsigned rsz2 = sz2 - low2;
if (rsz1 == rsz2) {
new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
new_eqs.push_back(m.mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 = 0;
low2 = 0;
@ -2512,14 +2507,14 @@ br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) {
continue;
}
else if (rsz1 < rsz2) {
new_eqs.push_back(m().mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
new_eqs.push_back(m.mk_eq(m_mk_extract(sz1 - 1, low1, arg1),
m_mk_extract(rsz1 + low2 - 1, low2, arg2)));
low1 = 0;
low2 += rsz1;
--i1;
}
else {
new_eqs.push_back(m().mk_eq(m_mk_extract(rsz2 + low1 - 1, low1, arg1),
new_eqs.push_back(m.mk_eq(m_mk_extract(rsz2 + low1 - 1, low1, arg1),
m_mk_extract(sz2 - 1, low2, arg2)));
low1 += rsz2;
low2 = 0;
@ -2528,7 +2523,7 @@ br_status bv_rewriter::mk_eq_concat(expr * lhs, expr * rhs, expr_ref & result) {
}
SASSERT(i1 == 0 && i2 == 0);
SASSERT(new_eqs.size() >= 1);
result = m().mk_and(new_eqs);
result = m.mk_and(new_eqs);
return BR_REWRITE3;
}
@ -2548,9 +2543,9 @@ bool bv_rewriter::is_minus_one_times_t(expr * arg) {
void bv_rewriter::mk_t1_add_t2_eq_c(expr * t1, expr * t2, expr * c, expr_ref & result) {
SASSERT(is_numeral(c));
if (is_minus_one_times_t(t1))
result = m().mk_eq(t2, m_util.mk_bv_sub(c, t1));
result = m.mk_eq(t2, m_util.mk_bv_sub(c, t1));
else
result = m().mk_eq(t1, m_util.mk_bv_sub(c, t2));
result = m.mk_eq(t1, m_util.mk_bv_sub(c, t2));
}
#include "ast/ast_pp.h"
@ -2564,9 +2559,9 @@ bool bv_rewriter::isolate_term(expr* lhs, expr* rhs, expr_ref& result) {
}
unsigned sz = to_app(rhs)->get_num_args();
expr * t1 = to_app(rhs)->get_arg(0);
expr_ref t2(m());
expr_ref t2(m);
if (sz > 2) {
t2 = m().mk_app(get_fid(), OP_BADD, sz-1, to_app(rhs)->get_args()+1);
t2 = m.mk_app(get_fid(), OP_BADD, sz-1, to_app(rhs)->get_args()+1);
}
else {
SASSERT(sz == 2);
@ -2623,7 +2618,7 @@ br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
// c * x = a
if (m_util.is_numeral(rhs, rhs_val, sz)) {
// x = c_inv * a
result = m().mk_eq(x, m_util.mk_numeral(c_inv_val * rhs_val, sz));
result = m.mk_eq(x, m_util.mk_numeral(c_inv_val * rhs_val, sz));
return BR_REWRITE1;
}
@ -2634,9 +2629,9 @@ br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
// x = c_inv * c2 * x2
numeral new_c2 = m_util.norm(c_inv_val * c2_val, sz);
if (new_c2.is_one())
result = m().mk_eq(x, x2);
result = m.mk_eq(x, x2);
else
result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val * c2_val, sz), x2));
result = m.mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val * c2_val, sz), x2));
return BR_REWRITE1;
}
@ -2644,7 +2639,7 @@ br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
// and t_i's have non-unary coefficients (this condition is used to make sure we are actually reducing the number of multipliers).
if (is_add_mul_const(rhs)) {
// Potential problem: this simplification may increase the number of adders by reducing the amount of sharing.
result = m().mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val, sz), rhs));
result = m.mk_eq(x, m_util.mk_bv_mul(m_util.mk_numeral(c_inv_val, sz), rhs));
return BR_REWRITE2;
}
}
@ -2662,7 +2657,7 @@ br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
}
}
if (found) {
result = m().mk_eq(m_util.mk_numeral(c2_inv_val*c_val, sz),
result = m.mk_eq(m_util.mk_numeral(c2_inv_val*c_val, sz),
m_util.mk_bv_mul(m_util.mk_numeral(c2_inv_val, sz), rhs));
return BR_REWRITE3;
}
@ -2682,12 +2677,12 @@ bool bv_rewriter::is_urem_any(expr * e, expr * & dividend, expr * & divisor) {
br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (lhs == rhs) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (is_numeral(lhs) && is_numeral(rhs)) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
@ -2699,7 +2694,7 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
#if 0
if (!gcd_test(lhs, rhs)) {
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
#endif
@ -2713,13 +2708,13 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
st = mk_mul_eq(lhs, rhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";);
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m) << "\n=\n" << mk_ismt2_pp(rhs, m) << "\n----->\n" << mk_ismt2_pp(result,m) << "\n";);
return st;
}
st = mk_mul_eq(rhs, lhs, result);
if (st != BR_FAILED) {
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m()) << "\n=\n" << mk_ismt2_pp(rhs, m()) << "\n----->\n" << mk_ismt2_pp(result,m()) << "\n";);
TRACE("mk_mul_eq", tout << mk_ismt2_pp(lhs, m) << "\n=\n" << mk_ismt2_pp(rhs, m) << "\n----->\n" << mk_ismt2_pp(result,m) << "\n";);
return st;
}
@ -2738,24 +2733,24 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
&& is_numeral(rhs, rhs_val, rhs_sz)
&& is_numeral(divisor, divisor_val, divisor_sz)) {
if (!divisor_val.is_zero() && rhs_val >= divisor_val) {//(= (bvurem x c1) c2) where c2 >= c1
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
if ((divisor_val + rhs_val) >= rational::power_of_two(divisor_sz)) {//(= (bvurem x c1) c2) where c1+c2 >= 2^width
result = m().mk_eq(dividend, rhs);
result = m.mk_eq(dividend, rhs);
return BR_REWRITE2;
}
}
}
expr_ref new_lhs(m());
expr_ref new_rhs(m());
expr_ref new_lhs(m);
expr_ref new_rhs(m);
if (m_util.is_bv_add(lhs) || m_util.is_bv_mul(lhs) || m_util.is_bv_add(rhs) || m_util.is_bv_mul(rhs)) {
st = cancel_monomials(lhs, rhs, false, new_lhs, new_rhs);
if (st != BR_FAILED) {
if (is_numeral(new_lhs) && is_numeral(new_rhs)) {
result = m().mk_bool_val(new_lhs == new_rhs);
result = m.mk_bool_val(new_lhs == new_rhs);
return BR_DONE;
}
lhs = new_lhs;
@ -2772,7 +2767,7 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
}
if (st != BR_FAILED) {
result = m().mk_eq(lhs, rhs);
result = m.mk_eq(lhs, rhs);
return BR_DONE;
}
}
@ -2782,7 +2777,7 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
}
if (swapped) {
result = m().mk_eq(lhs, rhs);
result = m.mk_eq(lhs, rhs);
return BR_DONE;
}
@ -2794,7 +2789,7 @@ br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & res
if (m_mkbv2num) {
unsigned i;
for (i = 0; i < num; i++)
if (!m().is_true(args[i]) && !m().is_false(args[i]))
if (!m.is_true(args[i]) && !m.is_false(args[i]))
return BR_FAILED;
numeral val;
numeral two(2);
@ -2802,7 +2797,7 @@ br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & res
while (i > 0) {
--i;
val *= two;
if (m().is_true(args[i]))
if (m.is_true(args[i]))
val++;
}
result = mk_numeral(val, num);
@ -2812,18 +2807,18 @@ br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & res
}
br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & result) {
TRACE("bv_ite", tout << "mk_ite_core:\n" << mk_ismt2_pp(c, m()) << "?\n"
<< mk_ismt2_pp(t, m()) << "\n:" << mk_ismt2_pp(e, m()) << "\n";);
if (m().are_equal(t, e)) {
TRACE("bv_ite", tout << "mk_ite_core:\n" << mk_ismt2_pp(c, m) << "?\n"
<< mk_ismt2_pp(t, m) << "\n:" << mk_ismt2_pp(e, m) << "\n";);
if (m.are_equal(t, e)) {
result = e;
return BR_REWRITE1;
}
if (m().is_not(c)) {
result = m().mk_ite(to_app(c)->get_arg(0), e, t);
if (m.is_not(c)) {
result = m.mk_ite(to_app(c)->get_arg(0), e, t);
return BR_REWRITE1;
}
if (m_ite2id && m().is_eq(c) && is_bv(t) && is_bv(e)) {
if (m_ite2id && m.is_eq(c) && is_bv(t) && is_bv(e)) {
// detect when ite is actually some simple function based on the pattern (lhs=rhs) ? t : e
expr * lhs = to_app(c)->get_arg(0);
expr * rhs = to_app(c)->get_arg(1);
@ -2832,8 +2827,8 @@ br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & resu
if (is_numeral(lhs))
std::swap(lhs, rhs);
if ( (m().are_equal(lhs, t) && m().are_equal(rhs, e))
|| (m().are_equal(lhs, e) && m().are_equal(rhs, t))) {
if ( (m.are_equal(lhs, t) && m.are_equal(rhs, e))
|| (m.are_equal(lhs, e) && m.are_equal(rhs, t))) {
// (a = b ? a : b) is b. (a = b ? b : a) is a
result = e;
return BR_REWRITE1;
@ -2846,8 +2841,8 @@ br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & resu
&& is_numeral(t, t_n, t_sz) && is_numeral(e, e_n, e_sz)) {
if (t_sz == 1) {
SASSERT(rhs_sz == sz && e_sz == sz && t_sz == sz);
SASSERT(!m().are_equal(t, e));
result = m().are_equal(rhs, t) ? lhs : m_util.mk_bv_not(lhs);
SASSERT(!m.are_equal(t, e));
result = m.are_equal(rhs, t) ? lhs : m_util.mk_bv_not(lhs);
return BR_REWRITE1;
}
if (rhs_n.is_one() && t_n.is_one() && e_n.is_zero()) {
@ -2873,7 +2868,7 @@ br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & resu
br_status bv_rewriter::mk_distinct(unsigned num_args, expr * const * args, expr_ref & result) {
if (num_args <= 1) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
unsigned sz = get_bv_size(args[0]);
@ -2882,7 +2877,7 @@ br_status bv_rewriter::mk_distinct(unsigned num_args, expr * const * args, expr_
return BR_FAILED;
if (num_args <= 1u << sz)
return BR_FAILED;
result = m().mk_false();
result = m.mk_false();
return BR_DONE;
}
@ -2895,11 +2890,11 @@ br_status bv_rewriter::mk_bvsmul_no_overflow(unsigned num, expr * const * args,
bool is_num2 = is_numeral(args[1], a1_val, bv_sz);
if (is_num1 && (a0_val.is_zero() || (bv_sz != 1 && a0_val.is_one()))) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (is_num2 && (a1_val.is_zero() || (bv_sz != 1 && a1_val.is_one()))) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
@ -2913,9 +2908,9 @@ br_status bv_rewriter::mk_bvsmul_no_overflow(unsigned num, expr * const * args,
rational lim = rational::power_of_two(bv_sz-1);
rational r = a0_val * a1_val;
if (is_overflow)
result = m().mk_bool_val(sign0 != sign1 || r < lim);
result = m.mk_bool_val(sign0 != sign1 || r < lim);
else
result = m().mk_bool_val(sign0 == sign1 || r <= lim);
result = m.mk_bool_val(sign0 == sign1 || r <= lim);
return BR_DONE;
}
@ -2927,18 +2922,18 @@ br_status bv_rewriter::mk_bvumul_no_overflow(unsigned num, expr * const * args,
bool is_num1 = is_numeral(args[0], a0_val, bv_sz);
bool is_num2 = is_numeral(args[1], a1_val, bv_sz);
if (is_num1 && (a0_val.is_zero() || a0_val.is_one())) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (is_num2 && (a1_val.is_zero() || a1_val.is_one())) {
result = m().mk_true();
result = m.mk_true();
return BR_DONE;
}
if (is_num1 && is_num2) {
rational mr = a0_val * a1_val;
rational lim = rational::power_of_two(bv_sz);
result = m().mk_bool_val(mr < lim);
result = m.mk_bool_val(mr < lim);
return BR_DONE;
}

View file

@ -25,10 +25,11 @@ Notes:
class bv_rewriter_core {
protected:
ast_manager& m;
typedef rational numeral;
bv_util m_util;
ast_manager & m() const { return m_util.get_manager(); }
family_id get_fid() const { return m_util.get_family_id(); }
expr_ref m_bit1;
bool is_numeral(expr * n) const { return m_util.is_numeral(n); }
bool is_numeral(expr * n, numeral & r) const { unsigned sz; return m_util.is_numeral(n, r, sz); }
@ -44,7 +45,7 @@ protected:
decl_kind power_decl_kind() const { UNREACHABLE(); return static_cast<decl_kind>(UINT_MAX); }
public:
bv_rewriter_core(ast_manager & m):m_util(m) {}
bv_rewriter_core(ast_manager & m):m(m), m_util(m), m_bit1(m) {}
};
class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
@ -176,7 +177,7 @@ public:
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
void mk_app(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_app_core(f, num_args, args, result) == BR_FAILED)
result = m().mk_app(f, num_args, args);
result = m.mk_app(f, num_args, args);
}
bool is_urem_any(expr * e, expr * & dividend, expr * & divisor);
@ -190,14 +191,14 @@ public:
#define MK_BV_BINARY(OP) \
expr_ref OP(expr* a, expr* b) { \
expr_ref result(m()); \
expr_ref result(m); \
if (BR_FAILED == OP(a, b, result)) \
result = m_util.OP(a, b); \
return result; \
} \
expr_ref mk_zero_extend(unsigned n, expr * arg) {
expr_ref result(m());
expr_ref result(m);
if (BR_FAILED == mk_zero_extend(n, arg, result))
result = m_util.mk_zero_extend(n, arg);
return result;
@ -211,7 +212,7 @@ public:
expr_ref mk_bv2int(expr* a) {
expr_ref result(m());
expr_ref result(m);
if (BR_FAILED == mk_bv2int(a, result))
result = m_util.mk_bv2int(a);
return result;

View file

@ -106,7 +106,6 @@ public:
SASSERT(!m_som || !m_hoist_mul); // som is mutually exclusive with hoisting multiplication.
}
ast_manager & m() const { return Config::m(); }
family_id get_fid() const { return Config::get_fid(); }
void updt_params(params_ref const & p);

View file

@ -51,7 +51,7 @@ expr * poly_rewriter<Config>::mk_add_app(unsigned num_args, expr * const * args)
switch (num_args) {
case 0: return mk_numeral(numeral(0));
case 1: return args[0];
default: return m().mk_app(get_fid(), add_decl_kind(), num_args, args);
default: return m.mk_app(get_fid(), add_decl_kind(), num_args, args);
}
}
@ -119,7 +119,7 @@ expr * poly_rewriter<Config>::mk_mul_app(unsigned num_args, expr * const * args)
if (new_args.size() > 2 && is_numeral(new_args.get(0), a)) {
return mk_mul_app(a, mk_mul_app(new_args.size() - 1, new_args.data() + 1));
}
return m().mk_app(get_fid(), mul_decl_kind(), new_args.size(), new_args.data());
return m.mk_app(get_fid(), mul_decl_kind(), new_args.size(), new_args.data());
}
}
else {
@ -127,7 +127,7 @@ expr * poly_rewriter<Config>::mk_mul_app(unsigned num_args, expr * const * args)
if (num_args > 2 && is_numeral(args[0], a)) {
return mk_mul_app(a, mk_mul_app(num_args - 1, args + 1));
}
return m().mk_app(get_fid(), mul_decl_kind(), num_args, args);
return m.mk_app(get_fid(), mul_decl_kind(), num_args, args);
}
}
}
@ -189,9 +189,9 @@ br_status poly_rewriter<Config>::mk_flat_mul_core(unsigned num_args, expr * cons
br_status st = mk_nflat_mul_core(flat_args.size(), flat_args.data(), result);
TRACE("poly_rewriter",
tout << "flat mul:\n";
for (unsigned i = 0; i < num_args; i++) tout << mk_bounded_pp(args[i], m()) << "\n";
for (unsigned i = 0; i < num_args; i++) tout << mk_bounded_pp(args[i], m) << "\n";
tout << "---->\n";
for (unsigned i = 0; i < flat_args.size(); i++) tout << mk_bounded_pp(flat_args[i], m()) << "\n";
for (unsigned i = 0; i < flat_args.size(); i++) tout << mk_bounded_pp(flat_args[i], m) << "\n";
tout << st << "\n";
);
if (st == BR_FAILED) {
@ -292,7 +292,7 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
new_add_args.push_back(mk_mul_app(c, to_app(var)->get_arg(i)));
}
result = mk_add_app(new_add_args.size(), new_add_args.data());
TRACE("mul_bug", tout << "result: " << mk_bounded_pp(result, m(),5) << "\n";);
TRACE("mul_bug", tout << "result: " << mk_bounded_pp(result, m,5) << "\n";);
return BR_REWRITE2;
}
}
@ -328,7 +328,7 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
for (unsigned i = 0; i < new_args.size(); i++) {
if (i > 0)
tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< ");
tout << mk_ismt2_pp(new_args[i], m());
tout << mk_ismt2_pp(new_args[i], m);
}
tout << "\nordered: " << ordered << "\n";);
if (ordered && num_coeffs == 0 && !use_power())
@ -340,7 +340,7 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
for (unsigned i = 0; i < new_args.size(); i++) {
if (i > 0)
tout << (lt(new_args[i-1], new_args[i]) ? " < " : " !< ");
tout << mk_ismt2_pp(new_args[i], m());
tout << mk_ismt2_pp(new_args[i], m);
}
tout << "\n";);
}
@ -349,8 +349,8 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
result = mk_mul_app(c, result);
TRACE("poly_rewriter",
for (unsigned i = 0; i < num_args; ++i)
tout << mk_ismt2_pp(args[i], m()) << " ";
tout << "\nmk_nflat_mul_core result:\n" << mk_ismt2_pp(result, m()) << "\n";);
tout << mk_ismt2_pp(args[i], m) << " ";
tout << "\nmk_nflat_mul_core result:\n" << mk_ismt2_pp(result, m) << "\n";);
return BR_DONE;
}
@ -373,7 +373,7 @@ br_status poly_rewriter<Config>::mk_nflat_mul_core(unsigned num_args, expr * con
}
}
unsigned orig_size = sums.size();
expr_ref_buffer sum(m()); // must be ref_buffer because we may throw an exception
expr_ref_buffer sum(m); // must be ref_buffer because we may throw an exception
ptr_buffer<expr> m_args;
TRACE("som", tout << "starting som...\n";);
do {
@ -566,7 +566,7 @@ br_status poly_rewriter<Config>::mk_nflat_add_core(unsigned num_args, expr * con
SASSERT(m_sort_sums || ordered);
TRACE("rewriter",
tout << "ordered: " << ordered << " sort sums: " << m_sort_sums << "\n";
for (unsigned i = 0; i < num_args; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";);
for (unsigned i = 0; i < num_args; i++) tout << mk_ismt2_pp(args[i], m) << "\n";);
if (has_multiple) {
// expensive case
@ -589,7 +589,7 @@ br_status poly_rewriter<Config>::mk_nflat_add_core(unsigned num_args, expr * con
coeffs.push_back(a);
}
}
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
if (!c.is_zero()) {
new_args.push_back(mk_numeral(c));
}
@ -639,7 +639,7 @@ br_status poly_rewriter<Config>::mk_nflat_add_core(unsigned num_args, expr * con
if (num_coeffs == 1 && is_numeral(args[0], a) && !a.is_zero())
return BR_FAILED;
}
expr_ref_buffer new_args(m());
expr_ref_buffer new_args(m);
if (!c.is_zero())
new_args.push_back(mk_numeral(c));
for (unsigned i = 0; i < num_args; i++) {
@ -690,8 +690,8 @@ br_status poly_rewriter<Config>::mk_sub(unsigned num_args, expr * const * args,
return BR_DONE;
}
set_curr_sort(args[0]->get_sort());
expr_ref minus_one(mk_numeral(numeral(-1)), m());
expr_ref_buffer new_args(m());
expr_ref minus_one(mk_numeral(numeral(-1)), m);
expr_ref_buffer new_args(m);
new_args.push_back(args[0]);
for (unsigned i = 1; i < num_args; i++) {
if (is_zero(args[i])) continue;
@ -984,11 +984,11 @@ bool poly_rewriter<Config>::hoist_ite(expr_ref& e) {
return false;
obj_hashtable<expr> shared;
ptr_buffer<expr> adds;
expr_ref_vector bs(m()), pinned(m());
expr_ref_vector bs(m), pinned(m);
TO_BUFFER(is_add, adds, e);
unsigned i = 0;
for (expr* a : adds) {
if (m().is_ite(a)) {
if (m.is_ite(a)) {
shared.reset();
numeral g(0);
if (hoist_ite(a, shared, g) && (is_nontrivial_gcd(g) || !shared.empty())) {
@ -1026,7 +1026,7 @@ bool poly_rewriter<Config>::hoist_ite(expr_ref& e) {
template<typename Config>
bool poly_rewriter<Config>::hoist_ite(expr* a, obj_hashtable<expr>& shared, numeral& g) {
expr* c = nullptr, *t = nullptr, *e = nullptr;
if (m().is_ite(a, c, t, e)) {
if (m.is_ite(a, c, t, e)) {
return hoist_ite(t, shared, g) && hoist_ite(e, shared, g);
}
rational k, g1;
@ -1064,8 +1064,8 @@ bool poly_rewriter<Config>::hoist_ite(expr* a, obj_hashtable<expr>& shared, nume
template<typename Config>
expr* poly_rewriter<Config>::apply_hoist(expr* a, numeral const& g, obj_hashtable<expr> const& shared) {
expr* c = nullptr, *t = nullptr, *e = nullptr;
if (m().is_ite(a, c, t, e)) {
return m().mk_ite(c, apply_hoist(t, g, shared), apply_hoist(e, g, shared));
if (m.is_ite(a, c, t, e)) {
return m.mk_ite(c, apply_hoist(t, g, shared), apply_hoist(e, g, shared));
}
rational k;
if (is_nontrivial_gcd(g) && is_int_numeral(a, k)) {