mirror of
https://github.com/Z3Prover/z3
synced 2025-11-04 13:29:11 +00:00
add tests showing shortcomings of factorization
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
38a346fa1b
commit
c845c9810a
1 changed files with 183 additions and 1 deletions
|
|
@ -207,7 +207,189 @@ void test_factorization_gcd() {
|
|||
VERIFY(nm.eq(gcd_result[1], mpz(1)));
|
||||
}
|
||||
|
||||
void test_factorization_large_multivariate_missing_factors() {
|
||||
std::cout << "test_factorization_large_multivariate_missing_factors\n";
|
||||
|
||||
reslimit rl;
|
||||
numeral_manager nm;
|
||||
manager m(rl, nm);
|
||||
|
||||
polynomial_ref x0(m);
|
||||
polynomial_ref x1(m);
|
||||
polynomial_ref x2(m);
|
||||
x0 = m.mk_polynomial(m.mk_var());
|
||||
x1 = m.mk_polynomial(m.mk_var());
|
||||
x2 = m.mk_polynomial(m.mk_var());
|
||||
|
||||
struct term_t {
|
||||
int coeff;
|
||||
unsigned e0;
|
||||
unsigned e1;
|
||||
unsigned e2;
|
||||
};
|
||||
|
||||
/*
|
||||
- x2^8 - x1 x2^7 - x0 x2^7 + 48 x2^7 + 2 x1^2 x2^6 + x0 x1 x2^6 + 132 x1 x2^6 + 2 x0^2 x2^6 + 132 x0 x2^6
|
||||
- 144 x2^6 + 2 x1^3 x2^5 + 6 x0 x1^2 x2^5 + 180 x1^2 x2^5 + 6 x0^2 x1 x2^5 + 432 x0 x1 x2^5 -
|
||||
864 x1 x2^5 + 2 x0^3 x2^5 + 180 x0^2 x2^5 - 864 x0 x2^5 - x1^4 x2^4 + 2 x0 x1^3 x2^4 +
|
||||
156 x1^3 x2^4 + 3 x0^2 x1^2 x2^4 + 684 x0 x1^2 x2^4 - 1620 x1^2 x2^4 + 2 x0^3 x1 x2^4 + 684 x0^2 x1 x2^4 -
|
||||
4536 x0 x1 x2^4 - x0^4 x2^4 + 156 x0^3 x2^4 - 1620 x0^2 x2^4 - x1^5 x2^3 - 5 x0 x1^4 x2^3 + 60 x1^4 x2^3 -
|
||||
7 x0^2 x1^3 x2^3 + 600 x0 x1^3 x2^3 - 900 x1^3 x2^3 - 7 x0^3 x1^2 x2^3 + 1080 x0^2 x1^2 x2^3 - 7452 x0 x1^2 x2^3 -
|
||||
5 x0^4 x1 x2^3 + 600 x0^3 x1 x2^3 - 7452 x0^2 x1 x2^3 - x0^5 x2^3 + 60 x0^4 x2^3 - 900 x0^3 x2^3 - 3 x0 x1^5 x2^2 -
|
||||
9 x0^2 x1^4 x2^2 + 216 x0 x1^4 x2^2 - 13 x0^3 x1^3 x2^2 + 828 x0^2 x1^3 x2^2 - 3780 x0 x1^3 x2^2 - 9 x0^4 x1^2 x2^2 +
|
||||
828 x0^3 x1^2 x2^2 - 11016 x0^2 x1^2 x2^2 - 3 x0^5 x1 x2^2 + 216 x0^4 x1 x2^2 - 3780 x0^3 x1 x2^2 - 3 x0^2 x1^5 x2 -
|
||||
7 x0^3 x1^4 x2 + 252 x0^2 x1^4 x2 - 7 x0^4 x1^3 x2 + 480 x0^3 x1^3 x2 - 5184 x0^2 x1^3 x2 - 3 x0^5 x1^2 x2 +
|
||||
252 x0^4 x1^2 x2 - 5184 x0^3 x1^2 x2 - x0^3 x1^5 - 2 x0^4 x1^4 + 96 x0^3 x1^4 - x0^5 x1^3 + 96 x0^4 x1^3 - 2304 x0^3 x1^3
|
||||
*/
|
||||
static const term_t terms[] = {
|
||||
{ -1, 0u, 0u, 8u },
|
||||
{ -1, 0u, 1u, 7u },
|
||||
{ -1, 1u, 0u, 7u },
|
||||
{ 48, 0u, 0u, 7u },
|
||||
{ 2, 0u, 2u, 6u },
|
||||
{ 1, 1u, 1u, 6u },
|
||||
{ 132, 0u, 1u, 6u },
|
||||
{ 2, 2u, 0u, 6u },
|
||||
{ 132, 1u, 0u, 6u },
|
||||
{ -144, 0u, 0u, 6u },
|
||||
{ 2, 0u, 3u, 5u },
|
||||
{ 6, 1u, 2u, 5u },
|
||||
{ 180, 0u, 2u, 5u },
|
||||
{ 6, 2u, 1u, 5u },
|
||||
{ 432, 1u, 1u, 5u },
|
||||
{ -864, 0u, 1u, 5u },
|
||||
{ 2, 3u, 0u, 5u },
|
||||
{ 180, 2u, 0u, 5u },
|
||||
{ -864, 1u, 0u, 5u },
|
||||
{ -1, 0u, 4u, 4u },
|
||||
{ 2, 1u, 3u, 4u },
|
||||
{ 156, 0u, 3u, 4u },
|
||||
{ 3, 2u, 2u, 4u },
|
||||
{ 684, 1u, 2u, 4u },
|
||||
{ -1620, 0u, 2u, 4u },
|
||||
{ 2, 3u, 1u, 4u },
|
||||
{ 684, 2u, 1u, 4u },
|
||||
{ -4536, 1u, 1u, 4u },
|
||||
{ -1, 4u, 0u, 4u },
|
||||
{ 156, 3u, 0u, 4u },
|
||||
{ -1620, 2u, 0u, 4u },
|
||||
{ -1, 0u, 5u, 3u },
|
||||
{ -5, 1u, 4u, 3u },
|
||||
{ 60, 0u, 4u, 3u },
|
||||
{ -7, 2u, 3u, 3u },
|
||||
{ 600, 1u, 3u, 3u },
|
||||
{ -900, 0u, 3u, 3u },
|
||||
{ -7, 3u, 2u, 3u },
|
||||
{ 1080, 2u, 2u, 3u },
|
||||
{ -7452, 1u, 2u, 3u },
|
||||
{ -5, 4u, 1u, 3u },
|
||||
{ 600, 3u, 1u, 3u },
|
||||
{ -7452, 2u, 1u, 3u },
|
||||
{ -1, 5u, 0u, 3u },
|
||||
{ 60, 4u, 0u, 3u },
|
||||
{ -900, 3u, 0u, 3u },
|
||||
{ -3, 1u, 5u, 2u },
|
||||
{ -9, 2u, 4u, 2u },
|
||||
{ 216, 1u, 4u, 2u },
|
||||
{ -13, 3u, 3u, 2u },
|
||||
{ 828, 2u, 3u, 2u },
|
||||
{ -3780, 1u, 3u, 2u },
|
||||
{ -9, 4u, 2u, 2u },
|
||||
{ 828, 3u, 2u, 2u },
|
||||
{ -11016, 2u, 2u, 2u },
|
||||
{ -3, 5u, 1u, 2u },
|
||||
{ 216, 4u, 1u, 2u },
|
||||
{ -3780, 3u, 1u, 2u },
|
||||
{ -3, 2u, 5u, 1u },
|
||||
{ -7, 3u, 4u, 1u },
|
||||
{ 252, 2u, 4u, 1u },
|
||||
{ -7, 4u, 3u, 1u },
|
||||
{ 480, 3u, 3u, 1u },
|
||||
{ -5184, 2u, 3u, 1u },
|
||||
{ -3, 5u, 2u, 1u },
|
||||
{ 252, 4u, 2u, 1u },
|
||||
{ -5184, 3u, 2u, 1u },
|
||||
{ -1, 3u, 5u, 0u },
|
||||
{ -2, 4u, 4u, 0u },
|
||||
{ 96, 3u, 4u, 0u },
|
||||
{ -1, 5u, 3u, 0u },
|
||||
{ 96, 4u, 3u, 0u },
|
||||
{ -2304, 3u, 3u, 0u },
|
||||
};
|
||||
|
||||
polynomial_ref p(m);
|
||||
p = m.mk_zero();
|
||||
|
||||
for (const auto & term : terms) {
|
||||
polynomial_ref t(m);
|
||||
t = m.mk_const(rational(term.coeff));
|
||||
if (term.e0 != 0) {
|
||||
t = t * (x0 ^ term.e0);
|
||||
}
|
||||
if (term.e1 != 0) {
|
||||
t = t * (x1 ^ term.e1);
|
||||
}
|
||||
if (term.e2 != 0) {
|
||||
t = t * (x2 ^ term.e2);
|
||||
}
|
||||
p = p + t;
|
||||
}
|
||||
|
||||
factors fs(m);
|
||||
factor(p, fs);
|
||||
VERIFY(fs.distinct_factors() == 2); // indeed there are 3 factors, that is demonstrated by the loop
|
||||
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
||||
polynomial_ref f(m);
|
||||
f = fs[i];
|
||||
if (degree(f, x1)<= 1) continue;
|
||||
factors fs0(m);
|
||||
factor(f, fs0);
|
||||
VERIFY(fs0.distinct_factors() >= 2);
|
||||
}
|
||||
|
||||
polynomial_ref reconstructed(m);
|
||||
fs.multiply(reconstructed);
|
||||
VERIFY(eq(reconstructed, p));
|
||||
}
|
||||
|
||||
void test_factorization_multivariate_missing_factors() {
|
||||
std::cout << "test_factorization_multivariate_missing_factors\n";
|
||||
|
||||
reslimit rl;
|
||||
numeral_manager nm;
|
||||
manager m(rl, nm);
|
||||
|
||||
polynomial_ref x0(m);
|
||||
polynomial_ref x1(m);
|
||||
x0 = m.mk_polynomial(m.mk_var());
|
||||
x1 = m.mk_polynomial(m.mk_var());
|
||||
|
||||
polynomial_ref p(m);
|
||||
p = (x0 + x1) * (x0 + (2 * x1)) * (x0 + (3 * x1));
|
||||
|
||||
factors fs(m);
|
||||
factor(p, fs);
|
||||
|
||||
// Multivariate factorization stops after returning the whole polynomial.
|
||||
VERIFY(fs.distinct_factors() == 1);
|
||||
VERIFY(m.degree(fs[0], 0) == 3);
|
||||
|
||||
factors fs_refined(m);
|
||||
polynomial_ref residual = fs[0];
|
||||
factor(residual, fs_refined);
|
||||
|
||||
// A second attempt still fails to expose the linear factors.
|
||||
VERIFY(fs_refined.distinct_factors() == 1); // actually we need 3 factors
|
||||
VERIFY(m.degree(fs_refined[0], 0) == 3); // actually we need degree 1
|
||||
|
||||
polynomial_ref reconstructed(m);
|
||||
fs.multiply(reconstructed);
|
||||
VERIFY(eq(reconstructed, p));
|
||||
}
|
||||
|
||||
void test_polynomial_factorization() {
|
||||
test_factorization_large_multivariate_missing_factors();
|
||||
test_factorization_multivariate_missing_factors();
|
||||
test_factorization_basic();
|
||||
test_factorization_irreducible();
|
||||
test_factorization_cubic();
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue