3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 08:35:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-12-13 10:24:42 -08:00
parent 33d433d742
commit c7da31a67d
7 changed files with 74 additions and 46 deletions

View file

@ -243,13 +243,13 @@ namespace polysat {
for (unsigned v : m_vars) {
if (!is_pmarked(v))
continue;
s.inc_activity(v);
auto eq = s.eq(s.var(v), s.get_value(v));
cm().ensure_bvar(eq.get());
if (eq.bvalue(s) == l_undef)
s.assign_eval(s.get_level(v), eq.blit());
lemma.push(~eq);
}
s.decay_activity();
return lemma;
}

View file

@ -284,6 +284,7 @@ namespace polysat {
eval_interval interval;
vector<signed_constraint> side_cond;
signed_constraint src;
rational coeff;
struct less {
bool operator()(fi_record const& a, fi_record const& b) const {

View file

@ -27,11 +27,9 @@ namespace polysat {
* \returns True iff a forbidden interval exists and the output parameters were set.
*/
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, rational & coeff, eval_interval& out_interval, vector<signed_constraint>& out_side_cond) {
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, fi_record& fi) {
if (!c->is_ule())
return false;
coeff = 1;
struct backtrack {
bool released = false;
@ -44,24 +42,30 @@ namespace polysat {
}
};
backtrack _backtrack(out_side_cond);
backtrack _backtrack(fi.side_cond);
auto [ok1, a1, e1, b1] = linear_decompose(v, c->to_ule().lhs(), out_side_cond);
auto [ok2, a2, e2, b2] = linear_decompose(v, c->to_ule().rhs(), out_side_cond);
fi.coeff = 1;
fi.src = c;
auto [ok1, a1, e1, b1] = linear_decompose(v, c->to_ule().lhs(), fi.side_cond);
auto [ok2, a2, e2, b2] = linear_decompose(v, c->to_ule().rhs(), fi.side_cond);
if (!ok1 || !ok2 || (a1.is_zero() && a2.is_zero()))
return false;
SASSERT(b1.is_val());
SASSERT(b2.is_val());
// TBD: use fi.coeff = -1 to tell caller to treat it as a diseq_lin.
// record a1, a2, b1, b2 for fast access and add side conditions on b1, b2?
if (a1 != a2 && !a1.is_zero() && !a2.is_zero())
return false;
SASSERT(b1.is_val());
SASSERT(b2.is_val());
_backtrack.released = true;
if (match_linear1(c, a1, b1, e1, a2, b2, e2, coeff, out_interval, out_side_cond))
if (match_linear1(c, a1, b1, e1, a2, b2, e2, fi.coeff, fi.interval, fi.side_cond))
return true;
if (match_linear2(c, a1, b1, e1, a2, b2, e2, coeff, out_interval, out_side_cond))
if (match_linear2(c, a1, b1, e1, a2, b2, e2, fi.coeff, fi.interval, fi.side_cond))
return true;
if (match_linear3(c, a1, b1, e1, a2, b2, e2, coeff, out_interval, out_side_cond))
if (match_linear3(c, a1, b1, e1, a2, b2, e2, fi.coeff, fi.interval, fi.side_cond))
return true;
_backtrack.released = false;

View file

@ -47,6 +47,6 @@ namespace polysat {
public:
forbidden_intervals(solver& s) :s(s) {}
bool get_interval(signed_constraint const& c, pvar v, rational & coeff, eval_interval& out_interval, vector<signed_constraint>& side_cond);
bool get_interval(signed_constraint const& c, pvar v, fi_record& fi);
};
}

View file

@ -444,7 +444,7 @@ namespace polysat {
LOG("end-try-eliminate v");
}
search_iterator search_it(m_search);
while (search_it.next()) {
LOG("search state: " << m_search);
@ -458,6 +458,7 @@ namespace polysat {
m_search.pop_asssignment();
continue;
}
inc_activity(v);
justification& j = m_justification[v];
if (j.level() > base_level() && !m_conflict.resolve_value(v) && j.is_decision()) {
revert_decision(v);

View file

@ -34,31 +34,39 @@ namespace polysat {
dealloc(e);
}
viable::entry* viable::alloc_entry() {
rational coeff(1);
viable::entry* viable::alloc_entry() {
if (m_alloc.empty())
return alloc(entry, coeff);
return alloc(entry);
auto* e = m_alloc.back();
e->side_cond.reset();
e->coeff = coeff;
e->coeff = 1;
m_alloc.pop_back();
return e;
}
void viable::pop_viable() {
auto& [v, is_unit, e] = m_trail.back();
auto& vec = is_unit ? m_units[v] : m_non_units[v];
e->remove_from(vec, e);
auto& [v, k, e] = m_trail.back();
switch (k) {
case entry_kind::unit_e:
e->remove_from(m_units[v], e);
break;
case entry_kind::equal_e:
e->remove_from(m_equal_lin[v], e);
break;
default:
e->remove_from(m_diseq_lin[v], e);
break;
}
m_alloc.push_back(e);
m_trail.pop_back();
}
void viable::push_viable() {
auto& [v, is_unit, e] = m_trail.back();
auto& [v, k, e] = m_trail.back();
SASSERT(e->prev() != e || !m_units[v]);
SASSERT(e->prev() != e || e->next() == e);
SASSERT(is_unit);
(void)is_unit;
SASSERT(k == entry_kind::unit_e);
(void)k;
if (e->prev() != e) {
e->prev()->insert_after(e);
if (e->interval.lo_val() < e->next()->interval.lo_val())
@ -72,25 +80,35 @@ namespace polysat {
bool viable::intersect(pvar v, signed_constraint const& c) {
auto& fi = s.m_forbidden_intervals;
entry* ne = alloc_entry();
if (!fi.get_interval(c, v, ne->coeff, ne->interval, ne->side_cond) || ne->interval.is_currently_empty()) {
if (!fi.get_interval(c, v, *ne)) {
m_alloc.push_back(ne);
return false;
}
else if (ne->interval.is_currently_empty()) {
m_alloc.push_back(ne);
return false;
}
else if (ne->coeff == 1) {
ne->src = c;
return intersect(v, ne);
}
else {
ne->src = c;
m_trail.push_back({ v, false, ne });
s.m_trail.push_back(trail_instr_t::viable_add_i);
ne->init(ne);
if (!m_non_units[v])
m_non_units[v] = ne;
else
ne->insert_after(m_non_units[v]);
else if (ne->coeff == -1) {
insert(ne, v, m_diseq_lin, entry_kind::diseq_e);
return true;
}
else {
insert(ne, v, m_equal_lin, entry_kind::equal_e);
return true;
}
}
void viable::insert(entry* e, pvar v, ptr_vector<entry>& entries, entry_kind k) {
m_trail.push_back({ v, k, e });
s.m_trail.push_back(trail_instr_t::viable_add_i);
e->init(e);
if (!entries[v])
entries[v] = e;
else
e->insert_after(entries[v]);
}
bool viable::intersect(pvar v, entry* ne) {
@ -106,14 +124,14 @@ namespace polysat {
}
auto create_entry = [&]() {
m_trail.push_back({ v, true, ne });
m_trail.push_back({ v, entry_kind::unit_e, ne });
s.m_trail.push_back(trail_instr_t::viable_add_i);
ne->init(ne);
return ne;
};
auto remove_entry = [&](entry* e) {
m_trail.push_back({ v, true, e });
m_trail.push_back({ v, entry_kind::unit_e, e });
s.m_trail.push_back(trail_instr_t::viable_rem_i);
e->remove_from(m_units[v], e);
};
@ -170,7 +188,7 @@ namespace polysat {
* and division with coeff are valid. Is there a more relaxed scheme?
*/
bool viable::refine_viable(pvar v, rational const& val) {
auto* e = m_non_units[v];
auto* e = m_equal_lin[v];
if (!e)
return true;
entry* first = e;
@ -222,6 +240,7 @@ namespace polysat {
entry* ne = alloc_entry();
ne->src = e->src;
ne->side_cond = e->side_cond;
// TODO: have forbidden_interval.cpp add these side conditions for non-unit equalities and diseq_lin?
ne->side_cond.push_back(s.eq(e->interval.hi(), e->interval.hi_val()));
ne->side_cond.push_back(s.eq(e->interval.lo(), e->interval.lo_val()));
ne->coeff = 1;
@ -474,7 +493,7 @@ namespace polysat {
std::ostream& viable::display(std::ostream& out, pvar v) const {
display(out, v, m_units[v]);
display(out, v, m_non_units[v]);
display(out, v, m_equal_lin[v]);
return out;
}

View file

@ -32,14 +32,15 @@ namespace polysat {
solver& s;
struct entry : public dll_base<entry>, public fi_record {
rational coeff;
entry(rational const& m) : fi_record({ eval_interval::full(), {}, {} }), coeff(m) {}
entry() : fi_record({ eval_interval::full(), {}, {}, rational::one()}) {}
};
enum class entry_kind { unit_e, equal_e, diseq_e };
ptr_vector<entry> m_alloc;
ptr_vector<entry> m_units; // set of viable values based on unit multipliers
ptr_vector<entry> m_non_units; // entries that have non-unit multipliers
svector<std::tuple<pvar, bool, entry*>> m_trail; // undo stack
ptr_vector<entry> m_equal_lin; // entries that have non-unit multipliers, but are equal
ptr_vector<entry> m_diseq_lin; // entries that have distinct non-zero multipliers
svector<std::tuple<pvar, entry_kind, entry*>> m_trail; // undo stack
bool well_formed(entry* e);
@ -51,15 +52,17 @@ namespace polysat {
std::ostream& display(std::ostream& out, pvar v, entry* e) const;
void insert(entry* e, pvar v, ptr_vector<entry>& entries, entry_kind k);
public:
viable(solver& s);
~viable();
// declare and remove var
void push(unsigned) { m_units.push_back(nullptr); m_non_units.push_back(nullptr); }
void push(unsigned) { m_units.push_back(nullptr); m_equal_lin.push_back(nullptr); }
void pop() { m_units.pop_back(); m_non_units.pop_back(); }
void pop() { m_units.pop_back(); m_equal_lin.pop_back(); }
void pop_viable();