3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 11:42:28 +00:00

disable tracking literals, they are not used

added trivial rewrites for set.size
This commit is contained in:
Nikolaj Bjorner 2025-10-26 16:21:33 +01:00
parent a66cb88c78
commit c832802183
3 changed files with 42 additions and 16 deletions

View file

@ -16,6 +16,7 @@ Author:
--*/ --*/
#include "ast/rewriter/finite_set_rewriter.h" #include "ast/rewriter/finite_set_rewriter.h"
#include "ast/arith_decl_plugin.h"
br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_family_id() == get_fid()); SASSERT(f->get_family_id() == get_fid());
@ -37,6 +38,9 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp
case OP_FINITE_SET_IN: case OP_FINITE_SET_IN:
SASSERT(num_args == 2); SASSERT(num_args == 2);
return mk_in(args[0], args[1], result); return mk_in(args[0], args[1], result);
case OP_FINITE_SET_SIZE:
// Size is already in normal form, no simplifications
return mk_size(args[0], result);
default: default:
return BR_FAILED; return BR_FAILED;
} }
@ -147,26 +151,26 @@ br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref
br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) { br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) {
// set.subset(x, x) -> true // set.subset(x, x) -> true
if (arg1 == arg2) { if (arg1 == arg2) {
result = m().mk_true(); result = m.mk_true();
return BR_DONE; return BR_DONE;
} }
// set.subset(empty, x) -> true // set.subset(empty, x) -> true
if (m_util.is_empty(arg1)) { if (m_util.is_empty(arg1)) {
result = m().mk_true(); result = m.mk_true();
return BR_DONE; return BR_DONE;
} }
// set.subset(x, empty) -> x = empty // set.subset(x, empty) -> x = empty
if (m_util.is_empty(arg2)) { if (m_util.is_empty(arg2)) {
result = m().mk_eq(arg1, arg2); result = m.mk_eq(arg1, arg2);
return BR_REWRITE1; return BR_REWRITE1;
} }
// General case: set.subset(x, y) -> set.intersect(x, y) = x // General case: set.subset(x, y) -> set.intersect(x, y) = x
expr_ref intersect(m()); expr_ref intersect(m);
intersect = m_util.mk_intersect(arg1, arg2); intersect = m_util.mk_intersect(arg1, arg2);
result = m().mk_eq(intersect, arg1); result = m.mk_eq(intersect, arg1);
return BR_REWRITE3; return BR_REWRITE3;
} }
@ -175,10 +179,34 @@ br_status finite_set_rewriter::mk_singleton(expr * arg, expr_ref & result) {
return BR_FAILED; return BR_FAILED;
} }
br_status finite_set_rewriter::mk_size(expr * arg, expr_ref & result) {
arith_util a(m);
if (m_util.is_empty(arg)) {
// size(empty) -> 0
result = a.mk_int(0);
return BR_DONE;
}
if (m_util.is_singleton(arg)) {
// size(singleton(x)) -> 1
result = a.mk_int(1);
return BR_DONE;
}
expr *lower, *upper;
if (m_util.is_range(arg, lower, upper)) {
// size(range(a, b)) -> b - a + 1
expr_ref size_expr(m);
size_expr = a.mk_add(a.mk_sub(upper, lower), a.mk_int(1));
result = m.mk_ite(a.mk_gt(lower, upper), a.mk_int(0), size_expr);
return BR_REWRITE3;
}
// Size is already in normal form, no simplifications
return BR_FAILED;
}
br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) { br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) {
// set.in(x, empty) -> false // set.in(x, empty) -> false
if (m_util.is_empty(set)) { if (m_util.is_empty(set)) {
result = m().mk_false(); result = m.mk_false();
return BR_DONE; return BR_DONE;
} }
@ -187,11 +215,11 @@ br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result)
if (m_util.is_singleton(set, singleton_elem)) { if (m_util.is_singleton(set, singleton_elem)) {
// set.in(x, singleton(x)) -> true (when x is the same) // set.in(x, singleton(x)) -> true (when x is the same)
if (elem == singleton_elem) { if (elem == singleton_elem) {
result = m().mk_true(); result = m.mk_true();
return BR_DONE; return BR_DONE;
} }
// set.in(x, singleton(y)) -> x = y (when x != y) // set.in(x, singleton(y)) -> x = y (when x != y)
result = m().mk_eq(elem, singleton_elem); result = m.mk_eq(elem, singleton_elem);
return BR_REWRITE1; return BR_REWRITE1;
} }

View file

@ -34,6 +34,7 @@ where the signature is defined in finite_set_decl_plugin.h.
*/ */
class finite_set_rewriter { class finite_set_rewriter {
friend class finite_set_rewriter_test; friend class finite_set_rewriter_test;
ast_manager &m;
finite_set_util m_util; finite_set_util m_util;
// Rewrite rules for set operations // Rewrite rules for set operations
@ -43,13 +44,13 @@ class finite_set_rewriter {
br_status mk_subset(expr *arg1, expr *arg2, expr_ref &result); br_status mk_subset(expr *arg1, expr *arg2, expr_ref &result);
br_status mk_singleton(expr *arg1, expr_ref &result); br_status mk_singleton(expr *arg1, expr_ref &result);
br_status mk_in(expr *arg1, expr *arg2, expr_ref &result); br_status mk_in(expr *arg1, expr *arg2, expr_ref &result);
br_status mk_size(expr *arg, expr_ref &result);
public: public:
finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()): finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()):
m_util(m) { m(m), m_util(m) {
} }
ast_manager & m() const { return m_util.get_manager(); }
family_id get_fid() const { return m_util.get_family_id(); } family_id get_fid() const { return m_util.get_family_id(); }
finite_set_util& util() { return m_util; } finite_set_util& util() { return m_util; }

View file

@ -391,17 +391,14 @@ namespace smt {
} }
/** /**
* Introduce an assumption literal to manage incremental search for solutions * Placeholder to introduce an assumption literal to manage incremental search for solutions
*/ */
void theory_finite_set_size::add_theory_assumptions(expr_ref_vector &assumptions) { void theory_finite_set_size::add_theory_assumptions(expr_ref_vector &assumptions) {
if (m_set_size_decls.empty())
return;
m_assumption = m.mk_fresh_const(symbol("set.size.solver"), m.mk_bool_sort());
assumptions.push_back(m_assumption);
} }
bool theory_finite_set_size::should_research(expr_ref_vector& unsat_core) { bool theory_finite_set_size::should_research(expr_ref_vector& unsat_core) {
return unsat_core.contains(m_assumption); return false;
} }
std::ostream& theory_finite_set_size::display(std::ostream& out) { std::ostream& theory_finite_set_size::display(std::ostream& out) {