3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-30 06:50:08 +00:00
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2025-08-28 17:18:15 -10:00
parent 61d8e7d035
commit cb4c739ee0

View file

@ -143,26 +143,25 @@ namespace nlsat {
{ an_del(p) | level(p) == m_n }
{ ord_inv(resultant(p_j,p_{j+1})) for adjacent roots }.
*/
std::vector<property> seed_properties() {
std::vector<property> Q;
std::vector<poly*> ps_of_n_level;
// Helper 1: scan input polynomials, add sgn_inv / an_del properties and collect polynomials at level m_n
void collect_level_properties(std::vector<property> & Q, std::vector<poly*> & ps_of_n_level) {
for (unsigned i = 0; i < m_P.size(); ++i) {
poly* p = m_P[i];
poly* p = m_P[i];
unsigned level = max_var(p);
if (level < m_n)
Q.push_back(property(prop_enum::sgn_inv_irreducible, polynomial_ref(p, m_pm), /*s_idx*/0u, /* level */ level));
else if (level == m_n){
else if (level == m_n){
Q.push_back(property(prop_enum::an_del, polynomial_ref(p, m_pm), /* s_idx */ -1, level));
ps_of_n_level.push_back(p);
}
else {
SASSERT(level <= m_n);
}
}
}
}
// collect all roots (as algebraic numbers) together with their originating polynomials
// ignore the root index
std::vector<std::pair<scoped_anum, poly*>> root_vals;
// Helper 2: isolate and collect algebraic roots for the given polynomials
void collect_roots_for_ps(std::vector<poly*> const & ps_of_n_level, std::vector<std::pair<scoped_anum, poly*>> & root_vals) {
for (poly * p : ps_of_n_level) {
scoped_anum_vector roots(m_am);
m_am.isolate_roots(polynomial_ref(p, m_pm), undef_var_assignment(sample(), m_n), roots);
@ -173,35 +172,53 @@ namespace nlsat {
root_vals.emplace_back(std::move(v), p);
}
}
// order roots by their algebraic value
std::sort(root_vals.begin(), root_vals.end(), [&](auto const & a, auto const & b){
return m_am.lt(a.first, b.first);
});
}
// add resultants of adjacent roots
// avoid adding the same polynomial pair twice (treat (p1,p2) == (p2,p1))
// Helper 3: given collected roots (possibly unsorted), sort them, and add ord_inv(resultant(...))
// for adjacent roots coming from different polynomials. Avoid adding the same unordered pair twice.
// Returns false on failure (e.g. when encountering an ambiguous zero resultant).
bool add_adjacent_resultants(std::vector<std::pair<scoped_anum, poly*>> & root_vals, std::vector<property> & Q) {
if (root_vals.size() < 2) return true;
std::sort(root_vals.begin(), root_vals.end(), [&](auto const & a, auto const & b){ return m_am.lt(a.first, b.first); });
std::set<std::pair<unsigned,unsigned>> added_pairs;
for (size_t j = 0; j + 1 < root_vals.size(); ++j) {
poly* p1 = root_vals[j].second;
poly* p2 = root_vals[j+1].second;
if (p1 == p2) continue; // the delineability of p1 will be handled by an_del property above
unsigned id1 = m_pm.id(p1);
unsigned id2 = m_pm.id(p2);
if (p1 == p2) continue; // delineability of p1 handled by an_del
unsigned id1 = polynomial::manager::id(polynomial_ref(p1, m_pm));
unsigned id2 = polynomial::manager::id(polynomial_ref(p2, m_pm));
std::pair<unsigned,unsigned> key = id1 < id2 ? std::make_pair(id1, id2) : std::make_pair(id2, id1);
if (added_pairs.find(key) != added_pairs.end())
continue;
added_pairs.insert(key);
polynomial_ref r(m_pm);
r = resultant(polynomial_ref(p1, m_pm), polynomial_ref(p2, m_pm), m_n);
if (is_const(r)) continue;
if (is_zero(r) ) {
NOT_IMPLEMENTED_YET(); // not sure how to process
if (is_zero(r)) {
NOT_IMPLEMENTED_YET();// ambiguous resultant - not handled yet
return false;
}
// copy polynomial_ref into the property so the property owns the resultant
Q.push_back(property(prop_enum::ord_inv_irreducible, r, /*s_idx*/ -1, max_var(r)));
}
return true;
}
/*
Return Q = { sgn_inv(p) | level(p) < m_n }
{ an_del(p) | level(p) == m_n }
{ ord_inv(resultant(p_j,p_{j+1})) for adjacent root functions }.
*/
std::vector<property> seed_properties() {
std::vector<property> Q;
std::vector<poly*> ps_of_n_level;
collect_level_properties(Q, ps_of_n_level);
std::vector<std::pair<scoped_anum, poly*>> root_vals;
collect_roots_for_ps(ps_of_n_level, root_vals);
if (!add_adjacent_resultants(root_vals, Q)) {
m_fail = true;
return Q;
}
return Q;
}