3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

handle better cancellation for parallel, switch between cube mode and base level mode in smt.threads, expose parameters to control theory_bv and phase caching

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-08-16 23:29:24 -07:00
parent fae206b738
commit ca3ec22b7a
18 changed files with 261 additions and 149 deletions

View file

@ -30,6 +30,8 @@ void smt_params::updt_local_params(params_ref const & _p) {
m_clause_proof = p.clause_proof();
m_phase_selection = static_cast<phase_selection>(p.phase_selection());
if (m_phase_selection > PS_THEORY) throw default_exception("illegal phase selection numeral");
m_phase_caching_on = p.phase_caching_on();
m_phase_caching_off = p.phase_caching_off();
m_restart_strategy = static_cast<restart_strategy>(p.restart_strategy());
if (m_restart_strategy > RS_ARITHMETIC) throw default_exception("illegal restart strategy numeral");
m_restart_factor = p.restart_factor();
@ -41,8 +43,10 @@ void smt_params::updt_local_params(params_ref const & _p) {
m_preprocess = _p.get_bool("preprocess", true); // hidden parameter
m_max_conflicts = p.max_conflicts();
m_restart_max = p.restart_max();
m_cube_depth = p.cube_depth();
m_threads = p.threads();
m_threads_max_conflicts = p.threads_max_conflicts();
m_threads_cube_frequency = p.threads_cube_frequency();
m_core_validate = p.core_validate();
m_logic = _p.get_sym("logic", m_logic);
m_string_solver = p.string_solver();
@ -105,8 +109,10 @@ void smt_params::display(std::ostream & out) const {
DISPLAY_PARAM(m_phase_caching_off);
DISPLAY_PARAM(m_minimize_lemmas);
DISPLAY_PARAM(m_max_conflicts);
DISPLAY_PARAM(m_cube_depth);
DISPLAY_PARAM(m_threads);
DISPLAY_PARAM(m_threads_max_conflicts);
DISPLAY_PARAM(m_threads_cube_frequency);
DISPLAY_PARAM(m_simplify_clauses);
DISPLAY_PARAM(m_tick);
DISPLAY_PARAM(m_display_features);

View file

@ -102,8 +102,10 @@ struct smt_params : public preprocessor_params,
bool m_minimize_lemmas;
unsigned m_max_conflicts;
unsigned m_restart_max;
unsigned m_cube_depth;
unsigned m_threads;
unsigned m_threads_max_conflicts;
unsigned m_threads_cube_frequency;
bool m_simplify_clauses;
unsigned m_tick;
bool m_display_features;
@ -251,12 +253,14 @@ struct smt_params : public preprocessor_params,
m_clause_decay(1),
m_random_initial_activity(IA_RANDOM_WHEN_SEARCHING),
m_phase_selection(PS_CACHING_CONSERVATIVE),
m_phase_caching_on(400),
m_phase_caching_on(700),
m_phase_caching_off(100),
m_minimize_lemmas(true),
m_max_conflicts(UINT_MAX),
m_cube_depth(1),
m_threads(1),
m_threads_max_conflicts(UINT_MAX),
m_threads_cube_frequency(2),
m_simplify_clauses(true),
m_tick(1000),
m_display_features(false),

View file

@ -11,6 +11,8 @@ def_module_params(module_name='smt',
('restricted_quasi_macros', BOOL, False, 'try to find universally quantified formulas that are restricted quasi-macros'),
('ematching', BOOL, True, 'E-Matching based quantifier instantiation'),
('phase_selection', UINT, 3, 'phase selection heuristic: 0 - always false, 1 - always true, 2 - phase caching, 3 - phase caching conservative, 4 - phase caching conservative 2, 5 - random, 6 - number of occurrences, 7 - theory'),
('phase_caching_on', UINT, 400, 'number of conflicts while phase caching is on'),
('phase_caching_off', UINT, 100, 'number of conflicts while phase caching is off'),
('restart_strategy', UINT, 1, '0 - geometric, 1 - inner-outer-geometric, 2 - luby, 3 - fixed, 4 - arithmetic'),
('restart_factor', DOUBLE, 1.1, 'when using geometric (or inner-outer-geometric) progression of restarts, it specifies the constant used to multiply the current restart threshold'),
('case_split', UINT, 1, '0 - case split based on variable activity, 1 - similar to 0, but delay case splits created during the search, 2 - similar to 0, but cache the relevancy, 3 - case split based on relevancy (structural splitting), 4 - case split on relevancy and activity, 5 - case split on relevancy and current goal, 6 - activity-based case split with theory-aware branching activity'),
@ -20,8 +22,10 @@ def_module_params(module_name='smt',
('refine_inj_axioms', BOOL, True, 'refine injectivity axioms'),
('max_conflicts', UINT, UINT_MAX, 'maximum number of conflicts before giving up.'),
('restart.max', UINT, UINT_MAX, 'maximal number of restarts.'),
('cube_depth', UINT, 1, 'cube depth.'),
('threads', UINT, 1, 'maximal number of parallel threads.'),
('threads.max_conflicts', UINT, 400, 'maximal number of conflicts between rounds of cubing for parallel SMT'),
('threads.cube_frequency', UINT, 2, 'frequency for using cubing'),
('mbqi', BOOL, True, 'model based quantifier instantiation (MBQI)'),
('mbqi.max_cexs', UINT, 1, 'initial maximal number of counterexamples used in MBQI, each counterexample generates a quantifier instantiation'),
('mbqi.max_cexs_incr', UINT, 0, 'increment for MBQI_MAX_CEXS, the increment is performed after each round of MBQI'),
@ -40,6 +44,8 @@ def_module_params(module_name='smt',
('induction', BOOL, False, 'enable generation of induction lemmas'),
('bv.reflect', BOOL, True, 'create enode for every bit-vector term'),
('bv.enable_int2bv', BOOL, True, 'enable support for int2bv and bv2int operators'),
('bv.eq_axioms', BOOL, True, 'add dynamic equality axioms'),
('bv.watch_diseq', BOOL, False, 'use watch lists instead of eager axioms for bit-vectors'),
('arith.random_initial_value', BOOL, False, 'use random initial values in the simplex-based procedure for linear arithmetic'),
('arith.cheap_eqs', BOOL, True, 'false - do not run, true - run cheap equality heuristic'),
('arith.solver', UINT, 6, 'arithmetic solver: 0 - no solver, 1 - bellman-ford based solver (diff. logic only), 2 - simplex based solver, 3 - floyd-warshall based solver (diff. logic only) and no theory combination 4 - utvpi, 5 - infinitary lra, 6 - lra solver'),

View file

@ -26,6 +26,7 @@ void theory_bv_params::updt_params(params_ref const & _p) {
m_hi_div0 = rp.hi_div0();
m_bv_reflect = p.bv_reflect();
m_bv_enable_int2bv2int = p.bv_enable_int2bv();
m_bv_eq_axioms = p.bv_eq_axioms();
}
#define DISPLAY_PARAM(X) out << #X"=" << X << std::endl;
@ -36,6 +37,7 @@ void theory_bv_params::display(std::ostream & out) const {
DISPLAY_PARAM(m_bv_reflect);
DISPLAY_PARAM(m_bv_lazy_le);
DISPLAY_PARAM(m_bv_cc);
DISPLAY_PARAM(m_bv_eq_axioms);
DISPLAY_PARAM(m_bv_blast_max_size);
DISPLAY_PARAM(m_bv_enable_int2bv2int);
}

View file

@ -31,16 +31,20 @@ struct theory_bv_params {
bool m_bv_reflect;
bool m_bv_lazy_le;
bool m_bv_cc;
bool m_bv_eq_axioms;
unsigned m_bv_blast_max_size;
bool m_bv_enable_int2bv2int;
bool m_bv_watch_diseq;
theory_bv_params(params_ref const & p = params_ref()):
m_bv_mode(BS_BLASTER),
m_hi_div0(false),
m_bv_reflect(true),
m_bv_lazy_le(false),
m_bv_cc(false),
m_bv_eq_axioms(true),
m_bv_blast_max_size(INT_MAX),
m_bv_enable_int2bv2int(true) {
m_bv_enable_int2bv2int(true),
m_bv_watch_diseq(false) {
updt_params(p);
}

View file

@ -3963,6 +3963,7 @@ namespace smt {
}
}
bool context::resolve_conflict() {
m_stats.m_num_conflicts++;
m_num_conflicts ++;

View file

@ -893,7 +893,11 @@ namespace smt {
void mk_clause(literal l1, literal l2, literal l3, justification * j);
void mk_th_axiom(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params = 0, parameter * params = nullptr);
void context::mk_th_clause(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params, parameter * params, clause_kind k);
void mk_th_axiom(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_clause(tid, num_lits, lits, num_params, params, CLS_TH_AXIOM);
}
void mk_th_axiom(theory_id tid, literal l1, literal l2, unsigned num_params = 0, parameter * params = nullptr);
@ -903,6 +907,24 @@ namespace smt {
mk_th_axiom(tid, ls.size(), ls.c_ptr(), num_params, params);
}
void mk_th_lemma(theory_id tid, literal l1, literal l2, unsigned num_params = 0, parameter * params = nullptr) {
literal ls[2] = { l1, l2 };
mk_th_lemma(tid, 2, ls, num_params, params);
}
void mk_th_lemma(theory_id tid, literal l1, literal l2, literal l3, unsigned num_params = 0, parameter * params = nullptr) {
literal ls[3] = { l1, l2, l3 };
mk_th_lemma(tid, 3, ls, num_params, params);
}
void mk_th_lemma(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_clause(tid, num_lits, lits, num_params, params, CLS_TH_LEMMA);
}
void mk_th_lemma(theory_id tid, literal_vector const& ls, unsigned num_params = 0, parameter * params = nullptr) {
mk_th_lemma(tid, ls.size(), ls.c_ptr(), num_params, params);
}
/*
* Provide a hint to the core solver that the specified literals form a "theory case split".
* The core solver will enforce the condition that exactly one of these literals can be
@ -1209,6 +1231,7 @@ namespace smt {
virtual bool resolve_conflict();
// -----------------------------------
//
// Propagation

View file

@ -1488,7 +1488,7 @@ namespace smt {
mk_clause(3, ls, j);
}
void context::mk_th_axiom(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params, parameter * params) {
void context::mk_th_clause(theory_id tid, unsigned num_lits, literal * lits, unsigned num_params, parameter * params, clause_kind k) {
justification * js = nullptr;
TRACE("mk_th_axiom", display_literals_verbose(tout, num_lits, lits) << "\n";);
@ -1501,7 +1501,7 @@ namespace smt {
SASSERT(tmp.size() == num_lits);
display_lemma_as_smt_problem(tmp.size(), tmp.c_ptr(), false_literal, m_fparams.m_logic);
}
mk_clause(num_lits, lits, js, CLS_TH_AXIOM);
mk_clause(num_lits, lits, js, k);
}
void context::mk_th_axiom(theory_id tid, literal l1, literal l2, unsigned num_params, parameter * params) {

View file

@ -204,6 +204,11 @@ namespace smt {
lookahead lh(m_kernel);
return lh.choose();
}
expr_ref_vector cubes(unsigned depth) {
lookahead lh(m_kernel);
return lh.choose_rec(depth);
}
void collect_statistics(::statistics & st) const {
m_kernel.collect_statistics(st);
@ -379,6 +384,10 @@ namespace smt {
return m_imp->next_cube();
}
expr_ref_vector kernel::cubes(unsigned depth) {
return m_imp->cubes(depth);
}
std::ostream& kernel::display(std::ostream & out) const {
m_imp->display(out);
return out;

View file

@ -218,6 +218,11 @@ namespace smt {
*/
expr_ref next_cube();
/**
\brief return up to 2^depth cubes to case split on.
*/
expr_ref_vector cubes(unsigned depth);
/**
\brief retrieve upper/lower bound for arithmetic term, if it is implied.
retrieve implied values if terms are fixed to a value.

View file

@ -64,7 +64,7 @@ namespace smt {
}
};
expr_ref lookahead::choose() {
expr_ref lookahead::choose(unsigned budget) {
ctx.pop_to_base_lvl();
unsigned sz = ctx.m_bool_var2expr.size();
bool_var best_v = null_bool_var;
@ -79,9 +79,12 @@ namespace smt {
compare comp(ctx);
std::sort(vars.begin(), vars.end(), comp);
unsigned nf = 0, nc = 0, ns = 0, bound = 2000, n = 0;
unsigned nf = 0, nc = 0, ns = 0, n = 0;
for (bool_var v : vars) {
if (!ctx.bool_var2expr(v)) continue;
if (!ctx.bool_var2expr(v))
continue;
if (!m.inc())
break;
literal lit(v, false);
ctx.propagate();
if (ctx.inconsistent())
@ -116,16 +119,22 @@ namespace smt {
}
double score = score1 + score2 + 1024*score1*score2;
if (score > best_score || (score == best_score && ctx.get_random_value() % (++n) == 0)) {
if (score > best_score) n = 0;
best_score = score;
best_v = v;
bound += ns;
if (score <= 1.1*best_score && best_score <= 1.1*score) {
if (ctx.get_random_value() % (++n) == 0) {
best_score = score;
best_v = v;
}
ns = 0;
}
else if (score > best_score && (ctx.get_random_value() % 2) == 0) {
n = 0;
best_score = score;
best_v = v;
ns = 0;
}
++nc;
++ns;
if (ns > bound) {
if (ns > budget) {
break;
}
}
@ -141,4 +150,38 @@ namespace smt {
}
return result;
}
expr_ref_vector lookahead::choose_rec(unsigned depth) {
expr_ref_vector trail(m), result(m);
choose_rec(trail, result, depth, 2000);
return result;
}
void lookahead::choose_rec(expr_ref_vector & trail, expr_ref_vector& result, unsigned depth, unsigned budget) {
expr_ref r = choose(budget);
if (m.is_true(r))
result.push_back(mk_and(trail));
else if (m.is_false(r))
;
else {
auto recurse = [&]() {
trail.push_back(r);
if (depth <= 1 || !m.inc()) {
result.push_back(mk_and(trail));
}
else {
ctx.push();
ctx.assert_expr(r);
ctx.propagate();
choose_rec(trail, result, depth-1, 2 * (budget / 3));
ctx.pop(1);
}
trail.pop_back();
};
recurse();
r = m.mk_not(r);
recurse();
}
}
}

View file

@ -32,9 +32,14 @@ namespace smt {
double get_score();
void choose_rec(expr_ref_vector& trail, expr_ref_vector& result, unsigned depth, unsigned budget);
public:
lookahead(context& ctx);
expr_ref choose();
expr_ref choose(unsigned budget = 2000);
expr_ref_vector choose_rec(unsigned depth);
};
}

View file

@ -136,6 +136,7 @@ namespace smt {
}
unit_lim[i] = sz;
}
IF_VERBOSE(1, verbose_stream() << "(smt.thread :units " << sz << ")\n");
};
std::mutex mux;
@ -148,12 +149,12 @@ namespace smt {
expr_ref c(pm);
pctx.get_fparams().m_max_conflicts = std::min(thread_max_conflicts, max_conflicts);
if (num_rounds > 0) {
if (num_rounds > 0 && (pctx.get_fparams().m_threads_cube_frequency % num_rounds) == 0) {
cube(pctx, lasms, c);
}
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i;
if (num_rounds > 0) verbose_stream() << " :round " << num_rounds;
if (c) verbose_stream() << " :cube: " << mk_bounded_pp(c, pm, 3);
if (c) verbose_stream() << " :cube " << mk_bounded_pp(c, pm, 3);
verbose_stream() << ")\n";);
lbool r = pctx.check(lasms.size(), lasms.c_ptr());
@ -164,6 +165,7 @@ namespace smt {
return;
}
else if (r == l_false && pctx.unsat_core().contains(c)) {
IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i << " :learn " << mk_bounded_pp(c, pm, 3) << ")");
pctx.assert_expr(mk_not(mk_and(pctx.unsat_core())));
return;
}

View file

@ -34,25 +34,26 @@ namespace {
struct cuber {
smt_solver& m_solver;
unsigned m_round;
expr_ref m_result;
expr_ref_vector m_result;
unsigned m_depth;
cuber(smt_solver& s):
m_solver(s),
m_round(0),
m_result(s.get_manager()) {}
m_result(s.get_manager()),
m_depth(s.m_smt_params.m_cube_depth) {}
expr_ref cube() {
switch (m_round) {
case 0:
m_result = m_solver.m_context.next_cube();
break;
case 1:
m_result = m_solver.get_manager().mk_not(m_result);
break;
default:
m_result = m_solver.get_manager().mk_false();
break;
if (m_round == 0) {
m_result = m_solver.m_context.cubes(m_depth);
}
expr_ref r(m_result.m());
if (m_round < m_result.size()) {
r = m_result.get(m_round);
}
else {
r = m_result.m().mk_false();
}
++m_round;
return m_result;
return r;
}
};

View file

@ -24,7 +24,6 @@ Revision History:
#include "smt/smt_model_generator.h"
#include "util/stats.h"
#define WATCH_DISEQ 0
namespace smt {
@ -222,25 +221,25 @@ namespace smt {
\brief v1[idx] = ~v2[idx], then v1 /= v2 is a theory axiom.
*/
void theory_bv::mk_new_diseq_axiom(theory_var v1, theory_var v2, unsigned idx) {
if (!params().m_bv_eq_axioms)
return;
SASSERT(m_bits[v1][idx] == ~m_bits[v2][idx]);
TRACE("bv_diseq_axiom", tout << "found new diseq axiom\n"; display_var(tout, v1); display_var(tout, v2););
// found new disequality
m_stats.m_num_diseq_static++;
enode * e1 = get_enode(v1);
enode * e2 = get_enode(v2);
literal l = ~(mk_eq(e1->get_owner(), e2->get_owner(), true));
expr * eq = ctx.bool_var2expr(l.var());
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_eq(mk_bit2bool(get_enode(v1)->get_owner(), idx), m.mk_not(mk_bit2bool(get_enode(v2)->get_owner(), idx))), m.mk_not(eq));
log_axiom_instantiation(body);
}
app * e1 = get_expr(v1);
app * e2 = get_expr(v2);
literal l = ~(mk_eq(e1, e2, true));
expr * eq = ctx.bool_var2expr(l.var());
std::function<expr*(void)> logfn = [&]() {
return m.mk_implies(m.mk_eq(mk_bit2bool(e1, idx), m.mk_not(mk_bit2bool(e2, idx))), m.mk_not(eq));
};
scoped_trace_stream ts(*this, logfn);
ctx.mk_th_axiom(get_id(), 1, &l);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (ctx.relevancy()) {
relevancy_eh * eh = ctx.mk_relevancy_eh(pair_relevancy_eh(e1->get_owner(), e2->get_owner(), eq));
ctx.add_relevancy_eh(e1->get_owner(), eh);
ctx.add_relevancy_eh(e2->get_owner(), eh);
relevancy_eh * eh = ctx.mk_relevancy_eh(pair_relevancy_eh(e1, e2, eq));
ctx.add_relevancy_eh(e1, eh);
ctx.add_relevancy_eh(e2, eh);
}
}
@ -421,6 +420,9 @@ namespace smt {
};
void theory_bv::add_fixed_eq(theory_var v1, theory_var v2) {
if (!params().m_bv_eq_axioms)
return;
if (v1 > v2) {
std::swap(v1, v2);
}
@ -445,17 +447,15 @@ namespace smt {
e1 = mk_bit2bool(o1, i);
e2 = mk_bit2bool(o2, i);
literal eq = mk_eq(e1, e2, true);
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(ctx.bool_var2expr(eq.var())), m.mk_not(ctx.bool_var2expr(oeq.var())));
log_axiom_instantiation(body);
}
std::function<expr*()> logfn = [&]() {
return m.mk_implies(m.mk_not(ctx.bool_var2expr(eq.var())), m.mk_not(ctx.bool_var2expr(oeq.var())));
};
scoped_trace_stream st(*this, logfn);
ctx.mk_th_axiom(get_id(), l1, ~l2, ~eq);
ctx.mk_th_axiom(get_id(), ~l1, l2, ~eq);
ctx.mk_th_axiom(get_id(), l1, l2, eq);
ctx.mk_th_axiom(get_id(), ~l1, ~l2, eq);
ctx.mk_th_axiom(get_id(), eq, ~oeq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
eqs.push_back(~eq);
}
eqs.push_back(oeq);
@ -497,15 +497,21 @@ namespace smt {
bool theory_bv::get_fixed_value(theory_var v, numeral & result) const {
result.reset();
literal_vector const & bits = m_bits[v];
literal_vector::const_iterator it = bits.begin();
literal_vector::const_iterator end = bits.end();
for (unsigned i = 0; it != end; ++it, ++i) {
switch (ctx.get_assignment(*it)) {
case l_false: break;
case l_undef: return false;
case l_true: result += m_bb.power(i); break;
unsigned i = 0;
for (literal b : m_bits[v]) {
switch (ctx.get_assignment(b)) {
case l_false:
break;
case l_undef:
return false;
case l_true: {
for (unsigned j = m_power2.size(); j <= i; ++j)
m_power2.push_back(m_bb.power(j));
result += m_power2[i];
break;
}
}
++i;
}
return true;
}
@ -1095,6 +1101,9 @@ namespace smt {
}
void theory_bv::expand_diseq(theory_var v1, theory_var v2) {
if (!params().m_bv_eq_axioms)
return;
SASSERT(get_bv_size(v1) == get_bv_size(v2));
if (v1 > v2) {
std::swap(v1, v2);
@ -1114,37 +1123,36 @@ namespace smt {
}
}
#if WATCH_DISEQ
bool_var watch_var = null_bool_var;
it1 = bits1.begin();
it2 = bits2.begin();
unsigned h = hash_u_u(v1, v2);
unsigned act = m_diseq_activity[hash_u_u(v1, v2) & 0xFF]++;
for (; it1 != end1 && ((act & 0x3) != 0x3); ++it1, ++it2) {
lbool val1 = ctx.get_assignment(*it1);
lbool val2 = ctx.get_assignment(*it2);
if (val1 == l_undef) {
watch_var = it1->var();
if (params().m_bv_watch_diseq) {
bool_var watch_var = null_bool_var;
it1 = bits1.begin();
it2 = bits2.begin();
unsigned h = hash_u_u(v1, v2);
unsigned act = m_diseq_activity[hash_u_u(v1, v2) & 0xFF]++;
for (; it1 != end1 && ((act & 0x3) != 0x3); ++it1, ++it2) {
lbool val1 = ctx.get_assignment(*it1);
lbool val2 = ctx.get_assignment(*it2);
if (val1 == l_undef) {
watch_var = it1->var();
}
else if (val2 == l_undef) {
watch_var = it2->var();
}
else {
continue;
}
m_diseq_watch.reserve(watch_var+1);
m_diseq_watch[watch_var].push_back(std::make_pair(v1, v2));
m_diseq_watch_trail.push_back(watch_var);
return;
//m_replay_diseq.push_back(std::make_pair(v1, v2));
}
else if (val2 == l_undef) {
watch_var = it2->var();
}
else {
continue;
}
m_diseq_watch.reserve(watch_var+1);
m_diseq_watch[watch_var].push_back(std::make_pair(v1, v2));
m_diseq_watch_trail.push_back(watch_var);
return;
//m_replay_diseq.push_back(std::make_pair(v1, v2));
}
#endif
literal_vector & lits = m_tmp_literals;
expr_ref_vector exprs(m);
lits.reset();
literal eq = mk_eq(get_enode(v1)->get_owner(), get_enode(v2)->get_owner(), true);
lits.push_back(eq);
@ -1158,30 +1166,16 @@ namespace smt {
ctx.internalize(diff, true);
literal arg = ctx.get_literal(diff);
lits.push_back(arg);
exprs.push_back(std::move(diff));
}
m_stats.m_num_diseq_dynamic++;
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(ctx.bool_var2expr(eq.var())), m.mk_or(exprs.size(), exprs.c_ptr()));
log_axiom_instantiation(body);
}
scoped_trace_stream st(*this, lits);
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
void theory_bv::assign_eh(bool_var v, bool is_true) {
atom * a = get_bv2a(v);
TRACE("bv", tout << "assert: p" << v << " #" << ctx.bool_var2expr(v)->get_id() << " is_true: " << is_true << "\n";);
if (a->is_bit()) {
// The following optimization is not correct.
// Boolean variables created for performing bit-blasting are reused.
// See regression\trevor6.smt for example.
//
// if (ctx.has_th_justification(v, get_id())) {
// TRACE("bv", tout << "has th_justification\n";);
// return;
// }
m_prop_queue.reset();
bit_atom * b = static_cast<bit_atom*>(a);
var_pos_occ * curr = b->m_occs;
@ -1191,8 +1185,7 @@ namespace smt {
}
propagate_bits();
#if WATCH_DISEQ
if (!ctx.inconsistent() && m_diseq_watch.size() > static_cast<unsigned>(v)) {
if (params().m_bv_watch_diseq && !ctx.inconsistent() && m_diseq_watch.size() > static_cast<unsigned>(v)) {
unsigned sz = m_diseq_watch[v].size();
for (unsigned i = 0; i < sz; ++i) {
auto const & p = m_diseq_watch[v][i];
@ -1200,7 +1193,6 @@ namespace smt {
}
m_diseq_watch[v].reset();
}
#endif
}
}
@ -1269,26 +1261,28 @@ namespace smt {
}
else {
ctx.assign(consequent, mk_bit_eq_justification(v1, v2, consequent, antecedent));
literal_vector lits;
lits.push_back(~consequent);
lits.push_back(antecedent);
literal eq = mk_eq(get_enode(v1)->get_owner(), get_enode(v2)->get_owner(), false);
lits.push_back(~eq);
//
// Issue #3035:
// merge_eh invokes assign_bit, which updates the propagation queue and includes the
// theory axiom for the propagated equality. When relevancy is non-zero, propagation may get
// lost on backtracking because the propagation queue is reset on conflicts.
// An alternative approach is to ensure the propagation queue is chronological with
// backtracking scopes (ie., it doesn't get reset, but shrunk to a previous level, and similar
// with a qhead indicator.
//
ctx.mark_as_relevant(lits[0]);
ctx.mark_as_relevant(lits[1]);
ctx.mark_as_relevant(lits[2]);
{
scoped_trace_stream _sts(*this, lits);
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
if (params().m_bv_eq_axioms) {
literal_vector lits;
lits.push_back(~consequent);
lits.push_back(antecedent);
literal eq = mk_eq(get_expr(v1), get_expr(v2), false);
lits.push_back(~eq);
//
// Issue #3035:
// merge_eh invokes assign_bit, which updates the propagation queue and includes the
// theory axiom for the propagated equality. When relevancy is non-zero, propagation may get
// lost on backtracking because the propagation queue is reset on conflicts.
// An alternative approach is to ensure the propagation queue is chronological with
// backtracking scopes (ie., it doesn't get reset, but shrunk to a previous level, and similar
// with a qhead indicator.
//
ctx.mark_as_relevant(lits[0]);
ctx.mark_as_relevant(lits[1]);
ctx.mark_as_relevant(lits[2]);
{
scoped_trace_stream _sts(*this, lits);
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
}
}
if (m_wpos[v2] == idx)
@ -1353,9 +1347,7 @@ namespace smt {
theory::push_scope_eh();
m_trail_stack.push_scope();
// check_invariant();
#if WATCH_DISEQ
m_diseq_watch_lim.push_back(m_diseq_watch_trail.size());
#endif
}
void theory_bv::pop_scope_eh(unsigned num_scopes) {
@ -1364,7 +1356,6 @@ namespace smt {
m_bits.shrink(num_old_vars);
m_wpos.shrink(num_old_vars);
m_zero_one_bits.shrink(num_old_vars);
#if WATCH_DISEQ
unsigned old_trail_sz = m_diseq_watch_lim[m_diseq_watch_lim.size()-num_scopes];
for (unsigned i = m_diseq_watch_trail.size(); i-- > old_trail_sz;) {
if (!m_diseq_watch[m_diseq_watch_trail[i]].empty()) {
@ -1373,7 +1364,6 @@ namespace smt {
}
m_diseq_watch_trail.shrink(old_trail_sz);
m_diseq_watch_lim.shrink(m_diseq_watch_lim.size()-num_scopes);
#endif
theory::pop_scope_eh(num_scopes);
TRACE("bv_verbose", m_find.display(tout << ctx.get_scope_level() << " - "
<< num_scopes << " = " << (ctx.get_scope_level() - num_scopes) << "\n"););
@ -1422,9 +1412,7 @@ namespace smt {
m_find(*this),
m_approximates_large_bvs(false) {
memset(m_eq_activity, 0, sizeof(m_eq_activity));
#if WATCH_DISEQ
memset(m_diseq_activity, 0, sizeof(m_diseq_activity));
#endif
}
theory_bv::~theory_bv() {
@ -1517,9 +1505,11 @@ namespace smt {
m_merge_aux[0].reserve(bv_size+1, null_theory_var);
m_merge_aux[1].reserve(bv_size+1, null_theory_var);
#define RESET_MERGET_AUX() for (auto & zo : bits1) m_merge_aux[zo.m_is_true][zo.m_idx] = null_theory_var;
auto reset_merge_aux = [&]() { for (auto & zo : bits1) m_merge_aux[zo.m_is_true][zo.m_idx] = null_theory_var; };
DEBUG_CODE(for (unsigned i = 0; i < bv_size; i++) { SASSERT(m_merge_aux[0][i] == null_theory_var || m_merge_aux[1][i] == null_theory_var); });
DEBUG_CODE(for (unsigned i = 0; i < bv_size; i++) {
SASSERT(m_merge_aux[0][i] == null_theory_var || m_merge_aux[1][i] == null_theory_var); }
);
// save info about bits1
for (auto & zo : bits1) m_merge_aux[zo.m_is_true][zo.m_idx] = zo.m_owner;
// check if bits2 is consistent with bits1, and copy new bits to bits1
@ -1531,7 +1521,7 @@ namespace smt {
SASSERT(m_bits[v1][zo.m_idx] == ~(m_bits[v2][zo.m_idx]));
SASSERT(m_bits[v1].size() == m_bits[v2].size());
mk_new_diseq_axiom(v1, v2, zo.m_idx);
RESET_MERGET_AUX();
reset_merge_aux();
return false;
}
if (m_merge_aux[zo.m_is_true][zo.m_idx] == null_theory_var) {
@ -1540,7 +1530,7 @@ namespace smt {
}
}
// reset m_merge_aux vector
RESET_MERGET_AUX();
reset_merge_aux();
DEBUG_CODE(for (unsigned i = 0; i < bv_size; i++) { SASSERT(m_merge_aux[0][i] == null_theory_var || m_merge_aux[1][i] == null_theory_var); });
return true;
}

View file

@ -122,13 +122,14 @@ namespace smt {
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
value2var m_fixed_var_table;
mutable vector<rational> m_power2;
unsigned char m_eq_activity[256];
//unsigned char m_diseq_activity[256];
svector<std::pair<theory_var, theory_var>> m_replay_diseq;
//vector<vector<std::pair<theory_var, theory_var>>> m_diseq_watch;
//svector<bool_var> m_diseq_watch_trail;
//unsigned_vector m_diseq_watch_lim;
vector<vector<std::pair<theory_var, theory_var>>> m_diseq_watch;
unsigned char m_diseq_activity[256];
svector<bool_var> m_diseq_watch_trail;
unsigned_vector m_diseq_watch_lim;
literal_vector m_tmp_literals;
svector<var_pos> m_prop_queue;

View file

@ -1007,10 +1007,6 @@ public:
lp().settings().int_run_gcd_test() = ctx().get_fparams().m_arith_gcd_test;
lp().settings().set_random_seed(ctx().get_fparams().m_random_seed);
m_lia = alloc(lp::int_solver, *m_solver.get());
get_one(true);
get_zero(true);
get_one(false);
get_zero(false);
}
void internalize_is_int(app * n) {

View file

@ -146,9 +146,18 @@ class parallel_tactic : public tactic {
}
}
void stats(::statistics& st) {
for (auto* t : m_tasks)
t->get_solver().collect_statistics(st);
for (auto* t : m_active)
t->get_solver().collect_statistics(st);
}
void reset() {
for (auto* t : m_tasks) dealloc(t);
for (auto* t : m_active) dealloc(t);
for (auto* t : m_tasks)
dealloc(t);
for (auto* t : m_active)
dealloc(t);
m_tasks.reset();
m_active.reset();
m_num_waiters = 0;
@ -270,6 +279,7 @@ class parallel_tactic : public tactic {
set_simplify_params(true); // retain blocked
r = get_solver().check_sat(m_assumptions);
if (r != l_undef) return r;
if (canceled()) return l_undef;
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-2)\n";);
set_simplify_params(false); // remove blocked
r = get_solver().check_sat(m_assumptions);
@ -317,17 +327,20 @@ class parallel_tactic : public tactic {
double exp = pp.simplify_exp();
exp = std::max(exp, 1.0);
unsigned mult = static_cast<unsigned>(pow(exp, m_depth - 1));
unsigned max_conflicts = pp.simplify_max_conflicts();
if (max_conflicts < 1000000)
max_conflicts *= std::max(m_depth, 1u);
p.set_uint("inprocess.max", pp.simplify_inprocess_max() * mult);
p.set_uint("restart.max", pp.simplify_restart_max() * mult);
p.set_bool("lookahead_simplify", m_depth > 2);
p.set_bool("retain_blocked_clauses", retain_blocked);
p.set_uint("max_conflicts", pp.simplify_max_conflicts());
p.set_uint("max_conflicts", max_conflicts);
if (m_depth > 1) p.set_uint("bce_delay", 0);
get_solver().updt_params(p);
}
bool canceled() {
return m_giveup ||! m().inc();
return m_giveup || !m().inc();
}
std::ostream& display(std::ostream& out) {
@ -469,6 +482,7 @@ private:
unsigned num_simplifications = 0;
cube_again:
if (canceled(s)) return;
// extract up to one cube and add it.
cube.reset();
cube.append(s.split_cubes(1));
@ -640,7 +654,7 @@ private:
void run_solver() {
try {
while (solver_state* st = m_queue.get_task()) {
cube_and_conquer(*st);
cube_and_conquer(*st);
collect_statistics(*st);
m_queue.task_done(st);
if (!st->m().inc()) m_queue.shutdown();
@ -648,7 +662,7 @@ private:
dealloc(st);
}
}
catch (z3_exception& ex) {
catch (z3_exception& ex) {
IF_VERBOSE(1, verbose_stream() << ex.msg() << "\n";);
if (m_queue.in_shutdown()) return;
m_queue.shutdown();
@ -679,6 +693,7 @@ private:
threads.push_back(std::thread([this]() { run_solver(); }));
for (std::thread& t : threads)
t.join();
m_queue.stats(m_stats);
m_manager.limit().reset_cancel();
if (m_exn_code == -1)
throw default_exception(std::move(m_exn_msg));
@ -720,7 +735,7 @@ public:
init();
}
void operator ()(const goal_ref & g,goal_ref_buffer & result) override {
void operator()(const goal_ref & g,goal_ref_buffer & result) override {
cleanup();
fail_if_proof_generation("parallel-tactic", g);
ast_manager& m = g->m();
@ -773,7 +788,6 @@ public:
void cleanup() override {
m_queue.reset();
m_models.reset();
m_stats.reset();
}
tactic* translate(ast_manager& m) override {