mirror of
https://github.com/Z3Prover/z3
synced 2025-10-16 04:20:25 +00:00
Added justifications for intermediate values [e.g., 2 * x in the pdd (2 * x) + y]
This might allow propagation in both directions
This commit is contained in:
parent
ec06027515
commit
c8b9127028
6 changed files with 475 additions and 172 deletions
|
@ -15,6 +15,206 @@ Abstract:
|
|||
#include "math/polysat/solver.h"
|
||||
|
||||
namespace polysat {
|
||||
|
||||
bit_justication* bit_justication::get_other_justification(const fixed_bits& fixed, const pdd& p, unsigned idx) {
|
||||
return fixed.m_tbv_to_justification[{ p, idx }];
|
||||
}
|
||||
|
||||
const tbv_ref& bit_justication::get_tbv(fixed_bits& fixed, const pdd& p) {
|
||||
return fixed.get_tbv(p);
|
||||
}
|
||||
|
||||
bool bit_justication::fix_value(fixed_bits& fixed, const pdd& p, tbv_ref& tbv, unsigned idx, tbit val, bit_justication* j) {
|
||||
return fixed.fix_value(p, tbv, idx, val, j);
|
||||
}
|
||||
|
||||
void bit_justication_constraint::get_dependencies(fixed_bits& fixed, bit_dependencies& to_process) {
|
||||
for (const auto& dep : this->m_dependencies)
|
||||
to_process.push_back(dep);
|
||||
}
|
||||
|
||||
bit_justication_constraint* bit_justication_constraint::mk_justify_at_least(constraint *c, const pdd& v, const tbv_ref& tbv, const rational& least) {
|
||||
return mk_justify_between(c, v, tbv, least, rational::power_of_two(tbv.num_tbits()) - 1);
|
||||
}
|
||||
|
||||
bit_justication_constraint* bit_justication_constraint::mk_justify_at_most(constraint *c, const pdd& v, const tbv_ref& tbv, const rational& most) {
|
||||
return mk_justify_between(c, v, tbv, rational::zero(), most);
|
||||
}
|
||||
|
||||
bit_justication_constraint* bit_justication_constraint::mk_justify_between(constraint *c, const pdd& v, const tbv_ref& tbv, rational least, rational most) {
|
||||
SASSERT(least.is_nonneg());
|
||||
SASSERT(most.is_nonneg());
|
||||
|
||||
most = power(rational(2), tbv.num_tbits()) - most;
|
||||
bit_dependencies dep;
|
||||
for (unsigned i = tbv.num_tbits(); i > 0; i--) {
|
||||
tbit b = tbv[i];
|
||||
if (b == BIT_0 || b == BIT_1) {
|
||||
(b == BIT_0 ? most : least) -= power(rational(2), i - 1);
|
||||
dep.push_back({ v, i });
|
||||
}
|
||||
if (most.is_nonpos() && least.is_nonpos())
|
||||
return alloc(bit_justication_constraint, c, std::move(dep));
|
||||
}
|
||||
|
||||
SASSERT(most.is_pos() || least.is_pos());
|
||||
VERIFY(false); // we assume that the possible values are indeed in [least; most]
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// multiplication: (1*p0 + 2*p1 + 4*p2 + 8*p3 + ...) * (1*q0 + 2*q1 + 4*q2 + 8*q3 + ...) =
|
||||
// = 1 * (p0 q0) + 2 * (p0 q1 + p1 q0) + 4 * (p0 q2 + p1 q1 + p2 q0) + 8 * (p0 q3 + p1 q2 + p2 q1 + p3 q0) + ...
|
||||
// that means
|
||||
// r0 = (p0 q0)
|
||||
// r1 = (p0 q1 + p1 q0) + (p0 q0) / 2 = (p0 q1 + p1 q0)
|
||||
// r2 = (p0 q2 + p1 q1 + p2 q0) + (p0 q1 + p1 q0) / 2 + (p0 q0) / 4 = (p0 q2 + p1 q1 + p2 q0) + (p0 q1 + p1 q0) / 2
|
||||
// r3 = (p0 q3 + p1 q2 + p2 q1 + p3 q0) + (p0 q2 + p1 q1 + p2 q0) / 2 + (p0 q1 + p1 q0) / 4 + (p0 q0) / 8 = (p0 q3 + p1 q2 + p2 q1 + p3 q0) + (p0 q2 + p1 q1 + p2 q0) / 2
|
||||
tbv_ref& bit_justication_mul::mul(fixed_bits& fixed, const pdd& p, const tbv_ref& in1, const tbv_ref& in2) {
|
||||
auto m = in1.manager();
|
||||
tbv_ref& out = fixed.get_tbv(p);
|
||||
|
||||
unsigned min_bit_value = 0; // The value of the current bit assuming all unknown bits are 0
|
||||
unsigned max_bit_value = 0; // The value of the current bit assuming all unknown bits are 1
|
||||
|
||||
// TODO: Check: Is the performance too worse? It is O(k^2)
|
||||
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||
for (unsigned x = 0, y = i; x <= i; x++, y--) {
|
||||
tbit bit1 = in1[x];
|
||||
tbit bit2 = in2[y];
|
||||
|
||||
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||
min_bit_value++; // we get two 1
|
||||
max_bit_value++;
|
||||
}
|
||||
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||
max_bit_value++; // we could get two 1
|
||||
}
|
||||
}
|
||||
if (min_bit_value == max_bit_value) {
|
||||
// We know the value of this bit
|
||||
if (!fix_value(fixed, p, out, i, min_bit_value & 1 ? BIT_1 : BIT_0, alloc(bit_justication_mul)))
|
||||
return out;
|
||||
}
|
||||
// Subtract one; shift this to the next higher bit as "carry value"
|
||||
min_bit_value >>= 1;
|
||||
max_bit_value >>= 1;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// collect all bits that effect the given bit. These might be quite a lot
|
||||
// We need to know how many previous bits are relevant
|
||||
// r0 = (p0 q0) ... 0 overflow candidates
|
||||
// r1 = (p0 q1 + p1 q0) + (p0 q0) / 2 = (p0 q1 + p1 q0) ... 0 overflow candidates
|
||||
// r2 = (p0 q2 + p1 q1 + p2 q0) + (p0 q1 + p1 q0) / 2 + (p0 q0) / 4 = (p0 q2 + p1 q1 + p2 q0) + (p0 q1 + p1 q0) / 2 ... 1 overflow candidates
|
||||
// ...
|
||||
// r5 = ([6]) + ([5]) / 2 + ([4]) / 4 + ([3]) / 8 + ([2]) / 16 + ([1]) / 32 = ([6]) + ([5]) / 2 + ([4]) / 4 ... 2 overflow candidates
|
||||
// ...
|
||||
// r12 = ([11]) + ([10]) / 2 + ([9]) / 4 + ([8]) / 8 ... 3 overflow candidates
|
||||
// ...
|
||||
// r21 = ([20]) + ([19]) / 2 + ([18]) / 4 + ([17]) / 8 + ([16]) / 16 ... 4 overflow candidates
|
||||
// ...
|
||||
// r38 = ([37]) + ([36]) / 2 + ([35]) / 4 + ([34]) / 8 + ([33]) / 16 + ([32]) / 32 ... 5 overflow candidates
|
||||
// ...
|
||||
// r71 = ... 6 overflow candidates
|
||||
// ...
|
||||
// the overflow increases on { 2, 5, 12, 21, 21, 38, 71, ... } that is 2^k + idx + 1 = 2^idx
|
||||
// Hence we can calculate it by "ilog2(idx - ilog2(idx) - 1)" if idx >= 7 or otherwise use the lookup table [0, 0, 1, 1, 1, 1, 1] (as the intermediate result is negative)
|
||||
void bit_justication_mul::get_dependencies(fixed_bits& fixed, bit_dependencies& to_process) {
|
||||
unsigned relevant_range; // the number of previous places that might overflow to this bit
|
||||
if (m_idx < 7)
|
||||
relevant_range = m_idx >= 2;
|
||||
else
|
||||
relevant_range = log2(m_idx - (log2(m_idx) + 1));
|
||||
|
||||
const tbv_ref& tbv1 = get_tbv(fixed, *m_c1);
|
||||
const tbv_ref& tbv2 = get_tbv(fixed, *m_c2);
|
||||
|
||||
for (unsigned i = m_idx - relevant_range; i <= m_idx; i++) {
|
||||
for (unsigned x = 0, y = i; x <= i; x++, y--) {
|
||||
tbit bit1 = tbv1[x];
|
||||
tbit bit2 = tbv2[y];
|
||||
|
||||
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||
get_other_justification(fixed, *m_c1, x)->get_dependencies(fixed, to_process);
|
||||
get_other_justification(fixed, *m_c2, x)->get_dependencies(fixed, to_process);
|
||||
}
|
||||
else if (bit1 == BIT_0) // TODO: Take the better one if both are zero
|
||||
get_other_justification(fixed, *m_c1, x)->get_dependencies(fixed, to_process);
|
||||
else if (bit2 == BIT_0)
|
||||
get_other_justification(fixed, *m_c2, x)->get_dependencies(fixed, to_process);
|
||||
else {
|
||||
// The bit is apparently not set because we cannot derive a truth-value.
|
||||
// Why do we ask for an explanation
|
||||
VERIFY(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// similar to multiplying but far simpler/faster (only the direct predecessor might overflow)
|
||||
tbv_ref& bit_justication_add::add(fixed_bits& fixed, const pdd& p, const tbv_ref& in1, const tbv_ref& in2) {
|
||||
auto m = in1.manager();
|
||||
tbv_ref& out = fixed.get_tbv(p);
|
||||
|
||||
unsigned min_bit_value = 0;
|
||||
unsigned max_bit_value = 0;
|
||||
|
||||
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||
tbit bit1 = in1[i];
|
||||
tbit bit2 = in2[i];
|
||||
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||
min_bit_value++;
|
||||
max_bit_value++;
|
||||
}
|
||||
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||
max_bit_value++;
|
||||
}
|
||||
|
||||
if (min_bit_value == max_bit_value)
|
||||
if (!fix_value(fixed, p, out, i, min_bit_value & 1 ? BIT_1 : BIT_0, alloc(bit_justication_add)))
|
||||
return out;
|
||||
|
||||
min_bit_value >>= 1;
|
||||
max_bit_value >>= 1;
|
||||
}
|
||||
|
||||
if (min_bit_value == max_bit_value) // Overflow to the first bit
|
||||
fix_value(fixed, p, out, 0, min_bit_value & 1 ? BIT_1 : BIT_0, alloc(bit_justication_add));
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void bit_justication_add::get_dependencies(fixed_bits& fixed, bit_dependencies& to_process) {
|
||||
if (m_c1->power_of_2() > 1) {
|
||||
if (m_idx == 0) {
|
||||
get_other_justification(fixed, *m_c1, m_c1->power_of_2() - 1)->get_dependencies(fixed, to_process);
|
||||
get_other_justification(fixed, *m_c2, m_c1->power_of_2() - 1)->get_dependencies(fixed, to_process);
|
||||
DEBUG_CODE(
|
||||
const tbv_ref& tbv1 = get_tbv(fixed, *m_c1);
|
||||
const tbv_ref& tbv2 = get_tbv(fixed, *m_c2);
|
||||
SASSERT(tbv1[m_c1->power_of_2() - 1] != BIT_z && tbv2[m_c1->power_of_2() - 1] != BIT_z);
|
||||
);
|
||||
}
|
||||
else {
|
||||
get_other_justification(fixed, *m_c1, m_idx - 1)->get_dependencies(fixed, to_process);
|
||||
get_other_justification(fixed, *m_c2, m_idx - 1)->get_dependencies(fixed, to_process);
|
||||
DEBUG_CODE(
|
||||
const tbv_ref& tbv1 = get_tbv(fixed, *m_c1);
|
||||
const tbv_ref& tbv2 = get_tbv(fixed, *m_c2);
|
||||
SASSERT(tbv1[m_idx - 1] != BIT_z && tbv2[m_idx - 1] != BIT_z);
|
||||
);
|
||||
}
|
||||
}
|
||||
get_other_justification(fixed, *m_c1, m_idx)->get_dependencies(fixed, to_process);
|
||||
get_other_justification(fixed, *m_c2, m_idx)->get_dependencies(fixed, to_process);
|
||||
DEBUG_CODE(
|
||||
const tbv_ref& tbv1 = get_tbv(fixed, *m_c1);
|
||||
const tbv_ref& tbv2 = get_tbv(fixed, *m_c2);
|
||||
SASSERT(tbv1[m_idx] != BIT_z && tbv2[m_idx] != BIT_z);
|
||||
);
|
||||
}
|
||||
|
||||
tbv_manager& fixed_bits::get_manager(unsigned sz){
|
||||
m_tbv_managers.reserve(sz + 1);
|
||||
|
@ -27,57 +227,107 @@ namespace polysat {
|
|||
return get_manager(v.power_of_2());
|
||||
}
|
||||
|
||||
tbv_ref& fixed_bits::get_tbv(pvar v, unsigned sz) {
|
||||
if (m_var_to_tbv.size() <= v) {
|
||||
tbv_ref& fixed_bits::get_tbv(const pdd& v) {
|
||||
auto found = m_var_to_tbv.find_iterator(optional(v));
|
||||
if (found == m_var_to_tbv.end()) {
|
||||
auto& manager = get_manager(v.power_of_2());
|
||||
if (v.is_val())
|
||||
m_var_to_tbv[optional(v)] = optional(tbv_ref(manager, manager.allocate(v.val())));
|
||||
else
|
||||
m_var_to_tbv[optional(v)] = optional(tbv_ref(manager, manager.allocate()));
|
||||
return *m_var_to_tbv[optional(v)];
|
||||
}
|
||||
/*if (m_var_to_tbv.size() <= v) {
|
||||
m_var_to_tbv.reserve(v + 1);
|
||||
auto& manager = get_manager(sz);
|
||||
m_var_to_tbv[v] = tbv_ref(manager, manager.allocate());
|
||||
return *m_var_to_tbv[v];
|
||||
}
|
||||
auto& old_manager = m_var_to_tbv[v]->manager();
|
||||
if (old_manager.num_tbits() >= sz)
|
||||
return *(m_var_to_tbv[v]);
|
||||
tbv* old_tbv = m_var_to_tbv[v]->detach();
|
||||
auto& new_manager = get_manager(sz);
|
||||
}*/
|
||||
return *m_var_to_tbv[optional(v)];
|
||||
/*auto& old_manager = m_var_to_tbv[optional(v)]->manager();
|
||||
if (old_manager.num_tbits() >= v.power_of_2())
|
||||
return *(m_var_to_tbv[optional(v)]);
|
||||
tbv* old_tbv = m_var_to_tbv[optional(v)]->detach();
|
||||
auto& new_manager = get_manager(v.power_of_2());
|
||||
tbv* new_tbv = new_manager.allocate();
|
||||
old_manager.copy(*new_tbv, *old_tbv); // Copy the lower bits to the new (larger) tbv
|
||||
old_manager.deallocate(old_tbv);
|
||||
m_var_to_tbv[v] = tbv_ref(new_manager, new_tbv);
|
||||
return *m_var_to_tbv[v];
|
||||
m_var_to_tbv[optional(v)] = optional(tbv_ref(new_manager, new_tbv));
|
||||
return *m_var_to_tbv[optional(v)];*/
|
||||
}
|
||||
|
||||
tbv_ref& fixed_bits::get_tbv(const pdd& p) {
|
||||
SASSERT(p.is_var());
|
||||
return get_tbv(p.var(), p.power_of_2());
|
||||
|
||||
clause_ref fixed_bits::get_explanation(solver& s, bit_justication* j1, bit_justication* j2) {
|
||||
bit_dependencies to_process;
|
||||
// TODO: Check that we do not process the same tuple multiples times (efficiency)
|
||||
j1->get_dependencies(*this, to_process);
|
||||
j2->get_dependencies(*this, to_process);
|
||||
|
||||
clause_builder conflict(s);
|
||||
conflict.set_redundant(true);
|
||||
|
||||
auto insert_constraint = [&conflict, &s](bit_justication* j) {
|
||||
constraint* constr;
|
||||
if (j->has_constraint(constr))
|
||||
return;
|
||||
SASSERT(constr);
|
||||
if (constr->has_bvar()) {
|
||||
SASSERT(s.m_bvars.is_assigned(constr->bvar()));
|
||||
// add negated
|
||||
conflict.insert(signed_constraint(constr, s.m_bvars.value(constr->bvar()) != l_true));
|
||||
}
|
||||
};
|
||||
|
||||
insert_constraint(j1);
|
||||
insert_constraint(j2);
|
||||
|
||||
// In principle, the dependencies should be acyclic so this should terminate. If there are cycles it is for sure a bug
|
||||
while (!to_process.empty()) {
|
||||
bit_dependency& curr = to_process.back();
|
||||
to_process.pop_back();
|
||||
SASSERT(m_tbv_to_justification.contains(curr));
|
||||
bit_justication* j = m_tbv_to_justification[curr];
|
||||
insert_constraint(j);
|
||||
j->get_dependencies(*this, to_process);
|
||||
}
|
||||
|
||||
return conflict.build();
|
||||
}
|
||||
|
||||
|
||||
tbit fixed_bits::get_value(const pdd& p, unsigned idx) {
|
||||
SASSERT(p.is_var());
|
||||
return get_tbv(p)[idx];
|
||||
}
|
||||
|
||||
bool fixed_bits::fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, bit_dependency& dep) {
|
||||
bool fixed_bits::fix_value(const pdd& p, tbv_ref& tbv, unsigned idx, tbit val, bit_justication* j) {
|
||||
SASSERT(val != BIT_x); // We don't use don't-cares
|
||||
SASSERT(p.is_var());
|
||||
if (val == BIT_z)
|
||||
return true;
|
||||
tbv_ref& tbv = get_tbv(p);
|
||||
tbit curr_val = tbv[idx];
|
||||
|
||||
if (val == curr_val)
|
||||
return true;
|
||||
return true; // TODO: Take the new justification if it has a lower decision level
|
||||
|
||||
auto& m = tbv.manager();
|
||||
|
||||
if (curr_val == BIT_z) {
|
||||
m.set(*tbv, idx, val);
|
||||
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication(c, (bit_dependency&&)std::move(dep));
|
||||
delete m_tbv_to_justification[{ p, idx }];
|
||||
m_tbv_to_justification[{ p, idx }] = j;
|
||||
return true;
|
||||
}
|
||||
SASSERT((curr_val == BIT_1 && val == BIT_0) || (curr_val == BIT_0 && val == BIT_1));
|
||||
|
||||
SASSERT(m_tbv_to_justification.contains({ p, idx }));
|
||||
return m_consistent = false;
|
||||
}
|
||||
|
||||
bool fixed_bits::fix_value(solver& s, const pdd& p, unsigned idx, tbit val, bit_justication* j) {
|
||||
tbv_ref& tbv = get_tbv(p);
|
||||
if (fix_value(p, tbv, idx, val, j))
|
||||
return true;
|
||||
clause_ref explanation = get_explanation(s, j, m_tbv_to_justification[{ p, idx }]);
|
||||
s.set_conflict(*explanation);
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
void fixed_bits::clear_value(const pdd& p, unsigned idx) {
|
||||
|
@ -86,8 +336,9 @@ namespace polysat {
|
|||
auto& m = tbv.manager();
|
||||
m.set(*tbv, idx, BIT_z);
|
||||
|
||||
SASSERT(m_tbv_to_justification.contains(std::pair(tbv.get(), idx)));
|
||||
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication();
|
||||
SASSERT(m_tbv_to_justification.contains({ p, idx }));
|
||||
delete m_tbv_to_justification[{ p, idx }];
|
||||
m_tbv_to_justification[{ p, idx }] = nullptr;
|
||||
}
|
||||
|
||||
#define COUNT(DOWN, TO_COUNT) \
|
||||
|
@ -133,90 +384,30 @@ namespace polysat {
|
|||
return { least, most };
|
||||
}
|
||||
|
||||
// multiplication: (1*p0 + 2*p1 + 4*p2 + 8*p3 + ...) * (1*q0 + 2*q1 + 4*q2 + 8*q3 + ...) =
|
||||
// = 1 * (p0 q0) + 2 * (p0 q1 + p1 q0) + 4 * (p0 q2 + p1 q1 + p2 q0) + 8 * (p0 q3 + p1 q2 + p2 q1 + p3 q0) + ...
|
||||
// maintains
|
||||
void fixed_bits::multiply(tbv_ref& in_out, const tbv_ref& in2) {
|
||||
auto m= in_out.manager();
|
||||
m_aux_values.reserve(m.num_tbits());
|
||||
|
||||
unsigned min_bit_value = 0; // The value of the current bit assuming all unknown bits are 0
|
||||
unsigned max_bit_value = 0; // The value of the current bit assuming all unknown bits are 1
|
||||
|
||||
// TODO: Check: Is the performance too worse? It is O(k^2)
|
||||
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||
for (unsigned x = 0, y = i; x <= i; x++, y--) {
|
||||
tbit bit1 = in_out[x];
|
||||
tbit bit2 = in2[y];
|
||||
|
||||
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||
min_bit_value++; // we get two 1
|
||||
max_bit_value++;
|
||||
}
|
||||
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||
max_bit_value++; // we could get two 1
|
||||
}
|
||||
tbv_ref& fixed_bits::eval(solver& s, const pdd& p) {
|
||||
pdd zero = p.manager().zero();
|
||||
pdd one = p.manager().one();
|
||||
|
||||
pdd sum = zero;
|
||||
tbv_ref* prev_sum_tbv = &get_tbv(sum);
|
||||
|
||||
for (const dd::pdd_monomial& n : p) {
|
||||
SASSERT(!n.coeff.is_zero());
|
||||
pdd prod = p.manager().mk_val(n.coeff);
|
||||
tbv_ref* prev_mul_tbv = &get_tbv(prod);
|
||||
|
||||
for (pvar fac : n.vars) {
|
||||
pdd fac_pdd = s.var(fac);
|
||||
prod *= fac_pdd;
|
||||
prev_mul_tbv = &bit_justication_mul::mul(*this, prod, *prev_mul_tbv, get_tbv(fac_pdd));
|
||||
if (!m_consistent)
|
||||
return *prev_sum_tbv;
|
||||
}
|
||||
if (min_bit_value == max_bit_value) {
|
||||
// We know the value of this bit
|
||||
// As we might access in_out in some later iteration again we first write to aux-list
|
||||
m_aux_values[i] = min_bit_value & 1 ? BIT_1 : BIT_0;
|
||||
}
|
||||
else {
|
||||
m_aux_values[i] = BIT_z;
|
||||
}
|
||||
// Subtract one; shift this to the next higher bit as "carry value"
|
||||
min_bit_value >>= 1;
|
||||
max_bit_value >>= 1;
|
||||
sum += prod;
|
||||
prev_sum_tbv = &bit_justication_add::add(*this, sum, *prev_sum_tbv, *prev_mul_tbv);
|
||||
if (!m_consistent)
|
||||
return *prev_sum_tbv;
|
||||
}
|
||||
|
||||
// Copy aux to result tbv
|
||||
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||
m.set(*in_out, i, (tbit)m_aux_values[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// similar to multiplying
|
||||
void fixed_bits::add(tbv_ref& in_out, const tbv_ref& in2) {
|
||||
auto m= in_out.manager();
|
||||
|
||||
unsigned min_bit_value = 0;
|
||||
unsigned max_bit_value = 0;
|
||||
|
||||
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||
tbit bit1 = in_out[i];
|
||||
tbit bit2 = in2[i];
|
||||
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||
min_bit_value++;
|
||||
max_bit_value++;
|
||||
}
|
||||
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||
max_bit_value++;
|
||||
}
|
||||
|
||||
if (min_bit_value == max_bit_value)
|
||||
// for addition we don't need previous values so we can directly write to the output variable
|
||||
m.set(*in_out, i, min_bit_value & 1 ? BIT_1 : BIT_0);
|
||||
else
|
||||
m.set(*in_out, i, BIT_z);
|
||||
|
||||
min_bit_value >>= 1;
|
||||
max_bit_value >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
tbv_ref fixed_bits::eval(const pdd& p) {
|
||||
tbv_manager m = get_manager(p);
|
||||
unsigned sz = m.num_tbits();
|
||||
tbv_ref ret = tbv_ref(m, m.allocate(0ull));
|
||||
for (const dd::pdd_monomial& s : p) {
|
||||
SASSERT(!s.coeff.is_zero());
|
||||
tbv_ref sum = tbv_ref(m, m.allocate(s.coeff));
|
||||
for (pvar fac : s.vars) {
|
||||
multiply(sum, get_tbv(fac, sz));
|
||||
}
|
||||
add(ret, sum);
|
||||
}
|
||||
return ret;
|
||||
return *prev_sum_tbv;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue