mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 11:25:51 +00:00
Add get_sort(expr * n) function that does not depend on ast_manager. Move power_of_two to rational class. Add arith_recognizers and bv_recognizers classes. The two new classes contain the 'read-only' methods from arith_util and bv_util.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
4f0d5a5756
commit
cec328cfdc
17 changed files with 314 additions and 282 deletions
|
@ -187,36 +187,24 @@ public:
|
|||
virtual void set_cancel(bool f);
|
||||
};
|
||||
|
||||
class arith_util {
|
||||
ast_manager & m_manager;
|
||||
/**
|
||||
\brief Procedures for recognizing arithmetic expressions.
|
||||
We don't need access to ast_manager, and operations can be simultaneously
|
||||
executed in different threads.
|
||||
*/
|
||||
class arith_recognizers {
|
||||
protected:
|
||||
family_id m_afid;
|
||||
arith_decl_plugin * m_plugin;
|
||||
|
||||
void init_plugin();
|
||||
|
||||
arith_decl_plugin & plugin() const {
|
||||
if (!m_plugin) const_cast<arith_util*>(this)->init_plugin();
|
||||
SASSERT(m_plugin != 0);
|
||||
return *m_plugin;
|
||||
}
|
||||
|
||||
public:
|
||||
arith_util(ast_manager & m);
|
||||
arith_recognizers(family_id id):m_afid(id) {}
|
||||
|
||||
ast_manager & get_manager() const { return m_manager; }
|
||||
family_id get_family_id() const { return m_afid; }
|
||||
|
||||
algebraic_numbers::manager & am() {
|
||||
return plugin().am();
|
||||
}
|
||||
|
||||
bool is_arith_expr(expr const * n) const { return is_app(n) && to_app(n)->get_family_id() == m_afid; }
|
||||
bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); }
|
||||
bool is_numeral(expr const * n, rational & val, bool & is_int) const;
|
||||
bool is_numeral(expr const * n, rational & val) const { bool is_int; return is_numeral(n, val, is_int); }
|
||||
bool is_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_NUM); }
|
||||
bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); }
|
||||
bool is_irrational_algebraic_numeral(expr const * n, algebraic_numbers::anum & val);
|
||||
algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n);
|
||||
bool is_zero(expr const * n) const { rational val; return is_numeral(n, val) && val.is_zero(); }
|
||||
bool is_minus_one(expr * n) const { rational tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); }
|
||||
// return true if \c n is a term of the form (* -1 r)
|
||||
|
@ -227,6 +215,7 @@ public:
|
|||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_le(expr const * n) const { return is_app_of(n, m_afid, OP_LE); }
|
||||
bool is_ge(expr const * n) const { return is_app_of(n, m_afid, OP_GE); }
|
||||
bool is_lt(expr const * n) const { return is_app_of(n, m_afid, OP_LT); }
|
||||
|
@ -245,14 +234,13 @@ public:
|
|||
bool is_power(expr const * n) const { return is_app_of(n, m_afid, OP_POWER); }
|
||||
|
||||
bool is_int(sort const * s) const { return is_sort_of(s, m_afid, INT_SORT); }
|
||||
bool is_int(expr const * n) const { return is_int(m_manager.get_sort(n)); }
|
||||
bool is_int(expr const * n) const { return is_int(get_sort(n)); }
|
||||
bool is_real(sort const * s) const { return is_sort_of(s, m_afid, REAL_SORT); }
|
||||
bool is_real(expr const * n) const { return is_real(m_manager.get_sort(n)); }
|
||||
bool is_real(expr const * n) const { return is_real(get_sort(n)); }
|
||||
bool is_int_real(sort const * s) const { return s->get_family_id() == m_afid; }
|
||||
bool is_int_real(expr const * n) const { return is_int_real(m_manager.get_sort(n)); }
|
||||
bool is_int_real(expr const * n) const { return is_int_real(get_sort(n)); }
|
||||
|
||||
MATCH_UNARY(is_uminus);
|
||||
|
||||
MATCH_BINARY(is_sub);
|
||||
MATCH_BINARY(is_add);
|
||||
MATCH_BINARY(is_mul);
|
||||
|
@ -265,6 +253,34 @@ public:
|
|||
MATCH_BINARY(is_div);
|
||||
MATCH_BINARY(is_idiv);
|
||||
|
||||
bool is_pi(expr * arg) { return is_app_of(arg, m_afid, OP_PI); }
|
||||
bool is_e(expr * arg) { return is_app_of(arg, m_afid, OP_E); }
|
||||
};
|
||||
|
||||
class arith_util : public arith_recognizers {
|
||||
ast_manager & m_manager;
|
||||
arith_decl_plugin * m_plugin;
|
||||
|
||||
void init_plugin();
|
||||
|
||||
arith_decl_plugin & plugin() const {
|
||||
if (!m_plugin) const_cast<arith_util*>(this)->init_plugin();
|
||||
SASSERT(m_plugin != 0);
|
||||
return *m_plugin;
|
||||
}
|
||||
|
||||
public:
|
||||
arith_util(ast_manager & m);
|
||||
|
||||
ast_manager & get_manager() const { return m_manager; }
|
||||
|
||||
algebraic_numbers::manager & am() {
|
||||
return plugin().am();
|
||||
}
|
||||
|
||||
bool is_irrational_algebraic_numeral(expr const * n) const { return is_app_of(n, m_afid, OP_IRRATIONAL_ALGEBRAIC_NUM); }
|
||||
bool is_irrational_algebraic_numeral(expr const * n, algebraic_numbers::anum & val);
|
||||
algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n);
|
||||
|
||||
sort * mk_int() { return m_manager.mk_sort(m_afid, INT_SORT); }
|
||||
sort * mk_real() { return m_manager.mk_sort(m_afid, REAL_SORT); }
|
||||
|
@ -320,9 +336,6 @@ public:
|
|||
app * mk_acosh(expr * arg) { return m_manager.mk_app(m_afid, OP_ACOSH, arg); }
|
||||
app * mk_atanh(expr * arg) { return m_manager.mk_app(m_afid, OP_ATANH, arg); }
|
||||
|
||||
bool is_pi(expr * arg) { return is_app_of(arg, m_afid, OP_PI); }
|
||||
bool is_e(expr * arg) { return is_app_of(arg, m_afid, OP_E); }
|
||||
|
||||
app * mk_pi() { return plugin().mk_pi(); }
|
||||
app * mk_e() { return plugin().mk_e(); }
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue