3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

New API for adding 'tracked assertions'. Added wrappers for creating existential and universal quantifiers in the C++ API fronted. Added new examples for the C++ API

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-11-10 15:54:31 -08:00
parent 108bbb0597
commit caced62f40
5 changed files with 168 additions and 7 deletions

View file

@ -336,6 +336,35 @@ void ite_example() {
std::cout << "term: " << ite << "\n";
}
/**
\brief Small example using quantifiers.
*/
void quantifier_example() {
std::cout << "quantifier example\n";
context c;
expr x = c.int_const("x");
expr y = c.int_const("y");
sort I = c.int_sort();
func_decl f = function("f", I, I, I);
solver s(c);
// making sure model based quantifier instantiation is enabled.
params p(c);
p.set(":mbqi", true);
s.set(p);
s.add(forall(x, y, f(x, y) >= 0));
expr a = c.int_const("a");
s.add(f(a, a) < a);
std::cout << s << "\n";
std::cout << s.check() << "\n";
std::cout << s.get_model() << "\n";
s.add(a < 0);
std::cout << s.check() << "\n";
}
/**
\brief Unsat core example
*/
@ -426,6 +455,37 @@ void unsat_core_example2() {
}
}
/**
\brief Unsat core example 3
*/
void unsat_core_example3() {
// Extract unsat core using tracked assertions
std::cout << "unsat core example 3\n";
context c;
expr x = c.int_const("x");
expr y = c.int_const("y");
solver s(c);
// enabling unsat core tracking
params p(c);
p.set(":unsat-core", true);
s.set(p);
// The following assertion will not be tracked.
s.add(x > 0);
// The following assertion will be tracked using Boolean variable p1.
// The C++ wrapper will automatically create the Boolean variable.
s.add(y > 0, "p1");
// Asserting other tracked assertions.
s.add(x < 10, "p2");
s.add(y < 0, "p3");
std::cout << s.check() << "\n";
std::cout << s.unsat_core() << "\n";
}
void tactic_example1() {
/*
Z3 implements a methodology for orchestrating reasoning engines where "big" symbolic
@ -709,11 +769,8 @@ void tactic_qe() {
expr x = c.int_const("x");
expr f = implies(x <= a, x < b);
// We have to use the C API directly for creating quantified formulas.
Z3_app vars[] = {(Z3_app) x};
expr qf = to_expr(c, Z3_mk_forall_const(c, 0, 1, vars,
0, 0, // no pattern
f));
expr qf = forall(x, f);
std::cout << qf << "\n";
s.add(qf);
@ -769,8 +826,10 @@ int main() {
error_example(); std::cout << "\n";
numeral_example(); std::cout << "\n";
ite_example(); std::cout << "\n";
quantifier_example(); std::cout << "\n";
unsat_core_example1(); std::cout << "\n";
unsat_core_example2(); std::cout << "\n";
unsat_core_example3(); std::cout << "\n";
tactic_example1(); std::cout << "\n";
tactic_example2(); std::cout << "\n";
tactic_example3(); std::cout << "\n";

View file

@ -203,6 +203,17 @@ extern "C" {
to_solver_ref(s)->assert_expr(to_expr(a));
Z3_CATCH;
}
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p) {
Z3_TRY;
LOG_Z3_solver_assert_and_track(c, s, a, p);
RESET_ERROR_CODE();
init_solver(c, s);
CHECK_FORMULA(a,);
CHECK_FORMULA(p,);
to_solver_ref(s)->assert_expr(to_expr(a), to_expr(p));
Z3_CATCH;
}
Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s) {
Z3_TRY;

View file

@ -331,6 +331,7 @@ namespace z3 {
bool is_numeral() const { return kind() == Z3_NUMERAL_AST; }
bool is_app() const { return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
bool is_const() const { return is_app() && num_args() == 0; }
bool is_quantifier() const { return kind() == Z3_QUANTIFIER_AST; }
bool is_var() const { return kind() == Z3_VAR_AST; }
@ -600,7 +601,7 @@ namespace z3 {
expr simplify() const { Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
expr simplify(params const & p) const { Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }
};
/**
\brief Wraps a Z3_ast as an expr object. It also checks for errors.
This function allows the user to use the whole C API with the C++ layer defined in this file.
@ -654,6 +655,49 @@ namespace z3 {
inline expr udiv(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvudiv(a.ctx(), a, b)); }
inline expr udiv(expr const & a, int b) { return udiv(a, a.ctx().num_val(b, a.get_sort())); }
inline expr udiv(int a, expr const & b) { return udiv(b.ctx().num_val(a, b.get_sort()), a); }
// Basic functions for creating quantified formulas.
// The C API should be used for creating quantifiers with patterns, weights, many variables, etc.
inline expr forall(expr const & x, expr const & b) {
check_context(x, b);
Z3_app vars[] = {(Z3_app) x};
Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr forall(expr const & x1, expr const & x2, expr const & b) {
check_context(x1, b); check_context(x2, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
check_context(x1, b); check_context(x2, b); check_context(x3, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr exists(expr const & x, expr const & b) {
check_context(x, b);
Z3_app vars[] = {(Z3_app) x};
Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr exists(expr const & x1, expr const & x2, expr const & b) {
check_context(x1, b); check_context(x2, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
check_context(x1, b); check_context(x2, b); check_context(x3, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
}
template<typename T> class cast_ast;
@ -889,6 +933,14 @@ namespace z3 {
void pop(unsigned n = 1) { Z3_solver_pop(ctx(), m_solver, n); check_error(); }
void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
void add(expr const & e) { assert(e.is_bool()); Z3_solver_assert(ctx(), m_solver, e); check_error(); }
void add(expr const & e, expr const & p) {
assert(e.is_bool()); assert(p.is_bool()); assert(p.is_const());
Z3_solver_assert_and_track(ctx(), m_solver, e, p);
check_error();
}
void add(expr const & e, char const * p) {
add(e, ctx().bool_const(p));
}
check_result check() { Z3_lbool r = Z3_solver_check(ctx(), m_solver); check_error(); return to_check_result(r); }
check_result check(unsigned n, expr * const assumptions) {
array<Z3_ast> _assumptions(n);

View file

@ -5743,7 +5743,30 @@ class Solver(Z3PPObject):
[x > 0, x < 2]
"""
self.assert_exprs(*args)
def assert_and_track(self, a, p):
"""Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
If `p` is a string, it will be automatically converted into a Boolean constant.
>>> x = Int('x')
>>> p3 = Bool('p3')
>>> s = Solver()
>>> s.set(unsat_core=True)
>>> s.assert_and_track(x > 0, 'p1')
>>> s.assert_and_track(x != 1, 'p2')
>>> s.assert_and_track(x < 0, p3)
>>> print s.check()
unsat
>>> print s.unsat_core()
[p3, p1]
"""
if isinstance(p, str):
p = Bool(p, self.ctx)
_z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
_z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
Z3_solver_assert_and_track(self.ctx.ref(), self.solver, a.as_ast(), p.as_ast())
def check(self, *assumptions):
"""Check whether the assertions in the given solver plus the optional assumptions are consistent or not.

View file

@ -6609,6 +6609,22 @@ END_MLAPI_EXCLUDE
def_API('Z3_solver_assert', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST)))
*/
void Z3_API Z3_solver_assert(__in Z3_context c, __in Z3_solver s, __in Z3_ast a);
/**
\brief Assert a constraint \c a into the solver, and track it (in the unsat) core using
the Boolean constant \c p.
This API is an alternative to #Z3_solver_check_assumptions for extracting unsat cores.
Both APIs can be used in the same solver. The unsat core will contain a combination
of the Boolean variables provided using Z3_solver_assert_and_track and the Boolean literals
provided using #Z3_solver_check_assumptions.
\pre \c a must be a Boolean expression
\pre \c p must be a Boolean constant (aka variable).
def_API('Z3_solver_assert_and_track', VOID, (_in(CONTEXT), _in(SOLVER), _in(AST), _in(AST)))
*/
void Z3_API Z3_solver_assert_and_track(__in Z3_context c, __in Z3_solver s, __in Z3_ast a, __in Z3_ast p);
/**
\brief Return the set of asserted formulas as a goal object.
@ -6645,7 +6661,7 @@ END_MLAPI_EXCLUDE
*/
Z3_lbool Z3_API Z3_solver_check_assumptions(__in Z3_context c, __in Z3_solver s,
__in unsigned num_assumptions, __in_ecount(num_assumptions) Z3_ast const assumptions[]);
/**
\brief Retrieve the model for the last #Z3_solver_check or #Z3_solver_check_assumptions