3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

pass algebraic manager to arith-plugin mk-numeral because rational check may overwrite the argument using the current manager deals with crash as part of #4532

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-07-26 17:52:28 -07:00
parent ac39ddb43f
commit c7704ef9af
11 changed files with 43 additions and 45 deletions

View file

@ -39,11 +39,11 @@ struct arith_decl_plugin::algebraic_numbers_wrapper {
unsigned mk_id(algebraic_numbers::anum const & val) {
SASSERT(!m_amanager.is_rational(val));
unsigned new_id = m_id_gen.mk();
m_nums.reserve(new_id+1);
m_amanager.set(m_nums[new_id], val);
TRACE("algebraic2expr", tout << "mk_id -> " << new_id << "\n"; m_amanager.display(tout, val); tout << "\n";);
return new_id;
unsigned idx = m_id_gen.mk();
m_nums.reserve(idx+1);
m_amanager.set(m_nums[idx], val);
TRACE("algebraic2expr", tout << "mk_id -> " << idx << "\n"; m_amanager.display(tout, val); tout << "\n";);
return idx;
}
void recycle_id(unsigned idx) {
@ -66,8 +66,8 @@ struct arith_decl_plugin::algebraic_numbers_wrapper {
};
arith_decl_plugin::algebraic_numbers_wrapper & arith_decl_plugin::aw() const {
if (m_aw == nullptr)
const_cast<arith_decl_plugin*>(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
if (m_aw == nullptr)
const_cast<arith_decl_plugin*>(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
return *m_aw;
}
@ -75,10 +75,10 @@ algebraic_numbers::manager & arith_decl_plugin::am() const {
return aw().m_amanager;
}
app * arith_decl_plugin::mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
if (am().is_rational(val)) {
app * arith_decl_plugin::mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int) {
if (m.is_rational(val)) {
rational rval;
am().to_rational(val, rval);
m.to_rational(val, rval);
return mk_numeral(rval, is_int);
}
else {
@ -103,7 +103,7 @@ app * arith_decl_plugin::mk_numeral(algebraic_numbers::anum const & val, bool is
app * arith_decl_plugin::mk_numeral(sexpr const * p, unsigned i) {
scoped_anum r(am());
am().mk_root(p, i, r);
return mk_numeral(r, false);
return mk_numeral(am(), r, false);
}
void arith_decl_plugin::del(parameter const & p) {

View file

@ -195,7 +195,7 @@ public:
app * mk_numeral(rational const & n, bool is_int);
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int);
app * mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int);
// Create a (real) numeral that is the i-th root of the polynomial encoded using the given sexpr.
app * mk_numeral(sexpr const * p, unsigned i);
@ -401,8 +401,8 @@ public:
SASSERT(is_int(s) || is_real(s));
return mk_numeral(val, is_int(s));
}
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
return plugin().mk_numeral(val, is_int);
app * mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int) {
return plugin().mk_numeral(m, val, is_int);
}
app * mk_numeral(sexpr const * p, unsigned i) {
return plugin().mk_numeral(p, i);

View file

@ -755,7 +755,7 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
for (unsigned i = 0; i < num_args; i ++) {
unsigned d = am.degree(r);
if (d > 1 && d > m_max_degree) {
new_args.push_back(m_util.mk_numeral(r, false));
new_args.push_back(m_util.mk_numeral(am, r, false));
am.set(r, 0);
}
@ -777,11 +777,11 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
}
if (new_args.empty()) {
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}
new_args.push_back(m_util.mk_numeral(r, false));
new_args.push_back(m_util.mk_numeral(am, r, false));
br_status st = poly_rewriter<arith_rewriter_core>::mk_add_core(new_args.size(), new_args.c_ptr(), result);
if (st == BR_FAILED) {
result = m().mk_app(get_fid(), OP_ADD, new_args.size(), new_args.c_ptr());
@ -805,7 +805,7 @@ br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, ex
for (unsigned i = 0; i < num_args; i ++) {
unsigned d = am.degree(r);
if (d > 1 && d > m_max_degree) {
new_args.push_back(m_util.mk_numeral(r, false));
new_args.push_back(m_util.mk_numeral(am, r, false));
am.set(r, 1);
}
@ -826,10 +826,10 @@ br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, ex
}
if (new_args.empty()) {
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}
new_args.push_back(m_util.mk_numeral(r, false));
new_args.push_back(m_util.mk_numeral(am, r, false));
br_status st = poly_rewriter<arith_rewriter_core>::mk_mul_core(new_args.size(), new_args.c_ptr(), result);
if (st == BR_FAILED) {
@ -857,7 +857,7 @@ br_status arith_rewriter::mk_div_irrat_rat(expr * arg1, expr * arg2, expr_ref &
am.set(val2, rval2.to_mpq());
scoped_anum r(am);
am.div(val1, val2, r);
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}
@ -873,7 +873,7 @@ br_status arith_rewriter::mk_div_rat_irrat(expr * arg1, expr * arg2, expr_ref &
anum const & val2 = m_util.to_irrational_algebraic_numeral(arg2);
scoped_anum r(am);
am.div(val1, val2, r);
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}
@ -890,7 +890,7 @@ br_status arith_rewriter::mk_div_irrat_irrat(expr * arg1, expr * arg2, expr_ref
return BR_FAILED;
scoped_anum r(am);
am.div(val1, val2, r);
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r.get(), false);
return BR_DONE;
}
@ -1351,7 +1351,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
am.root(r, u_den_y, r);
if (is_neg_y)
am.inv(r);
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}
return BR_FAILED;
@ -1370,7 +1370,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
am.root(r, u_den_y, r);
if (is_neg_y)
am.inv(r);
result = m_util.mk_numeral(r, false);
result = m_util.mk_numeral(am, r, false);
return BR_DONE;
}