mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
pass algebraic manager to arith-plugin mk-numeral because rational check may overwrite the argument using the current manager deals with crash as part of #4532
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
ac39ddb43f
commit
c7704ef9af
11 changed files with 43 additions and 45 deletions
|
@ -39,11 +39,11 @@ struct arith_decl_plugin::algebraic_numbers_wrapper {
|
|||
|
||||
unsigned mk_id(algebraic_numbers::anum const & val) {
|
||||
SASSERT(!m_amanager.is_rational(val));
|
||||
unsigned new_id = m_id_gen.mk();
|
||||
m_nums.reserve(new_id+1);
|
||||
m_amanager.set(m_nums[new_id], val);
|
||||
TRACE("algebraic2expr", tout << "mk_id -> " << new_id << "\n"; m_amanager.display(tout, val); tout << "\n";);
|
||||
return new_id;
|
||||
unsigned idx = m_id_gen.mk();
|
||||
m_nums.reserve(idx+1);
|
||||
m_amanager.set(m_nums[idx], val);
|
||||
TRACE("algebraic2expr", tout << "mk_id -> " << idx << "\n"; m_amanager.display(tout, val); tout << "\n";);
|
||||
return idx;
|
||||
}
|
||||
|
||||
void recycle_id(unsigned idx) {
|
||||
|
@ -66,8 +66,8 @@ struct arith_decl_plugin::algebraic_numbers_wrapper {
|
|||
};
|
||||
|
||||
arith_decl_plugin::algebraic_numbers_wrapper & arith_decl_plugin::aw() const {
|
||||
if (m_aw == nullptr)
|
||||
const_cast<arith_decl_plugin*>(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
|
||||
if (m_aw == nullptr)
|
||||
const_cast<arith_decl_plugin*>(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
|
||||
return *m_aw;
|
||||
}
|
||||
|
||||
|
@ -75,10 +75,10 @@ algebraic_numbers::manager & arith_decl_plugin::am() const {
|
|||
return aw().m_amanager;
|
||||
}
|
||||
|
||||
app * arith_decl_plugin::mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
|
||||
if (am().is_rational(val)) {
|
||||
app * arith_decl_plugin::mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int) {
|
||||
if (m.is_rational(val)) {
|
||||
rational rval;
|
||||
am().to_rational(val, rval);
|
||||
m.to_rational(val, rval);
|
||||
return mk_numeral(rval, is_int);
|
||||
}
|
||||
else {
|
||||
|
@ -103,7 +103,7 @@ app * arith_decl_plugin::mk_numeral(algebraic_numbers::anum const & val, bool is
|
|||
app * arith_decl_plugin::mk_numeral(sexpr const * p, unsigned i) {
|
||||
scoped_anum r(am());
|
||||
am().mk_root(p, i, r);
|
||||
return mk_numeral(r, false);
|
||||
return mk_numeral(am(), r, false);
|
||||
}
|
||||
|
||||
void arith_decl_plugin::del(parameter const & p) {
|
||||
|
|
|
@ -195,7 +195,7 @@ public:
|
|||
|
||||
app * mk_numeral(rational const & n, bool is_int);
|
||||
|
||||
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int);
|
||||
app * mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int);
|
||||
|
||||
// Create a (real) numeral that is the i-th root of the polynomial encoded using the given sexpr.
|
||||
app * mk_numeral(sexpr const * p, unsigned i);
|
||||
|
@ -401,8 +401,8 @@ public:
|
|||
SASSERT(is_int(s) || is_real(s));
|
||||
return mk_numeral(val, is_int(s));
|
||||
}
|
||||
app * mk_numeral(algebraic_numbers::anum const & val, bool is_int) {
|
||||
return plugin().mk_numeral(val, is_int);
|
||||
app * mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int) {
|
||||
return plugin().mk_numeral(m, val, is_int);
|
||||
}
|
||||
app * mk_numeral(sexpr const * p, unsigned i) {
|
||||
return plugin().mk_numeral(p, i);
|
||||
|
|
|
@ -755,7 +755,7 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
|
|||
for (unsigned i = 0; i < num_args; i ++) {
|
||||
unsigned d = am.degree(r);
|
||||
if (d > 1 && d > m_max_degree) {
|
||||
new_args.push_back(m_util.mk_numeral(r, false));
|
||||
new_args.push_back(m_util.mk_numeral(am, r, false));
|
||||
am.set(r, 0);
|
||||
}
|
||||
|
||||
|
@ -777,11 +777,11 @@ br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, ex
|
|||
}
|
||||
|
||||
if (new_args.empty()) {
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
new_args.push_back(m_util.mk_numeral(r, false));
|
||||
new_args.push_back(m_util.mk_numeral(am, r, false));
|
||||
br_status st = poly_rewriter<arith_rewriter_core>::mk_add_core(new_args.size(), new_args.c_ptr(), result);
|
||||
if (st == BR_FAILED) {
|
||||
result = m().mk_app(get_fid(), OP_ADD, new_args.size(), new_args.c_ptr());
|
||||
|
@ -805,7 +805,7 @@ br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, ex
|
|||
for (unsigned i = 0; i < num_args; i ++) {
|
||||
unsigned d = am.degree(r);
|
||||
if (d > 1 && d > m_max_degree) {
|
||||
new_args.push_back(m_util.mk_numeral(r, false));
|
||||
new_args.push_back(m_util.mk_numeral(am, r, false));
|
||||
am.set(r, 1);
|
||||
}
|
||||
|
||||
|
@ -826,10 +826,10 @@ br_status arith_rewriter::mk_mul_core(unsigned num_args, expr * const * args, ex
|
|||
}
|
||||
|
||||
if (new_args.empty()) {
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
new_args.push_back(m_util.mk_numeral(r, false));
|
||||
new_args.push_back(m_util.mk_numeral(am, r, false));
|
||||
|
||||
br_status st = poly_rewriter<arith_rewriter_core>::mk_mul_core(new_args.size(), new_args.c_ptr(), result);
|
||||
if (st == BR_FAILED) {
|
||||
|
@ -857,7 +857,7 @@ br_status arith_rewriter::mk_div_irrat_rat(expr * arg1, expr * arg2, expr_ref &
|
|||
am.set(val2, rval2.to_mpq());
|
||||
scoped_anum r(am);
|
||||
am.div(val1, val2, r);
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
@ -873,7 +873,7 @@ br_status arith_rewriter::mk_div_rat_irrat(expr * arg1, expr * arg2, expr_ref &
|
|||
anum const & val2 = m_util.to_irrational_algebraic_numeral(arg2);
|
||||
scoped_anum r(am);
|
||||
am.div(val1, val2, r);
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
@ -890,7 +890,7 @@ br_status arith_rewriter::mk_div_irrat_irrat(expr * arg1, expr * arg2, expr_ref
|
|||
return BR_FAILED;
|
||||
scoped_anum r(am);
|
||||
am.div(val1, val2, r);
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r.get(), false);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
@ -1351,7 +1351,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
|
|||
am.root(r, u_den_y, r);
|
||||
if (is_neg_y)
|
||||
am.inv(r);
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
return BR_FAILED;
|
||||
|
@ -1370,7 +1370,7 @@ br_status arith_rewriter::mk_power_core(expr * arg1, expr * arg2, expr_ref & res
|
|||
am.root(r, u_den_y, r);
|
||||
if (is_neg_y)
|
||||
am.inv(r);
|
||||
result = m_util.mk_numeral(r, false);
|
||||
result = m_util.mk_numeral(am, r, false);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue