3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-04 16:44:07 +00:00

three smt2 examples added and one python example updated (#5690)

This commit is contained in:
Matteo Nicoli 2021-12-02 01:21:12 +01:00 committed by GitHub
parent 71cbb160d2
commit cbdd7b0696
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 445 additions and 23 deletions

View file

@ -0,0 +1,168 @@
; File name: bubble_sort.smt2
;
; BUBBLESORT - Copyright (c) March, 2021 - Matteo Nicoli
;
; An example of bounded model checking of the classic bubble sort algorithm.
; we will copy the array values into a list in order to check whether the
; array is ordered or not. That's because:
; - it's easier to walk recursively through a list
; - it gives an example of how list and sequences work in Z3
;
; size of the array
(declare-const dim Int)
; arrays declaration
(declare-const A0 (Array Int Int))
(declare-const A1 (Array Int Int))
(declare-const A2 (Array Int Int))
(declare-const A3 (Array Int Int))
; indexes declaration
(declare-const i0 Int)
(declare-const i1 Int)
(declare-const i2 Int)
(declare-const i3 Int)
(declare-const j0 Int)
(declare-const j1 Int)
(declare-const j2 Int)
(declare-const j3 Int)
(declare-const tmp0 Int)
(declare-const tmp1 Int)
(declare-const tmp2 Int)
; lists declaration (for post condition)
(declare-const l0 (List Int))
(declare-const l1 (List Int))
(declare-const l2 (List Int))
(declare-const l3 (List Int))
(declare-const l4 (List Int))
(define-fun init_indexes ((_i Int) (_j Int)) Bool
(and
(= _i 0)
(= _j 0)
)
)
(define-fun inner_loop
(
(_A0 (Array Int Int))
(_A1 (Array Int Int))
(tmp Int)
(_i0 Int)
(_dim Int)
) Bool
(ite
(> (select _A0 _i0) (select _A0 (+ _i0 1)))
(and
(= tmp (select _A0 _i0))
(= _A1 (store _A0 _i0 (select _A0 (+ _i0 1))))
(= _A1 (store _A0 (+ _i0 1) tmp))
)
(= _A1 _A0)
)
)
; the body of the bubblesort algorithm
(define-fun bsort_step
(
(_A0 (Array Int Int))
(_A1 (Array Int Int))
(tmp Int)
(_i0 Int)
(_j0 Int)
(_i1 Int)
(_j1 Int)
(_dim Int)
) Bool
(ite
(< _j0 (- _dim 1))
(and
(ite
(< _i0 (- _dim 1))
(and
(inner_loop _A0 _A1 tmp _i0 _dim)
(= _i1 (+ _i0 1))
)
(= _j1 (+ _j0 1))
)
(= _j1 (+ _j0 1))
)
(and
(= _j1 (+ _j0 1))
(= _A1 _A0)
)
)
)
; the function by which we check whether the list is ordered
(define-fun-rec check ((_l (List Int))) Bool
(ite
(= _l nil)
true
(ite
(not (= (tail _l) nil))
(and
(>= (head _l) (head (tail _l)))
(check (tail _l))
)
true
)
)
)
; sets the size of the array
(assert (= dim 4))
; initialization of the counters
(assert (init_indexes i0 j0))
; the first step of the sorting algorithm
(assert (bsort_step A0 A1 tmp0 i0 j0 i1 j1 dim))
(assert (bsort_step A1 A2 tmp1 i1 j1 i2 j2 dim))
(assert (bsort_step A2 A3 tmp2 i2 j2 i3 j3 dim))
; filling the list for test
(assert
(and
(= l0 nil)
(= l1 (insert (select A3 0) l0))
(= l2 (insert (select A3 1) l1))
(= l3 (insert (select A3 2) l2))
(= l4 (insert (select A3 3) l3))
)
)
(echo "BUBBLE SORT")
(push)
; (negated) post-condition
(assert (not (check l4)))
(echo "Testing the validity of the algorithm; `unsat` expected: ")
; `unsat` expected
(check-sat)
(echo "---------------------")
(pop)
; post-condition
(assert (check l4))
(echo "Getting a model; `sat` expected: ")
; `sat` expected
(check-sat)
(echo "---------------------")
(echo "Model: ")
(get-value (A3))
(exit)

View file

@ -0,0 +1,114 @@
; File name: loop_unrolling.smt2
;
; Copyright (c) March, 2021 - Matteo Nicoli
;
;
; Let's start considering a simple C program involving an iteration:
;
; #define DIM 2
;
; /* uninterpreted functions */
; long get_number();
; void fill_array(long *A);
;
; int main()
; {
; long x = get_number();
; long A[DIM];
; long i = 0;
; long found = 0;
;
; fill_array(A);
;
; while(i < DIM) {
; if(x == A[i])
; found = 1;
; i++;
; }
; }
;
; Below, we can see its SSA representation in SMT-LIB2.
; Our goal is to verify that, at the end of the program, the variable `found`
; is equal to 1 if, and only if, `x` is an element of the array.
(declare-const x Int)
(declare-const A (Array Int Int))
(declare-const i_0 Int)
(declare-const found_0 Int)
(declare-const found_1 Int)
(declare-const found_2 Int)
(declare-const i_1 Int)
(declare-const i_2 Int)
; Pre-condition: variables initialization
(assert
(and
(= i_0 0)
(= found_0 0)
)
)
; Transition funcion
(define-fun body ((f_0 Int) (f Int) (i_0 Int) (i_1 Int)(_A (Array Int Int)) (_x Int)) Bool
(and
(= f (ite (= _x (select _A i_0)) 1 f_0))
(= i_1 (+ i_0 1))
)
)
; Post-condition function
(define-fun post ((_f Int) (_i Int) (_x Int) (_A (Array Int Int))) Bool
(=
(= _f 1)
(= _x (select _A _i))
)
)
; Transition function is called DIM times:
; for practical reasons, we are considering here DIM = 2
(assert (body found_0 found_1 i_0 i_1 A x))
(assert (body found_1 found_2 i_1 i_2 A x))
(push)
(echo "Bounded model checking with loop unrolling")
(echo "------------------------------------------")
; Post-condition (negated) is called DIM times
(assert
(not
(or
(post found_2 i_0 x A)
(post found_2 i_1 x A)
)
)
)
(echo "Testing the validity of the post-condition: `unsat expected`")
; `unsat` expected
(check-sat)
(pop)
; Post-condition (called DIM times)
(assert
(or
(post found_2 i_0 x A)
(post found_2 i_1 x A)
)
)
(echo "Getting a model; `sat` expected: ")
; `sat` expected
(check-sat)
(echo "------------------------------------------")
(echo "Model: ")
(get-value (x A found_2))
(exit)

View file

@ -0,0 +1,116 @@
; File name: loop_unrolling_bitvec.smt2
;
; Copyright (c) March, 2021 - Matteo Nicoli
;
;
; Let's start considering a simple C program involving an iteration:
;
; #define DIM 2
;
; /* uninterpreted functions */
; long get_number();
; void fill_array(long *A);
;
; int main()
; {
; long x = get_number();
; long A[DIM];
; long i = 0;
; long found = 0;
;
; fill_array(A);
;
; while(i < DIM) {
; if(x == A[i])
; found = 1;
; i++;
; }
; }
;
; Below, we can see its SSA representation in SMT-LIB2.
; Our goal is to verify that, at the end of the program, the variable `found`
; is equal to 1 if, and only if, `x` is an element of the array.
; We define our custom sort `IntValue` that represents a 32-bit integer value.
(define-sort IntValue () (_ BitVec 32))
(declare-const x IntValue)
(declare-const A (Array IntValue IntValue))
(declare-const i_0 IntValue)
(declare-const found_0 IntValue)
(declare-const found_1 IntValue)
(declare-const found_2 IntValue)
(declare-const i_1 IntValue)
(declare-const i_2 IntValue)
; Pre-condition: variables initialization
(assert
(and
(= i_0 #x00000000)
(= found_0 #x00000000)
)
)
; Transition funcion
(define-fun body ((f_0 IntValue) (f IntValue) (i_0 IntValue) (i_1 IntValue)(_A (Array IntValue IntValue)) (_x IntValue)) Bool
(and
(= f (ite (= _x (select _A i_0)) #x00000001 f_0))
(= i_1 (bvadd i_0 #x00000001))
)
)
; Post-condition function
(define-fun post ((_f IntValue) (_i IntValue) (_x IntValue) (_A (Array IntValue IntValue))) Bool
(=
(= _f #x00000001)
(= _x (select _A _i))
)
)
; Transition function is called DIM times:
; for practical reasons, we are considering here DIM = 2
(assert (body found_0 found_1 i_0 i_1 A x))
(assert (body found_1 found_2 i_1 i_2 A x))
(push)
(echo "Bounded model checking with loop unrolling")
(echo "------------------------------------------")
; Post-condition (negated) is called DIM times
(assert
(not
(or
(post found_2 i_0 x A)
(post found_2 i_1 x A)
)
)
)
(echo "Testing the validity of the post-condition: `unsat expected`")
; `unsat` expected
(check-sat)
(pop)
; Post-condition (called DIM times)
(assert
(or
(post found_2 i_0 x A)
(post found_2 i_1 x A)
)
)
(echo "Getting a model; `sat` expected: ")
; `sat` expected
(check-sat)
(echo "------------------------------------------")
(echo "Model: ")
(get-value (x A found_2))
(exit)

View file

@ -1,4 +1,6 @@
# BUBBLESORT - Copyright (c) June, 2020 - Matteo Nicoli
# File name: bubble_sort.py
#
# BUBBLESORT - Copyright (c) June, 2020 - Matteo Nicoli
from z3 import Solver, Int, Array, IntSort, And, Not, If, Select, Store, sat
@ -36,34 +38,56 @@ def check(variables, Ar, dim) :
yield variables[e] == Select(Ar,e)
def mk_post_condition(values) :
condition = []
for v1,v2 in zip(values,values[1:]) :
condition.append(v1 <= v2)
condition = [v1 <= v2 for v1,v2 in zip(values,values[1:])]
return And(*condition)
dim = int(input("size of the array: "))
i = [Int(f"i_{x}") for x in range(dim + 1)]
j = [Int(f"j_{x}") for x in range(dim + 1)]
A = [Array(f"A_{x}",IntSort(),IntSort()) for x in range(dim + 1)]
tmp = [Int(f"tmp_{x}") for x in range(dim)]
def main() :
dim = int(input("size of the array: "))
s = Solver()
i = [Int(f"i_{x}") for x in range(dim + 1)]
j = [Int(f"j_{x}") for x in range(dim + 1)]
A = [Array(f"A_{x}",IntSort(),IntSort()) for x in range(dim + 1)]
tmp = [Int(f"tmp_{x}") for x in range(dim)]
init_condition = init(i[0],j[0])
s.add(init_condition)
s = Solver()
tran_condition= mk_tran_condition(A, i, j, tmp, dim)
s.add(And(*tran_condition))
init_condition = init(i[0],j[0])
s.add(init_condition)
values = [Int(f"n_{x}") for x in range(dim)]
init_check_condition = check(values,A[-1],dim)
s.add(And(*init_check_condition))
tran_condition = mk_tran_condition(A, i, j, tmp, dim)
s.add(And(*tran_condition))
post_condition = mk_post_condition(values)
s.add(Not(post_condition))
values = [Int(f"n_{x}") for x in range(dim)]
init_check_condition = check(values,A[-1],dim)
s.add(And(*init_check_condition))
if s.check() == sat :
print(f"counterexample:\n{s.model()}")
else :
print("valid")
post_condition = mk_post_condition(values)
print("Bubble sort")
print("---------------------")
s.push()
s.add(Not(post_condition))
print("Testing the validity of the algorithm; `valid expected`:")
if s.check() == sat :
print(f"counterexample:\n{s.model()}")
else :
print("valid")
print("---------------------")
s.pop()
s.add(post_condition)
print("Getting a model...")
print("Model:")
if s.check() == sat :
print(s.model())
if __name__ == "__main__" :
main()