mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
simpler order lemma
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
1959710a5b
commit
cbe920756b
|
@ -172,9 +172,9 @@ struct solver::imp {
|
|||
|
||||
lp::impq vv(lpvar j) const { return m_lar_solver.get_column_value(j); }
|
||||
|
||||
lpvar var(const rooted_mon& rm) const {return m_monomials[rm.orig().m_i].var(); }
|
||||
lpvar var(const rooted_mon& rm) const {return m_monomials[rm.orig_index()].var(); }
|
||||
|
||||
rational vvr(const rooted_mon& rm) const { return vvr(m_monomials[rm.orig().m_i].var()) * rm.orig().m_sign; }
|
||||
rational vvr(const rooted_mon& rm) const { return vvr(m_monomials[rm.orig_index()].var()) * rm.orig_sign(); }
|
||||
|
||||
rational vvr(const factor& f) const { return vvr(var(f)); }
|
||||
|
||||
|
@ -196,9 +196,15 @@ struct solver::imp {
|
|||
// by the flip_sign
|
||||
rational flip_sign(const factor& f) const {
|
||||
return f.is_var()?
|
||||
rational(1) : m_rm_table.vec()[f.index()].orig().sign();
|
||||
flip_sign_of_var(f.index()) : m_rm_table.vec()[f.index()].orig_sign();
|
||||
}
|
||||
|
||||
rational flip_sign_of_var(lpvar j) const {
|
||||
rational sign(1);
|
||||
m_vars_equivalence.map_to_root(j, sign);
|
||||
return sign;
|
||||
}
|
||||
|
||||
// the value of the rooted monomias is equal to the value of the variable multiplied
|
||||
// by the flip_sign
|
||||
rational flip_sign(const rooted_mon& m) const {
|
||||
|
@ -648,60 +654,6 @@ struct solver::imp {
|
|||
explain(n, current_expl());
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
// the value of the i-th monomial has to be equal to the value of the k-th monomial modulo sign
|
||||
// but it is not the case in the model
|
||||
// abs_vars_key is formed by m_vars_equivalence.get_abs_root_for_var(k), where
|
||||
// k runs over m.
|
||||
void generate_sign_lemma_model_based(const monomial& m, const monomial& n, const rational& sign) {
|
||||
TRACE("nla_solver",);
|
||||
if (sign.is_zero()) {
|
||||
// either m or n has to be equal zero, but it is not the case
|
||||
SASSERT(!vvr(m).is_zero() || !vvr(n).is_zero());
|
||||
if (!vvr(m).is_zero())
|
||||
generate_zero_lemmas(m);
|
||||
if (!vvr(n).is_zero())
|
||||
generate_zero_lemmas(n);
|
||||
return;
|
||||
}
|
||||
add_empty_lemma();
|
||||
unsigned_vector mvars(m.vars());
|
||||
unsigned_vector nvars(n.vars());
|
||||
divide_by_common_factor(mvars, nvars);
|
||||
TRACE("nla_solver",
|
||||
tout << "m = "; print_monomial_with_vars(m, tout);
|
||||
tout << "n = "; print_monomial_with_vars(n, tout);
|
||||
tout << "mvars = "; print_product(mvars, tout);
|
||||
tout << "\nnvars = "; print_product(nvars, tout); tout << "\n";
|
||||
);
|
||||
std::unordered_map<unsigned, unsigned_vector> map;
|
||||
const unsigned_vector key = get_abs_key(mvars);
|
||||
|
||||
// create and fill the map from "abs root vars" to lists,
|
||||
// all elementl of map[j] have the same abs vvr() as vvr(j)
|
||||
for (lpvar j : key) {
|
||||
map[j] = unsigned_vector();
|
||||
}
|
||||
|
||||
for (unsigned j : mvars) {
|
||||
lpvar k = m_vars_equivalence.get_abs_root_for_var(abs(vvr(j)));
|
||||
map.find(k)->second.push_back(j);
|
||||
}
|
||||
|
||||
for (unsigned j : nvars) {
|
||||
lpvar k = m_vars_equivalence.get_abs_root_for_var(abs(vvr(j)));
|
||||
auto it = map.find(k);
|
||||
lpvar jj = it->second.back();
|
||||
rational s = vvr(jj) == vvr(j)? rational(1) : rational(-1);
|
||||
// todo : check that each pair is processed only once
|
||||
mk_ineq(j, -s, jj, llc::NE);
|
||||
it->second.pop_back();
|
||||
}
|
||||
|
||||
mk_ineq(m.var(), -sign, n.var(), llc::EQ);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
lemma& current_lemma() { return m_lemma_vec->back(); }
|
||||
vector<ineq>& current_ineqs() { return current_lemma().ineqs(); }
|
||||
lp::explanation& current_expl() { return current_lemma().expl(); }
|
||||
|
@ -1053,7 +1005,7 @@ struct solver::imp {
|
|||
|
||||
std::ostream & print_ineqs(const lemma& l, std::ostream & out) const {
|
||||
std::unordered_set<lpvar> vars;
|
||||
out << "lemma: ";
|
||||
out << "ineqs: ";
|
||||
for (unsigned i = 0; i < l.ineqs().size(); i++) {
|
||||
auto & in = l.ineqs()[i];
|
||||
print_ineq(in, out);
|
||||
|
@ -1074,8 +1026,11 @@ struct solver::imp {
|
|||
if (f[k].is_var())
|
||||
print_var(f[k].index(), out);
|
||||
else {
|
||||
out << "(";
|
||||
print_product(m_rm_table.vec()[f[k].index()].vars(), out);
|
||||
out << ")";
|
||||
}
|
||||
|
||||
if (k < f.size() - 1)
|
||||
out << "*";
|
||||
}
|
||||
|
@ -1909,81 +1864,6 @@ struct solver::imp {
|
|||
);
|
||||
}
|
||||
|
||||
bool divide(const rooted_mon& bc, const factor& c, factor & b) const {
|
||||
svector<lpvar> c_vars = sorted_vars(c);
|
||||
TRACE("nla_solver_div",
|
||||
tout << "c_vars = ";
|
||||
print_product(c_vars, tout);
|
||||
tout << "\nbc_vars = ";
|
||||
print_product(bc.vars(), tout););
|
||||
if (!lp::is_proper_factor(c_vars, bc.vars()))
|
||||
return false;
|
||||
|
||||
auto b_vars = lp::vector_div(bc.vars(), c_vars);
|
||||
TRACE("nla_solver_div", tout << "b_vars = "; print_product(b_vars, tout););
|
||||
SASSERT(b_vars.size() > 0);
|
||||
if (b_vars.size() == 1) {
|
||||
b = factor(b_vars[0]);
|
||||
return true;
|
||||
}
|
||||
auto it = m_rm_table.map().find(b_vars);
|
||||
if (it == m_rm_table.map().end()) {
|
||||
TRACE("nla_solver_div", tout << "not in rooted";);
|
||||
return false;
|
||||
}
|
||||
b = factor(it->second, factor_type::RM);
|
||||
TRACE("nla_solver_div", tout << "success div:"; print_factor(b, tout););
|
||||
return true;
|
||||
}
|
||||
|
||||
void negate_factor_equality(const factor& c,
|
||||
const factor& d) {
|
||||
if (c == d)
|
||||
return;
|
||||
lpvar i = var(c);
|
||||
lpvar j = var(d);
|
||||
auto iv = vvr(i), jv = vvr(j);
|
||||
SASSERT(abs(iv) == abs(jv));
|
||||
if (iv == jv) {
|
||||
mk_ineq(i, -rational(1), j, llc::NE);
|
||||
} else { // iv == -jv
|
||||
mk_ineq(i, j, llc::NE, current_lemma());
|
||||
}
|
||||
}
|
||||
|
||||
void negate_factor_relation(const rational& a_sign, const factor& a, const rational& b_sign, const factor& b) {
|
||||
rational a_fs = flip_sign(a);
|
||||
rational b_fs = flip_sign(b);
|
||||
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
|
||||
mk_ineq(a_fs*a_sign, var(a), - b_fs*b_sign, var(b), cmp);
|
||||
}
|
||||
|
||||
// |c_sign| = |d_sign| = 1, and c*c_sign = d*d_sign > 0
|
||||
// a*c_sign > b*d_sign => ac > bd.
|
||||
// The sign ">" above is replaced by ab_cmp
|
||||
void generate_ol(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const rooted_mon& bd,
|
||||
const factor& b,
|
||||
int d_sign,
|
||||
const factor& d,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
mk_ineq(rational(c_sign) * flip_sign(c), var(c), llc::LE);
|
||||
negate_factor_equality(c, d);
|
||||
negate_factor_relation(rational(c_sign), a, rational(d_sign), b);
|
||||
mk_ineq(flip_sign(ac), var(ac), -flip_sign(bd), var(bd), ab_cmp);
|
||||
explain(ac, current_expl());
|
||||
explain(a, current_expl());
|
||||
explain(bd, current_expl());
|
||||
explain(b, current_expl());
|
||||
explain(c, current_expl());
|
||||
explain(d, current_expl());
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
std::unordered_set<lpvar> collect_vars( const lemma& l) {
|
||||
std::unordered_set<lpvar> vars;
|
||||
for (const auto& i : current_lemma().ineqs()) {
|
||||
|
@ -2013,6 +1893,8 @@ struct solver::imp {
|
|||
}
|
||||
|
||||
void print_lemma(std::ostream& out) {
|
||||
static int n = 0;
|
||||
out << "lemma:" << ++n << " ";
|
||||
print_ineqs(current_lemma(), out);
|
||||
print_explanation(current_expl(), out);
|
||||
std::unordered_set<lpvar> vars = collect_vars(current_lemma());
|
||||
|
@ -2022,203 +1904,119 @@ struct solver::imp {
|
|||
}
|
||||
}
|
||||
|
||||
bool get_cd_signs_for_ol(const rational& c, const rational& d, int& c_sign, int & d_sign) const {
|
||||
if (c.is_zero() || d.is_zero())
|
||||
return false;
|
||||
if (c == d) {
|
||||
if (c.is_pos()) {
|
||||
c_sign = d_sign = 1;
|
||||
}
|
||||
else {
|
||||
c_sign = d_sign = -1;
|
||||
}
|
||||
return true;
|
||||
} else if (c == -d){
|
||||
if (c.is_pos()) {
|
||||
c_sign = 1;
|
||||
d_sign = -1;
|
||||
}
|
||||
else {
|
||||
c_sign = -1;
|
||||
d_sign = 1;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool order_lemma_on_ac_and_bd_and_factors(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const rooted_mon& bd,
|
||||
const factor& b,
|
||||
const factor& d) {
|
||||
SASSERT(abs(vvr(c)) == abs(vvr(d)));
|
||||
auto cv = vvr(c); auto dv = vvr(d);
|
||||
int c_sign, d_sign;
|
||||
if (!get_cd_signs_for_ol(cv, dv, c_sign, d_sign))
|
||||
return false;
|
||||
SASSERT(cv*c_sign == dv*d_sign && (dv*d_sign).is_pos() && abs(c_sign) == 1 &&
|
||||
abs(d_sign) == 1);
|
||||
auto av = vvr(a)*rational(c_sign); auto bv = vvr(b)*rational(d_sign);
|
||||
auto acv = vvr(ac); auto bdv = vvr(bd);
|
||||
// ab is a factorization of rm.vars()
|
||||
// if, say, ab = -3, when a = -2, and b = 2
|
||||
// then we create a lemma
|
||||
// b <= 0 or a > -2 or ab <= -2b
|
||||
void order_lemma_on_factorization(const rooted_mon& rm, const factorization& ab) {
|
||||
const monomial& m = m_monomials[rm.orig_index()];
|
||||
rational sign = rm.orig_sign();
|
||||
for(factor f: ab)
|
||||
sign *= flip_sign(f);
|
||||
const rational & fv = vvr(ab[0]) * vvr(ab[1]);
|
||||
const rational mv = sign * vvr(m);
|
||||
TRACE("nla_solver",
|
||||
tout << "ac = ";
|
||||
print_rooted_monomial_with_vars(ac, tout);
|
||||
tout << "\nbd = ";
|
||||
print_rooted_monomial_with_vars(bd, tout);
|
||||
tout << "\na = ";
|
||||
print_factor_with_vars(a, tout);
|
||||
tout << ", \nb = ";
|
||||
print_factor_with_vars(b, tout);
|
||||
tout << "\nc = ";
|
||||
print_factor_with_vars(c, tout);
|
||||
tout << ", \nd = ";
|
||||
print_factor_with_vars(d, tout);
|
||||
);
|
||||
|
||||
if (av < bv){
|
||||
if(!(acv < bdv)) {
|
||||
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
|
||||
return true;
|
||||
}
|
||||
} else if (av > bv){
|
||||
if(!(acv > bdv)) {
|
||||
generate_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// a > b && c > 0 && d = c => ac > bd
|
||||
// ac is a factorization of m_monomials[i_mon]
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_ac_and_bd(const rooted_mon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const rooted_mon& rm_bd,
|
||||
const factor& d) {
|
||||
TRACE("nla_solver", tout << "rm_ac = ";
|
||||
print_rooted_monomial(rm_ac, tout);
|
||||
tout << "\nrm_bd = ";
|
||||
print_rooted_monomial(rm_bd, tout);
|
||||
tout << "\nac_f[k] = ";
|
||||
print_factor_with_vars(ac_f[k], tout);
|
||||
tout << "\nd = ";
|
||||
print_factor_with_vars(d, tout););
|
||||
SASSERT(abs(vvr(ac_f[k])) == abs(vvr(d)));
|
||||
factor b;
|
||||
if (!divide(rm_bd, d, b)){
|
||||
return false;
|
||||
}
|
||||
|
||||
return order_lemma_on_ac_and_bd_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b, d);
|
||||
}
|
||||
|
||||
void maybe_add_a_factor(lpvar i,
|
||||
const factor& c,
|
||||
std::unordered_set<lpvar>& found_vars,
|
||||
std::unordered_set<unsigned>& found_rm,
|
||||
vector<factor> & r) const {
|
||||
SASSERT(abs(vvr(i)) == abs(vvr(c)));
|
||||
auto it = m_var_to_its_monomial.find(i);
|
||||
if (it == m_var_to_its_monomial.end()) {
|
||||
i = m_vars_equivalence.map_to_root(i);
|
||||
if (try_insert(i, found_vars)) {
|
||||
r.push_back(factor(i, factor_type::VAR));
|
||||
}
|
||||
} else {
|
||||
SASSERT(m_monomials[it->second].var() == i && abs(vvr(m_monomials[it->second])) == abs(vvr(c)));
|
||||
const index_with_sign & i_s = m_rm_table.get_rooted_mon(it->second);
|
||||
unsigned rm_i = i_s.index();
|
||||
// SASSERT(abs(vvr(m_rm_table.vec()[i])) == abs(vvr(c)));
|
||||
if (try_insert(rm_i, found_rm)) {
|
||||
r.push_back(factor(rm_i, factor_type::RM));
|
||||
TRACE("nla_solver", tout << "inserting factor = "; print_factor_with_vars(factor(rm_i, factor_type::RM), tout); );
|
||||
}
|
||||
tout << "ab.size()=" << ab.size() << "\n";
|
||||
tout << "we should have sign*vvr(m):" << mv << "=(" << sign << ")*(" << vvr(m) <<") to be equal to " << " vvr(ab[0])*vvr(ab[1]):" << fv << "\n";);
|
||||
if (mv == fv)
|
||||
return;
|
||||
bool gt = mv > fv;
|
||||
TRACE("nla_solver_f", tout << "m="; print_monomial_with_vars(m, tout); tout << "\nfactorization="; print_factorization(ab, tout););
|
||||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab, current_expl()); explain(m, current_expl());
|
||||
}
|
||||
}
|
||||
|
||||
// collect all vars and rooted monomials with the same absolute
|
||||
// value as the absolute value af c and return them as factors
|
||||
vector<factor> factors_with_the_same_abs_val(const factor& c) const {
|
||||
vector<factor> r;
|
||||
std::unordered_set<lpvar> found_vars;
|
||||
std::unordered_set<unsigned> found_rm;
|
||||
TRACE("nla_solver", tout << "c = "; print_factor_with_vars(c, tout););
|
||||
for (lpvar i : m_vars_equivalence.get_vars_with_the_same_abs_val(vvr(c))) {
|
||||
maybe_add_a_factor(i, c, found_vars, found_rm, r);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
bool order_lemma_on_ad(const rooted_mon& rm, const factorization& ac, unsigned k, const factor & d) {
|
||||
TRACE("nla_solver", tout << "d = "; print_factor_with_vars(d, tout); );
|
||||
SASSERT(abs(vvr(d)) == abs(vvr(ac[k])));
|
||||
if (d.is_var()) {
|
||||
TRACE("nla_solver", tout << "var(d) = " << var(d););
|
||||
for (unsigned rm_bd : m_rm_table.var_map()[d.index()]) {
|
||||
TRACE("nla_solver", );
|
||||
if (order_lemma_on_ac_and_bd(rm ,ac, k, m_rm_table.vec()[rm_bd], d)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// if gt is true we need to deduce ab <= vvr(b)*a
|
||||
void order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) > vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
TRACE("nla_solver", tout << "a is pos\n";);
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
} else {
|
||||
for (unsigned rm_b : m_rm_table.proper_factors()[d.index()]) {
|
||||
if (order_lemma_on_ac_and_bd(rm , ac, k, m_rm_table.vec()[rm_b], d)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
TRACE("nla_solver", tout << "a is neg\n";);
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
}
|
||||
return false;
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
// we need to deduce ab >= vvr(b)*a
|
||||
void order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) < vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
} else {
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab >= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
}
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
|
||||
void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
if (gt)
|
||||
order_lemma_on_ab_gt(m, sign, a, b);
|
||||
else
|
||||
order_lemma_on_ab_lt(m, sign, a, b);
|
||||
}
|
||||
|
||||
// void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
// add_empty_lemma();
|
||||
// if (gt) {
|
||||
// if (vvr(a).is_pos()) {
|
||||
// //negate a > 0
|
||||
// mk_ineq(a, llc::LE);
|
||||
// // negate b >= vvr(b)
|
||||
// mk_ineq(b, llc::LT, vvr(b));
|
||||
// // ab <= vvr(b)a
|
||||
// mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
// } else {
|
||||
// SASSERT(vvr(a).is_neg());
|
||||
// //negate a < 0
|
||||
// mk_ineq(a, llc::GE);
|
||||
// // negate b <= vvr(b)
|
||||
// mk_ineq(b, llc::GT, vvr(b));
|
||||
// // ab < vvr(b)a
|
||||
// mk_ineq(sign, m.var(), -vvr(b), a, llc::LE); }
|
||||
// }
|
||||
// }
|
||||
|
||||
// a > b && c > 0 => ac > bc
|
||||
// ac is a factorization of rm.vars()
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_factor(const rooted_mon& rm, const factorization& ac, unsigned k) {
|
||||
auto c = ac[k];
|
||||
TRACE("nla_solver", tout << "k = " << k << ", c = "; print_factor_with_vars(c, tout); );
|
||||
|
||||
for (const factor & d : factors_with_the_same_abs_val(c)) {
|
||||
if (order_lemma_on_ad(rm, ac, k, d))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// a > b && c == d => ac > bd
|
||||
// ac is a factorization of rm.vars()
|
||||
bool order_lemma_on_factorization(const rooted_mon& rm, const factorization& ac) {
|
||||
SASSERT(ac.size() == 2);
|
||||
TRACE("nla_solver", tout << "rm = "; print_rooted_monomial(rm, tout);
|
||||
tout << ", factorization = "; print_factorization(ac, tout););
|
||||
for (unsigned k = 0; k < ac.size(); k++) {
|
||||
const rational & v = vvr(ac[k]);
|
||||
if (v.is_zero())
|
||||
continue;
|
||||
|
||||
if (order_lemma_on_factor(rm, ac, k)) {
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// a > b && c > 0 => ac > bc
|
||||
bool order_lemma_on_monomial(const rooted_mon& rm) {
|
||||
void order_lemma_on_monomial(const rooted_mon& rm) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "rm = "; print_product(rm, tout);
|
||||
tout << ", orig = "; print_monomial(m_monomials[rm.orig_index()], tout);
|
||||
);
|
||||
for (auto ac : factorization_factory_imp(rm.vars(), *this)) {
|
||||
if (ac.size() == 2 && order_lemma_on_factorization(rm, ac))
|
||||
return true;
|
||||
if (ac.size() != 2)
|
||||
continue;
|
||||
order_lemma_on_factorization(rm, ac);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void order_lemma() {
|
||||
|
|
Loading…
Reference in a new issue