3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

working on generalizer

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-08-29 14:34:08 -07:00
parent 912d220e94
commit cdbdf60aae
3 changed files with 148 additions and 139 deletions

View file

@ -423,6 +423,7 @@ namespace pdr {
else {
bool_rewriter rw(m);
rw.mk_or(n, (expr*const*)(lits), res);
res = m.mk_not(res);
}
}

View file

@ -158,7 +158,7 @@ namespace pdr {
}
void core_convex_hull_generalizer::operator()(model_node& n, expr_ref_vector const& core, bool uses_level, cores& new_cores) {
method3(n, core, uses_level, new_cores);
// method3(n, core, uses_level, new_cores);
method1(n, core, uses_level, new_cores);
}
@ -188,11 +188,7 @@ namespace pdr {
return;
}
add_variables(n, 2, fmls);
if (!mk_convex(core, 0, conv1)) {
new_cores.push_back(std::make_pair(core, uses_level));
IF_VERBOSE(0, verbose_stream() << "Non-convex: " << mk_pp(pm.mk_and(core), m) << "\n";);
return;
}
mk_convex(core, 0, conv1);
conv1.append(fmls);
expr_ref fml = n.pt().get_formulas(n.level(), false);
fmls.reset();
@ -202,10 +198,7 @@ namespace pdr {
core2.reset();
conv2.reset();
qe::flatten_and(fml, core2);
if (!mk_convex(core2, 1, conv2)) {
IF_VERBOSE(0, verbose_stream() << "Non-convex: " << mk_pp(pm.mk_and(core2), m) << "\n";);
continue;
}
mk_convex(core2, 1, conv2);
conv2.append(conv1);
expr_ref state = pm.mk_and(conv2);
TRACE("pdr",
@ -323,13 +316,30 @@ namespace pdr {
verbose_stream() << mk_pp(core1[i].get(), m) << "\n";
});
// Create disjunction.
expr_ref tmp(m);
for (unsigned i = 0; i < consequences.size(); ++i) {
consequences[i] = m.mk_not(consequences[i].get());
// Check that F(R) => \/ consequences
{
expr_ref_vector cstate(m);
for (unsigned i = 0; i < consequences.size(); ++i) {
cstate.push_back(m.mk_not(consequences[i].get()));
}
tmp = m.mk_and(cstate.size(), cstate.c_ptr());
model_node nd(0, tmp, n.pt(), n.level());
pred_transformer::scoped_farkas sf (n.pt(), false);
VERIFY(l_false == n.pt().is_reachable(nd, &core1, uses_level1));
}
// Create disjunction.
tmp = m.mk_and(core.size(), core.c_ptr());
// Check that \/ consequences => not (core)
if (!is_unsat(consequences, tmp)) {
IF_VERBOSE(0, verbose_stream() << "Consequences don't contradict the core\n";);
return;
}
IF_VERBOSE(0, verbose_stream() << "Consequences contradict core\n";);
if (!strengthen_consequences(n, consequences, tmp)) {
return;
}
@ -345,15 +355,15 @@ namespace pdr {
expr_ref_vector Hs(m);
Hs.push_back(As[i].get());
for (unsigned j = i + 1; j < As.size(); ++j) {
Hs.push_back(Hs[j].get());
Hs.push_back(As[j].get());
bool unsat = false;
if (mk_closure(n, Hs, A)) {
tmp = As[i].get();
As[i] = A;
unsat = is_unsat(As, B);
As[i] = tmp;
}
mk_convex(n, Hs, A);
tmp = As[i].get();
As[i] = A;
unsat = is_unsat(As, B);
As[i] = tmp;
if (unsat) {
IF_VERBOSE(0, verbose_stream() << "New convex: " << mk_pp(convA, m) << "\n";);
convA = A;
As[j] = As.back();
As.pop_back();
@ -370,103 +380,27 @@ namespace pdr {
return sz > As.size();
}
bool core_convex_hull_generalizer::mk_closure(model_node& n, expr_ref_vector const& Hs, expr_ref& A) {
void core_convex_hull_generalizer::mk_convex(model_node& n, expr_ref_vector const& Hs, expr_ref& A) {
expr_ref_vector fmls(m), es(m);
add_variables(n, Hs.size(), fmls);
for (unsigned i = 0; i < Hs.size(); ++i) {
es.reset();
qe::flatten_and(Hs[i], es);
if (!mk_convex(es, i, fmls)) {
return false;
}
mk_convex(es, i, fmls);
}
A = m.mk_and(fmls.size(), fmls.c_ptr());
return true;
}
bool core_convex_hull_generalizer::is_unsat(expr_ref_vector const& As, expr* B) {
smt::kernel ctx(m, m_ctx.get_fparams(), m_ctx.get_params().p);
for (unsigned i = 0; i < As.size(); ++i) {
ctx.assert_expr(As[i]);
}
expr_ref disj(m);
disj = m.mk_or(As.size(), As.c_ptr());
ctx.assert_expr(disj);
ctx.assert_expr(B);
std::cout << "Checking\n" << mk_pp(disj, m) << "\n" << mk_pp(B, m) << "\n";
return l_false == ctx.check();
}
#if 0
// now create the convex closure of the consequences:
expr_ref tmp(m), zero(m);
expr_ref_vector conv(m), es(m), enabled(m);
zero = a.mk_numeral(rational(0), a.mk_real());
add_variables(n, consequences.size(), conv);
for (unsigned i = 0; i < consequences.size(); ++i) {
es.reset();
tmp = m.mk_not(consequences[i].get());
qe::flatten_and(tmp, es);
if (!mk_convex(es, i, conv)) {
IF_VERBOSE(0, verbose_stream() << "Failed to create convex closure\n";);
return;
}
es.reset();
//
// enabled[i] = not (sigma_i = 0 and z_i1 = 0 and .. and z_im = 0)
//
es.push_back(m.mk_eq(m_sigma[i].get(), zero));
for (unsigned j = 0; j < n.pt().sig_size(); ++j) {
func_decl* fn0 = n.pt().sig(j);
func_decl* fn1 = pm.o2n(fn0, 0);
expr* var;
VERIFY (m_vars[i].find(fn1, var));
es.push_back(m.mk_eq(var, zero));
}
enabled.push_back(m.mk_not(m.mk_and(es.size(), es.c_ptr())));
}
// the convex closure was created of all consequences.
// now determine a subset of enabled constraints.
smt::kernel ctx(m, m_ctx.get_fparams(), m_ctx.get_params().p);
for (unsigned i = 0; i < conv.size(); ++i) {
ctx.assert_expr(conv[i].get());
IF_VERBOSE(0, verbose_stream() << "CC: " << mk_pp(conv[i].get(), m) << "\n";);
}
for (unsigned i = 0; i < core.size(); ++i) {
ctx.assert_expr(core[i]);
IF_VERBOSE(0, verbose_stream() << "Co: " << mk_pp(core[i], m) << "\n";);
}
vector<unsigned_vector> transversal;
while (l_true == ctx.check()) {
model_ref md;
ctx.get_model(md);
IF_VERBOSE(0,
ctx.display(verbose_stream());
verbose_stream() << "\n";
model_smt2_pp(verbose_stream(), m, *md.get(), 0););
expr_ref_vector lits(m);
unsigned_vector pos;
for (unsigned i = 0; i < consequences.size(); ++i) {
if (md->eval(enabled[i].get(), tmp, false)) {
IF_VERBOSE(0,
verbose_stream() << mk_pp(enabled[i].get(), m) << " |-> " << mk_pp(tmp, m) << "\n";);
if (m.is_true(tmp)) {
lits.push_back(tmp);
pos.push_back(i);
}
}
}
transversal.push_back(pos);
SASSERT(!lits.empty());
tmp = m.mk_not(m.mk_and(lits.size(), lits.c_ptr()));
TRACE("pdr", tout << "add block: " << mk_pp(tmp, m) << "\n";);
ctx.assert_expr(tmp);
}
//
// we could no longer satisfy core using a partition.
//
IF_VERBOSE(0, verbose_stream() << "TBD: tranverse\n";);
#endif
void core_convex_hull_generalizer::add_variables(model_node& n, unsigned num_vars, expr_ref_vector& fmls) {
manager& pm = n.pt().get_pdr_manager();
SASSERT(num_vars > 0);
@ -544,36 +478,42 @@ namespace pdr {
return true;
}
bool core_convex_hull_generalizer::mk_convex(expr_ref_vector const& core, unsigned index, expr_ref_vector& conv) {
void core_convex_hull_generalizer::mk_convex(expr_ref_vector const& core, unsigned index, expr_ref_vector& conv) {
for (unsigned i = 0; i < core.size(); ++i) {
mk_convex(core[i], index, conv);
}
return !conv.empty() && mk_closure(conv);
mk_closure(conv);
}
void core_convex_hull_generalizer::mk_convex(expr* fml, unsigned index, expr_ref_vector& conv) {
expr_ref result(m), r1(m), r2(m);
expr* e1, *e2;
bool is_not = m.is_not(fml, fml);
if (a.is_le(fml, e1, e2) && mk_convex(e1, index, false, r1) && mk_convex(e2, index, false, r2)) {
if (a.is_le(fml, e1, e2)) {
mk_convex(e1, index, false, r1);
mk_convex(e2, index, false, r2);
result = a.mk_le(r1, r2);
}
else if (a.is_ge(fml, e1, e2) && mk_convex(e1, index, false, r1) && mk_convex(e2, index, false, r2)) {
else if (a.is_ge(fml, e1, e2)) {
mk_convex(e1, index, false, r1);
mk_convex(e2, index, false, r2);
result = a.mk_ge(r1, r2);
}
else if (a.is_gt(fml, e1, e2) && mk_convex(e1, index, false, r1) && mk_convex(e2, index, false, r2)) {
else if (a.is_gt(fml, e1, e2)) {
mk_convex(e1, index, false, r1);
mk_convex(e2, index, false, r2);
result = a.mk_gt(r1, r2);
}
else if (a.is_lt(fml, e1, e2) && mk_convex(e1, index, false, r1) && mk_convex(e2, index, false, r2)) {
else if (a.is_lt(fml, e1, e2)) {
mk_convex(e1, index, false, r1);
mk_convex(e2, index, false, r2);
result = a.mk_lt(r1, r2);
}
else if (m.is_eq(fml, e1, e2) && a.is_int_real(e1) && mk_convex(e1, index, false, r1) && mk_convex(e2, index, false, r2)) {
else if (m.is_eq(fml, e1, e2) && a.is_int_real(e1)) {
mk_convex(e1, index, false, r1);
mk_convex(e2, index, false, r2);
result = m.mk_eq(r1, r2);
}
else {
TRACE("pdr", tout << "Did not handle " << mk_pp(fml, m) << "\n";);
return;
}
if (is_not) {
result = m.mk_not(result);
}
@ -591,49 +531,46 @@ namespace pdr {
}
bool core_convex_hull_generalizer::mk_convex(expr* term, unsigned index, bool is_mul, expr_ref& result) {
void core_convex_hull_generalizer::mk_convex(expr* term, unsigned index, bool is_mul, expr_ref& result) {
if (!is_app(term)) {
return false;
result = term;
return;
}
app* app = to_app(term);
expr* e1, *e2;
expr_ref r1(m), r2(m);
if (translate(app->get_decl(), index, result)) {
return true;
}
if (a.is_add(term)) {
bool ok = true;
expr_ref_vector args(m);
for (unsigned i = 0; ok && i < app->get_num_args(); ++i) {
ok = mk_convex(app->get_arg(i), index, is_mul, r1);
if (ok) {
args.push_back(r1);
}
for (unsigned i = 0; i < app->get_num_args(); ++i) {
mk_convex(app->get_arg(i), index, is_mul, r1);
args.push_back(r1);
}
if (ok) {
result = a.mk_add(args.size(), args.c_ptr());
}
return ok;
result = a.mk_add(args.size(), args.c_ptr());
}
if (a.is_sub(term, e1, e2) && mk_convex(e1, index, is_mul, r1) && mk_convex(e2, index, is_mul, r2)) {
else if (a.is_sub(term, e1, e2)) {
mk_convex(e1, index, is_mul, r1);
mk_convex(e2, index, is_mul, r2);
result = a.mk_sub(r1, r2);
return true;
}
if (a.is_mul(term, e1, e2) && mk_convex(e1, index, true, r1) && mk_convex(e2, index, true, r2)) {
else if (a.is_mul(term, e1, e2)) {
mk_convex(e1, index, true, r1);
mk_convex(e2, index, true, r2);
result = a.mk_mul(r1, r2);
return true;
}
if (a.is_numeral(term)) {
else if (a.is_numeral(term)) {
if (is_mul) {
result = term;
}
else {
result = a.mk_mul(m_sigma[index].get(), term);
}
return true;
}
IF_VERBOSE(0, verbose_stream() << "Not handled: " << mk_pp(term, m) << "\n";);
return false;
else if (translate(app->get_decl(), index, result)) {
// no-op
}
else {
result = term;
}
}
@ -1088,3 +1025,74 @@ namespace pdr {
}
}
};
#if 0
// now create the convex closure of the consequences:
expr_ref tmp(m), zero(m);
expr_ref_vector conv(m), es(m), enabled(m);
zero = a.mk_numeral(rational(0), a.mk_real());
add_variables(n, consequences.size(), conv);
for (unsigned i = 0; i < consequences.size(); ++i) {
es.reset();
tmp = m.mk_not(consequences[i].get());
qe::flatten_and(tmp, es);
mk_convex(es, i, conv);
es.reset();
//
// enabled[i] = not (sigma_i = 0 and z_i1 = 0 and .. and z_im = 0)
//
es.push_back(m.mk_eq(m_sigma[i].get(), zero));
for (unsigned j = 0; j < n.pt().sig_size(); ++j) {
func_decl* fn0 = n.pt().sig(j);
func_decl* fn1 = pm.o2n(fn0, 0);
expr* var;
VERIFY (m_vars[i].find(fn1, var));
es.push_back(m.mk_eq(var, zero));
}
enabled.push_back(m.mk_not(m.mk_and(es.size(), es.c_ptr())));
}
// the convex closure was created of all consequences.
// now determine a subset of enabled constraints.
smt::kernel ctx(m, m_ctx.get_fparams(), m_ctx.get_params().p);
for (unsigned i = 0; i < conv.size(); ++i) {
ctx.assert_expr(conv[i].get());
IF_VERBOSE(0, verbose_stream() << "CC: " << mk_pp(conv[i].get(), m) << "\n";);
}
for (unsigned i = 0; i < core.size(); ++i) {
ctx.assert_expr(core[i]);
IF_VERBOSE(0, verbose_stream() << "Co: " << mk_pp(core[i], m) << "\n";);
}
vector<unsigned_vector> transversal;
while (l_true == ctx.check()) {
model_ref md;
ctx.get_model(md);
IF_VERBOSE(0,
ctx.display(verbose_stream());
verbose_stream() << "\n";
model_smt2_pp(verbose_stream(), m, *md.get(), 0););
expr_ref_vector lits(m);
unsigned_vector pos;
for (unsigned i = 0; i < consequences.size(); ++i) {
if (md->eval(enabled[i].get(), tmp, false)) {
IF_VERBOSE(0,
verbose_stream() << mk_pp(enabled[i].get(), m) << " |-> " << mk_pp(tmp, m) << "\n";);
if (m.is_true(tmp)) {
lits.push_back(tmp);
pos.push_back(i);
}
}
}
transversal.push_back(pos);
SASSERT(!lits.empty());
tmp = m.mk_not(m.mk_and(lits.size(), lits.c_ptr()));
TRACE("pdr", tout << "add block: " << mk_pp(tmp, m) << "\n";);
ctx.assert_expr(tmp);
}
//
// we could no longer satisfy core using a partition.
//
IF_VERBOSE(0, verbose_stream() << "TBD: tranverse\n";);
#endif

View file

@ -83,16 +83,16 @@ namespace pdr {
bool m_is_closure;
expr_ref mk_closure(expr* e);
bool mk_closure(expr_ref_vector& conj);
bool mk_convex(expr_ref_vector const& core, unsigned index, expr_ref_vector& conv);
void mk_convex(expr_ref_vector const& core, unsigned index, expr_ref_vector& conv);
void mk_convex(expr* fml, unsigned index, expr_ref_vector& conv);
bool mk_convex(expr* term, unsigned index, bool is_mul, expr_ref& result);
void mk_convex(expr* term, unsigned index, bool is_mul, expr_ref& result);
bool translate(func_decl* fn, unsigned index, expr_ref& result);
void method1(model_node& n, expr_ref_vector const& core, bool uses_level, cores& new_cores);
void method2(model_node& n, expr_ref_vector& core, bool& uses_level);
void method3(model_node& n, expr_ref_vector const& core, bool uses_level, cores& new_cores);
bool strengthen_consequences(model_node& n, expr_ref_vector& As, expr* B);
bool is_unsat(expr_ref_vector const& As, expr* B);
bool mk_closure(model_node& n, expr_ref_vector const& Hs, expr_ref& A);
void mk_convex(model_node& n, expr_ref_vector const& Hs, expr_ref& A);
void add_variables(model_node& n, unsigned num_vars, expr_ref_vector& fmls);
public:
core_convex_hull_generalizer(context& ctx, bool is_closure);