3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

Merge remote-tracking branch 'origin/polysat' into polysat

This commit is contained in:
Jakob Rath 2022-12-16 14:26:38 +01:00
commit ca373836af
9 changed files with 672 additions and 49 deletions

View file

@ -79,7 +79,11 @@ namespace polysat {
// Analyse current conflict core to extract additional lemmas
void find_extra_lemmas(conflict& core) {
#if 1
// Don't do variable elimination for now
#else
m_free_variable_elimination.find_lemma(core);
#endif
}
};

View file

@ -446,14 +446,23 @@ namespace polysat {
}
pdd constraint_manager::lshr(pdd const& p, pdd const& q) {
if (p.is_val() && q.is_val() && q.val().is_unsigned()) {
return p.manager().mk_val(div(p.val(), rational::power_of_two(q.val().get_unsigned())));
}
return mk_op_term(op_constraint::code::lshr_op, p, q);
}
pdd constraint_manager::shl(pdd const& p, pdd const& q) {
if (p.is_val() && q.is_val() && q.val().is_unsigned()) {
return p.manager().mk_val(p.val() * rational::power_of_two(q.val().get_unsigned()));
}
return mk_op_term(op_constraint::code::shl_op, p, q);
}
pdd constraint_manager::band(pdd const& p, pdd const& q) {
if (p.is_val() && q.is_val()) {
return p.manager().mk_val(bitwise_and(p.val(), q.val()));
}
return mk_op_term(op_constraint::code::and_op, p, q);
}

View file

@ -82,7 +82,7 @@ namespace polysat {
void ensure_bvar(constraint* c);
void erase_bvar(constraint* c);
signed_constraint mk_op_constraint(op_constraint::code op, pdd const& p, pdd const& q, pdd const& r);
pdd mk_op_term(op_constraint::code op, pdd const& p, pdd const& q);

View file

@ -38,14 +38,14 @@ char const* color_reset() { return "\x1B[0m"; }
std::atomic<bool> g_log_enabled(true);
bool get_log_enabled() {
return g_log_enabled;
}
void set_log_enabled(bool log_enabled) {
g_log_enabled = log_enabled;
}
bool get_log_enabled() {
return g_log_enabled;
}
static LogLevel get_max_log_level(std::string const& fn, std::string const& pretty_fn) {
(void)fn;
(void)pretty_fn;

View file

@ -376,7 +376,7 @@ namespace polysat {
/** Create expression for the logical left shift of p by q. */
pdd shl(pdd const& p, pdd const& q) { return m_constraints.shl(p, q); }
/** Create expression for the bit-wise negation of p. */
pdd bnot(pdd const& p) { return m_constraints.bnot(p); }

View file

@ -18,14 +18,226 @@ Author:
#include <algorithm>
namespace polysat {
pdd free_variable_elimination::get_hamming_distance(pdd p) {
SASSERT(p.power_of_2() >= 8); // TODO: Implement special cases for smaller bit-width
// The trick works only for multiples of 8 (because of the final multiplication).
// Maybe it can be changed to work for all sizes
SASSERT(p.power_of_2() % 8 == 0);
// Proven for 8, 16, 24, 32 by bit-blasting in Z3
// https://en.wikipedia.org/wiki/Hamming_weight
const unsigned char pattern_55 = 0x55; // 01010101
const unsigned char pattern_33 = 0x33; // 00110011
const unsigned char pattern_0f = 0x0f; // 00001111
const unsigned char pattern_01 = 0x01; // 00000001
unsigned to_alloc = (p.power_of_2() + sizeof(unsigned) - 1) / sizeof(unsigned);
unsigned to_alloc_bits = to_alloc * sizeof(unsigned);
// Cache this?
auto* scaled_55 = (unsigned*)alloca(to_alloc_bits);
auto* scaled_33 = (unsigned*)alloca(to_alloc_bits);
auto* scaled_0f = (unsigned*)alloca(to_alloc_bits);
auto* scaled_01 = (unsigned*)alloca(to_alloc_bits);
memset(scaled_55, pattern_55, to_alloc_bits);
memset(scaled_33, pattern_33, to_alloc_bits);
memset(scaled_0f, pattern_0f, to_alloc_bits);
memset(scaled_01, pattern_01, to_alloc_bits);
rational rational_scaled_55(scaled_55, to_alloc);
rational rational_scaled_33(scaled_33, to_alloc);
rational rational_scaled_0f(scaled_0f, to_alloc);
rational rational_scaled_01(scaled_01, to_alloc);
auto& m = p.manager();
pdd w = p - s.band(s.lshr(p, m.one()), m.mk_val(rational_scaled_55));
w = s.band(w, m.mk_val(rational_scaled_33)) + s.band(s.lshr(w, m.mk_val(2)), m.mk_val(rational_scaled_33));
w = s.band(w + s.lshr(w, m.mk_val(4)), m.mk_val(rational_scaled_0f));
//unsigned final_shift = p.power_of_2() - 8;
//final_shift = (final_shift + 7) / 8 * 8 - 1; // ceil final_shift to the next multiple of 8
return s.lshr(w * m.mk_val(rational_scaled_01), m.mk_val(p.power_of_2() - 8));
}
pdd free_variable_elimination::get_odd(pdd p) {
SASSERT(p.is_val() || p.is_var()); // For now
if (p.is_val()) {
const rational& v = p.val();
unsigned d = v.trailing_zeros();
if (!d)
return p.manager().mk_val(v);
return p.manager().mk_val(div(v, rational::power_of_two(d))); // TODO: Is there no shift?
}
pvar v = p.var();
if (m_rest_constants.size() > v && m_rest_constants[v] != -1)
return s.var(m_rest_constants[v]);
pdd power = get_dyadic_valuation(p).second;
pvar rest = s.add_var(p.power_of_2());
pdd rest_pdd = p.manager().mk_var(rest);
m_rest_constants.setx(v, rest, -1);
s.add_clause(s.eq(power * rest_pdd, p), false);
return rest_pdd;
}
optional<pdd> free_variable_elimination::get_inverse(pdd p) {
SASSERT(p.is_val() || p.is_var()); // For now
if (p.is_val()) {
pdd i = p.manager().zero();
if (!inv(p, i))
return {};
return optional<pdd>(i);
}
pvar v = p.var();
if (m_inverse_constants.size() > v && m_inverse_constants[v] != -1)
return optional<pdd>(s.var(m_inverse_constants[v]));
pvar inv = s.add_var(p.power_of_2());
pdd inv_pdd = p.manager().mk_var(inv);
m_inverse_constants.setx(v, inv, -1);
s.add_clause(s.eq(inv_pdd * p, p.manager().one()), false);
return optional<pdd>(inv_pdd);
}
#define PV_MOD 2
// symbolic version of "max_pow2_divisor" for checking if it is exactly "k"
void free_variable_elimination::add_dyadic_valuation(pvar v, unsigned k) {
// TODO: works for all values except 0; how to deal with this case?
pdd p = s.var(v);
auto& m = p.manager();
pvar pv;
pvar pv2;
bool new_var = false;
if (m_pv_constants.size() <= v || m_pv_constants[v] == -1) {
pv = s.add_var(m.power_of_2()); // TODO: What's a good value? Unfortunately we cannot use a integer
pv2 = s.add_var(m.power_of_2());
m_pv_constants.setx(v, pv, -1);
m_pv_power_constants.setx(v, pv2, -1);
m.mk_var(pv);
m.mk_var(pv2);
new_var = true;
}
else {
pv = m_pv_constants[v];
pv2 = m_pv_power_constants[v];
}
bool e = get_log_enabled();
set_log_enabled(false);
// For testing some different implementations
#if PV_MOD == 1
// brute-force bit extraction and <=
signed_constraint c1 = s.eq(rational::power_of_two(p.power_of_2() - k - 1) * p, m.zero());
signed_constraint c2 = s.ule(m.mk_val(k), s.var(pv));
s.add_clause(~c1, c2, false);
s.add_clause(c1, ~c2, false);
if (new_var) {
s.add_clause(s.eq(s.var(pv2), s.shl(m.one(), s.var(pv))), false);
}
#elif PV_MOD == 2
// symbolic "maximal divisible"
signed_constraint c1 = s.eq(s.shl(s.lshr(p, s.var(pv)), s.var(pv)), p);
signed_constraint c2 = ~s.eq(s.shl(s.lshr(p, s.var(pv + 1)), s.var(pv + 1)), p);
signed_constraint z = ~s.eq(p, p.manager().zero());
// v != 0 ==> [(v >> pv) << pv == v && (v >> pv + 1) << pv + 1 != v]
s.add_clause(~z, c1, false);
s.add_clause(~z, c2, false);
if (new_var) {
s.add_clause(s.eq(s.var(pv2), s.shl(m.one(), s.var(pv))), false);
}
#elif PV_MOD == 3
// computing the complete function by hamming-distance
// proven equivalent with case 2 via bit-blasting for small sizes
s.add_clause(s.eq(s.var(pv), get_hamming_distance(s.bxor(p, p - 1)) - 1), false);
// in case v == 0 ==> pv == k - 1 (we don't care)
if (new_var) {
s.add_clause(s.eq(s.var(pv2), s.shl(m.one(), s.var(pv))), false);
}
#elif PV_MOD == 4
// brute-force bit-and
// (pv = k && pv2 = 2^k) <==> ((v & (2^(k + 1) - 1)) = 2^k)
rational mask = rational::power_of_two(k + 1) - 1;
pdd masked = s.band(s.var(v), s.var(v).manager().mk_val(mask));
std::pair<pdd, pdd> odd_part = s.quot_rem(s.var(v), s.var(pv2));
signed_constraint c1 = s.eq(s.var(pv), k);
signed_constraint c2 = s.eq(s.var(pv2), rational::power_of_two(k));
signed_constraint c3 = s.eq(masked, rational::power_of_two(k));
s.add_clause(c1, ~c3, false);
s.add_clause(c2, ~c3, false);
s.add_clause(~c1, ~c2, c3, false);
s.add_clause(s.eq(odd_part.second, 0), false); // The division has to be exact
#endif
set_log_enabled(e);
}
std::pair<pdd, pdd> free_variable_elimination::get_dyadic_valuation(pdd p, unsigned short lower, unsigned short upper) {
SASSERT(p.is_val() || p.is_var()); // For now
SASSERT(lower == 0);
SASSERT(upper == p.power_of_2()); // Maybe we don't need all. However, for simplicity have this now
if (p.is_val()) {
rational pv(p.val().trailing_zeros());
rational pv2 = rational::power_of_two(p.val().trailing_zeros());
return { p.manager().mk_val(pv), p.manager().mk_val(pv2) };
}
pvar v = p.var();
unsigned short prev_lower = 0, prev_upper = 0;
if (m_has_validation_of_range.size() > v) {
unsigned range = m_has_validation_of_range[v];
prev_lower = range & 0xFFFF;
prev_upper = range >> 16;
if (lower >= prev_lower && upper <= prev_upper)
return { s.var(m_pv_constants[v]), s.var(m_pv_power_constants[v]) }; // exists already in the required range
}
#if PV_MOD == 2 || PV_MOD == 3
LOG("Adding valuation function for variable " << v);
add_dyadic_valuation(v, 0);
m_has_validation_of_range.setx(v, (unsigned)UCHAR_MAX << 16, 0);
#else
LOG("Adding valuation function for variable " << v << " in [" << lower << "; " << upper << ")");
m_has_validation_of_range.setx(v, lower | (unsigned)upper << 16, 0);
for (unsigned i = lower; i < prev_lower; i++) {
add_dyadic_valuation(v, i);
}
for (unsigned i = prev_upper; i < upper; i++) {
add_dyadic_valuation(v, i);
}
#endif
return { s.var(m_pv_constants[v]), s.var(m_pv_power_constants[v]) };
}
std::pair<pdd, pdd> free_variable_elimination::get_dyadic_valuation(pdd p) {
return get_dyadic_valuation(p, 0, p.power_of_2());
}
void free_variable_elimination::find_lemma(conflict& core) {
LOG_H1("Free Variable Elimination");
LOG("core: " << core);
LOG("Free variables: " << s.m_free_pvars);
for (pvar v : core.vars_occurring_in_constraints())
if (!s.is_assigned(v)) // TODO: too restrictive. should also consider variables that will be unassigned only after backjumping (can update this after assignment handling in search state is refactored.)
find_lemma(v, core);
//if (!s.is_assigned(v)) // TODO: too restrictive. should also consider variables that will be unassigned only after backjumping (can update this after assignment handling in search state is refactored.)
find_lemma(v, core);
}
void free_variable_elimination::find_lemma(pvar v, conflict& core) {
@ -46,53 +258,157 @@ namespace polysat {
pdd const& p = c.eq();
SASSERT_EQ(p.degree(v), 1);
auto& m = p.manager();
pdd lc = m.zero();
pdd fac = m.zero();
pdd rest = m.zero();
p.factor(v, 1, lc, rest);
if (rest.is_val())
return;
// lc * v + rest == p == 0
// v == -1 * rest * lc^-1
SASSERT(!lc.free_vars().contains(v));
p.factor(v, 1, fac, rest);
//if (rest.is_val()) // TODO: Why do we need this?
// return;
SASSERT(!fac.free_vars().contains(v));
SASSERT(!rest.free_vars().contains(v));
LOG("lc: " << lc);
LOG("fac: " << fac);
LOG("rest: " << rest);
substitution sub(m);
pdd const lcs = eval(lc, core, sub);
LOG("lcs: " << lcs);
pdd lci = m.zero();
if (!inv(lcs, lci))
return;
pdd const rs = sub.apply_to(rest);
pdd const vs = -rs * lci; // this is the polynomial that computes v
LOG("vs: " << vs);
SASSERT(!vs.free_vars().contains(v));
// Find another constraint where we want to substitute v
for (signed_constraint c_target : core) {
if (c == c_target)
continue;
if (c_target.vars().size() <= 1)
continue;
if (!c_target.contains_var(v))
continue;
// TODO: helper method constraint::subst(pvar v, pdd const& p)
// (or rather, add it on constraint_manager since we need to allocate/dedup the new constraint)
// For now, just restrict to ule_constraint.
if (!c_target->is_ule())
if (!c_target->is_ule()) // TODO: Remove?
continue;
// TODO: maybe apply assignment a here as well
pdd const lhs = c_target->to_ule().lhs().subst_pdd(v, vs);
pdd const rhs = c_target->to_ule().rhs().subst_pdd(v, vs);
signed_constraint c_new = s.ule(lhs, rhs);
if (c_target->to_ule().lhs().degree(v) > 1 || // TODO: Invert non-linear variable?
c_target->to_ule().rhs().degree(v) > 1)
continue;
signed_constraint p1 = s.ule(m.zero(), m.zero());
signed_constraint p2 = s.ule(m.zero(), m.zero());
pdd new_lhs = p.manager().zero();
pdd new_rhs = p.manager().zero();
pdd fac_lhs = m.zero();
pdd fac_rhs = m.zero();
pdd rest_lhs = m.zero();
pdd rest_rhs = m.zero();
c_target->to_ule().lhs().factor(v, 1, fac_lhs, rest_lhs);
c_target->to_ule().rhs().factor(v, 1, fac_rhs, rest_rhs);
LOG_H3("With constraint " << lit_pp(s, c_target) << ":");
LOG("c_target: " << lit_pp(s, c_target));
LOG("fac_lhs: " << fac_lhs);
LOG("rest_lhs: " << rest_lhs);
LOG("fac_rhs: " << fac_rhs);
LOG("rest_rhs: " << rest_rhs);
pdd pv_equality = p.manager().zero();
pdd lhs_multiple = p.manager().zero();
pdd rhs_multiple = p.manager().zero();
pdd coeff_odd = p.manager().zero();
optional<pdd> fac_odd_inv;
get_multiple_result multiple1 = get_multiple(fac_lhs, fac, new_lhs);
get_multiple_result multiple2 = get_multiple(fac_rhs, fac, new_rhs);
if (multiple1 == cannot_multiple || multiple2 == cannot_multiple)
continue;
bool evaluated = false;
substitution sub(m);
if (multiple1 == can_multiple || multiple2 == can_multiple) {
if (
(!fac.is_val() && !fac.is_var()) ||
(!fac_lhs.is_val() && !fac_lhs.is_var()) ||
(!fac_rhs.is_val() && !fac_rhs.is_var())) {
// TODO: We could introduce a new variable "new_var = lc" and add the valuation for this new variable
if (s.is_assigned(v))
continue; // We could not eliminate it symbolically and evaluating makes no sense as we already have a value for it
pdd const fac_eval = eval(fac, core, sub);
LOG("fac_eval: " << fac_eval);
pdd fac_eval_inv = m.zero();
// TODO: We can now again use multiples instead of failing if it is not invertible
// e.g., x * y + x * z = z (with y = 0 eval)
// and, 3 * x * z <= 0
// We don't do anything, although we could
// x * z = z
// and multiplying with 3 results in a feasible replacement
if (!inv(fac_eval, fac_eval_inv))
continue;
LOG("fac_eval_inv: " << fac_eval_inv);
pdd const rest_eval = sub.apply_to(rest);
LOG("rest_eval: " << rest_eval);
pdd const vs = -rest_eval * fac_eval_inv; // this is the polynomial that computes v
LOG("vs: " << vs);
SASSERT(!vs.free_vars().contains(v));
// TODO: Why was the assignment (sub) not applied to the result in previous commits?
new_lhs = sub.apply_to(c_target->to_ule().lhs().subst_pdd(v, vs));
new_rhs = sub.apply_to(c_target->to_ule().rhs().subst_pdd(v, vs));
evaluated = true;
}
else {
pv_equality = get_dyadic_valuation(fac).first;
LOG("pv_equality " << pv_equality);
coeff_odd = get_odd(fac); // a'
LOG("coeff_odd: " << coeff_odd);
fac_odd_inv = get_inverse(coeff_odd); // a'^-1
if (!fac_odd_inv)
continue; // factor is for sure not invertible
LOG("coeff_odd_inv: " << *fac_odd_inv);
}
}
if (!evaluated) {
if (multiple1 == can_multiple) {
pdd pv_lhs = get_dyadic_valuation(fac_lhs).first;
pdd odd_fac_lhs = get_odd(fac_lhs);
pdd power_diff_lhs = s.shl(m.one(), pv_lhs - pv_equality);
LOG("pv_lhs: " << pv_lhs);
LOG("odd_fac_lhs: " << odd_fac_lhs);
LOG("power_diff_lhs: " << power_diff_lhs);
new_lhs = -rest * *fac_odd_inv * power_diff_lhs * odd_fac_lhs + rest_rhs;
p1 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_lhs).first);
}
else {
SASSERT(multiple1 == is_multiple);
new_lhs = -rest * new_lhs + rest_lhs;
}
if (multiple2 == can_multiple) {
pdd pv_rhs = get_dyadic_valuation(fac_rhs).first;
pdd odd_fac_rhs = get_odd(fac_rhs);
pdd power_diff_rhs = s.shl(m.one(), pv_rhs - pv_equality);
LOG("pv_rhs: " << pv_rhs);
LOG("odd_fac_rhs: " << odd_fac_rhs);
LOG("power_diff_rhs: " << power_diff_rhs);
new_rhs = -rest * *fac_odd_inv * power_diff_rhs * odd_fac_rhs + rest_rhs;
p2 = s.ule(get_dyadic_valuation(fac).first, get_dyadic_valuation(fac_rhs).first);
}
else {
SASSERT(multiple2 == is_multiple);
new_rhs = -rest * new_rhs + rest_rhs;
}
}
signed_constraint c_new = s.ule(new_lhs , new_rhs);
if (c_target.is_negative())
c_new.negate();
LOG("c_target: " << lit_pp(s, c_target));
LOG("c_new: " << lit_pp(s, c_new));
// New constraint is already true (maybe we already derived it previously?)
@ -100,14 +416,24 @@ namespace polysat {
// E.g., if the new clause could derive c_new at a lower decision level.
if (c_new.bvalue(s) == l_true)
continue;
LOG("p1: " << p1);
LOG("p2: " << p2);
clause_builder cb(s);
for (auto [w, wv] : sub)
cb.insert(~s.eq(s.var(w), wv));
if (evaluated) {
for (auto [w, wv] : sub)
cb.insert(~s.eq(s.var(w), wv));
}
cb.insert(~c);
cb.insert(~c_target);
cb.insert(~p1);
cb.insert(~p2);
cb.insert(c_new);
core.add_lemma("variable elimination", cb.build());
ref<clause> c = cb.build();
if (c) // Can we get tautologies this way?
core.add_lemma("variable elimination", c);
}
}
@ -117,15 +443,13 @@ namespace polysat {
// TODO: recognize constraints of the form "v1 == 27" to be used in the assignment?
// (but maybe useful evaluations are always part of core.vars() anyway?)
substitution& sub = out_sub;
SASSERT(sub.empty());
SASSERT(out_sub.empty());
for (auto v : p.free_vars())
if (core.contains_pvar(v))
sub.add(v, s.get_value(v));
pdd q = sub.apply_to(p);
out_sub = out_sub.add(v, s.get_value(v));
pdd q = out_sub.apply_to(p);
// TODO: like in the old conflict::minimize_vars, we can now try to remove unnecessary variables from a.
return q;
@ -143,5 +467,62 @@ namespace polysat {
out_p_inv = p.manager().mk_val(iv);
return true;
}
free_variable_elimination::get_multiple_result free_variable_elimination::get_multiple(const pdd& p1, const pdd& p2, pdd& out) {
LOG("Check if there is an easy way to unify " << p2 << " and " << p1);
if (p1.is_zero()) {
out = p1.manager().zero();
return is_multiple;
}
if (p2.is_one()) {
out = p1;
return is_multiple;
}
if (!p1.is_monomial() || !p2.is_monomial())
// TODO: Actually, this could work as well. (4a*d + 6b*c*d) is a multiple of (2a + 3b*c) although none of them is a monomial
return can_multiple;
dd::pdd_monomial p1m = *p1.begin();
dd::pdd_monomial p2m = *p2.begin();
unsigned tz1 = p1m.coeff.trailing_zeros();
unsigned tz2 = p2m.coeff.trailing_zeros();
if (tz2 > tz1)
return cannot_multiple; // The constant coefficient is not invertible
rational odd = div(p2m.coeff, rational::power_of_two(tz2));
rational inv;
bool succ = odd.mult_inverse(p1.power_of_2() - tz2, inv);
SASSERT(succ); // we divided by the even part so it has to be odd/invertible
inv *= div(p1m.coeff, rational::power_of_two(tz2));
m_occ_cnt.reserve(s.m_vars.size(), (unsigned)0); // TODO: Are there duplicates in the list (e.g., v1 * v1)?)
for (const auto& v1 : p1m.vars) {
if (m_occ_cnt[v1] == 0)
m_occ.push_back(v1);
m_occ_cnt[v1]++;
}
for (const auto& v2 : p2m.vars) {
if (m_occ_cnt[v2] == 0) {
for (const auto& occ : m_occ)
m_occ_cnt[occ] = 0;
m_occ.clear();
return can_multiple; // p2 contains more v2 than p1; we need more information
}
m_occ_cnt[v2]--;
}
out = p1.manager().mk_val(inv);
for (const auto& occ : m_occ) {
for (unsigned i = 0; i < m_occ_cnt[occ]; i++)
out *= s.var(occ);
m_occ_cnt[occ] = 0;
}
m_occ.clear();
LOG("Found multiple: " << out);
return is_multiple;
}
}

View file

@ -21,14 +21,35 @@ namespace polysat {
class conflict;
class free_variable_elimination {
enum get_multiple_result {
is_multiple, can_multiple, cannot_multiple
};
solver& s;
unsigned_vector m_has_validation_of_range; // TODO: Find a better name
unsigned_vector m_pv_constants;
unsigned_vector m_pv_power_constants;
unsigned_vector m_inverse_constants;
unsigned_vector m_rest_constants;
unsigned_vector m_occ;
unsigned_vector m_occ_cnt;
pdd get_hamming_distance(pdd p);
pdd get_odd(pdd p); // add lemma "2^pv(v) * v' = v"
optional<pdd> get_inverse(pdd v); // add lemma "v' * v'^-1 = 1 (where v' is the odd part of v)"
void add_dyadic_valuation(pvar v, unsigned k); // add lemma "pv(v) = k" ==> "pv_v = k"
std::pair<pdd, pdd> get_dyadic_valuation(pdd p, unsigned short lower, unsigned short upper); // lower bound inclusive; upper exclusive
std::pair<pdd, pdd> get_dyadic_valuation(pdd p);
void find_lemma(pvar v, conflict& core);
void find_lemma(pvar v, signed_constraint c, conflict& core);
pdd eval(pdd const& p, conflict& core, substitution& out_sub);
bool inv(pdd const& p, pdd& out_p_inv);
get_multiple_result get_multiple(const pdd& p1, const pdd& p2, pdd &out);
public:
free_variable_elimination(solver& s): s(s) {}
void find_lemma(conflict& core);
};
};
}

View file

@ -1,5 +1,6 @@
#include "math/polysat/log.h"
#include "math/polysat/solver.h"
#include "math/polysat/variable_elimination.h"
#include "ast/ast.h"
#include "parsers/smt2/smt2parser.h"
#include "util/util.h"
@ -1093,6 +1094,201 @@ namespace polysat {
s.expect_unsat();
}
static void expect_lemma_cnt(conflict& cfl, unsigned cnt) {
auto lemmas = cfl.lemmas();
if (lemmas.size() == cnt)
return;
LOG_H1("FAIL: Expected " << cnt << " learned lemmas; got " << lemmas.size() << "!");
if (!collect_test_records)
VERIFY(false);
}
static void expect_lemma(solver& s, conflict& cfl, signed_constraint c1) {
LOG_H1("Looking for constraint: " << c1);
auto lemmas = cfl.lemmas();
for (auto& lemma : lemmas) {
for (unsigned i = 0; i < lemma->size(); i++) {
if (s.lit2cnstr(lemma->operator[](i)) == c1)
return;
LOG_H1("Found different constraint " << s.lit2cnstr(lemma->operator[](i)));
}
}
LOG_H1("FAIL: Lemma " << c1 << " not deduced!");
if (!collect_test_records)
VERIFY(false);
}
static void test_elim1(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto c1 = s.eq(7 * x, 3);
auto c2 = s.ule(x - y, 5);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
rational res;
rational(7).mult_inverse(bw, res);
expect_lemma_cnt(cfl, 1);
expect_lemma(s, cfl, s.ule(s.sz2pdd(bw).mk_val(res * 3) - y, 5));
}
static void test_elim2(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto c1 = s.eq(x * x, x * 3);
auto c2 = s.ule(x + y, 5);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 0); // Non linear; should be skipped
}
static void test_elim3(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto c1 = s.eq(7 * x, 3);
auto c2 = s.ule(x * x + y, 5);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 0); // also not linear; should be skipped
}
static void test_elim4(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto c1 = s.eq(7 * x, 3);
auto c2 = s.ule(y * x, 5 + x + y);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 1);
expect_lemma(s, cfl, s.ule(5 * y, 10 + y));
}
static void test_elim5(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
auto c1 = s.eq(x * 7 + x * y, 3);
auto c2 = s.ule(y * x * z, 2);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 1); // Eliminating "x" fails because there is no assignment for "y"; eliminating "y" works
expect_lemma(s, cfl, s.ule(3 * z - 7 * x * z, 2));
s.assign_core(y.var(), rational(2), justification::propagation(0));
conflict cfl2(s);
cfl2.insert(c1);
cfl2.insert_vars(c1);
cfl2.insert(c2);
cfl2.insert_vars(c2);
elim.find_lemma(cfl2);
expect_lemma_cnt(cfl2, 2); // Now it uses the assignment
expect_lemma(s, cfl2, s.ule(3 * z - 7 * x * z, 2));
expect_lemma(s, cfl2, s.ule(6 * z, 2));
}
static void test_elim6(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
auto c1 = s.eq(2 * x, z);
auto c2 = s.ule(4 * x, y);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 1); // We have to multiply by 2 so this is an over-approximation (or we would increase bit-width by 1)
expect_lemma(s, cfl, s.ule(2 * z, y));
auto c3 = s.eq(4 * x, z);
auto c4 = s.ule(2 * x, y);
conflict cfl2(s);
s.assign_eh(c3, dependency(0));
cfl2.insert(c3);
s.assign_eh(c4, dependency(0));
cfl2.insert(c4);
elim.find_lemma(cfl2);
expect_lemma_cnt(cfl2, 0); // This does not work because of polarity
}
static void test_elim7(unsigned bw = 32) {
scoped_solver s(__func__);
free_variable_elimination elim(s);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
auto c1 = s.eq(x * y, 3);
auto c2 = s.ule(z * x, 2);
conflict cfl(s);
s.assign_eh(c1, dependency(0));
cfl.insert(c1);
s.assign_eh(c2, dependency(0));
cfl.insert(c2);
elim.find_lemma(cfl);
expect_lemma_cnt(cfl, 1); // Should introduce polarity constraints
// TODO: Check if this lemma is really correct
}
/**
* x*x <= z
@ -1654,7 +1850,9 @@ static void STD_CALL polysat_on_ctrl_c(int) {
void tst_polysat() {
using namespace polysat;
#if 1 // Enable this block to run a single unit test with detailed output.
polysat::test_polysat::test_elim7(3);
#if 0 // Enable this block to run a single unit test with detailed output.
collect_test_records = false;
test_max_conflicts = 50;
// test_polysat::test_parity1();
@ -1720,6 +1918,14 @@ void tst_polysat() {
RUN(test_polysat::test_var_minimize()); // works but var_minimize isn't used (UNSAT before lemma is created)
RUN(test_polysat::test_elim1());
RUN(test_polysat::test_elim2());
RUN(test_polysat::test_elim3());
RUN(test_polysat::test_elim4());
RUN(test_polysat::test_elim5());
RUN(test_polysat::test_elim6());
RUN(test_polysat::test_elim7());
RUN(test_polysat::test_ineq1());
RUN(test_polysat::test_ineq2());
RUN(test_polysat::test_monot());
@ -1756,7 +1962,7 @@ void tst_polysat() {
RUN(test_polysat::test_ineq_axiom5());
RUN(test_polysat::test_ineq_axiom6());
RUN(test_polysat::test_ineq_non_axiom1());
RUN(test_polysat::test_ineq_non_axiom4());
//RUN(test_polysat::test_ineq_non_axiom4());
// test_fi::exhaustive();
// test_fi::randomized();

View file

@ -55,6 +55,8 @@ public:
explicit rational(double z) { UNREACHABLE(); }
explicit rational(char const * v) { m().set(m_val, v); }
explicit rational(unsigned const * v, unsigned sz) { m().set(m_val, sz, v); }
struct i64 {};
rational(int64_t i, i64) { m().set(m_val, i); }