mirror of
https://github.com/Z3Prover/z3
synced 2025-08-20 02:00:22 +00:00
add option to control epsilon #7791
#7791 reports on using model values during lex optimization that break soft constraints. This is an artifact of using optimization where optimal values can be arbitrarily close to a rational. In a way it is by design, but we give the user now an option to control the starting point for epsilon when converting infinitesimals into rationals.
This commit is contained in:
parent
d8bf0e047f
commit
c75b8ec752
7 changed files with 14 additions and 4 deletions
|
@ -1523,7 +1523,7 @@ namespace lp {
|
|||
if (!m_imp->m_columns_with_changed_bounds.empty())
|
||||
return false;
|
||||
|
||||
m_imp->m_delta = get_core_solver().find_delta_for_strict_bounds(mpq(1));
|
||||
m_imp->m_delta = get_core_solver().find_delta_for_strict_bounds(m_imp->m_settings.m_epsilon);
|
||||
unsigned j;
|
||||
unsigned n = get_core_solver().r_x().size();
|
||||
do {
|
||||
|
@ -1545,7 +1545,7 @@ namespace lp {
|
|||
}
|
||||
|
||||
void lar_solver::get_model_do_not_care_about_diff_vars(std::unordered_map<lpvar, mpq>& variable_values) const {
|
||||
mpq delta = get_core_solver().find_delta_for_strict_bounds(mpq(1));
|
||||
mpq delta = get_core_solver().find_delta_for_strict_bounds(m_imp->m_settings.m_epsilon);
|
||||
for (unsigned i = 0; i < get_core_solver().r_x().size(); i++) {
|
||||
const impq& rp = get_core_solver().r_x(i);
|
||||
variable_values[i] = rp.x + delta * rp.y;
|
||||
|
@ -1569,7 +1569,7 @@ namespace lp {
|
|||
}
|
||||
if (y_is_zero)
|
||||
return;
|
||||
mpq delta = get_core_solver().find_delta_for_strict_bounds(mpq(1));
|
||||
mpq delta = get_core_solver().find_delta_for_strict_bounds(m_imp->m_settings.m_epsilon);
|
||||
for (unsigned j = 0; j < number_of_vars(); j++) {
|
||||
auto& v = get_core_solver().r_x(j);
|
||||
if (!v.y.is_zero()) {
|
||||
|
|
|
@ -34,6 +34,8 @@ void lp::lp_settings::updt_params(params_ref const& _p) {
|
|||
report_frequency = p.arith_rep_freq();
|
||||
m_simplex_strategy = static_cast<lp::simplex_strategy_enum>(p.arith_simplex_strategy());
|
||||
m_nlsat_delay = p.arith_nl_delay();
|
||||
auto eps = p.arith_epsilon();
|
||||
m_epsilon = rational(std::max(1, (int)(100000*eps)), 100000);
|
||||
m_dio = lp_p.dio();
|
||||
m_dio_enable_gomory_cuts = lp_p.dio_cuts_enable_gomory();
|
||||
m_dio_enable_hnf_cuts = lp_p.dio_cuts_enable_hnf();
|
||||
|
|
|
@ -242,6 +242,7 @@ private:
|
|||
public:
|
||||
unsigned limit_on_rows_for_hnf_cutter = 75;
|
||||
unsigned limit_on_columns_for_hnf_cutter = 150;
|
||||
mpq m_epsilon = mpq(1);
|
||||
private:
|
||||
unsigned m_nlsat_delay = 0;
|
||||
bool m_enable_hnf = true;
|
||||
|
|
|
@ -86,6 +86,7 @@ def_module_params(module_name='smt',
|
|||
('arith.nl.cross_nested', BOOL, True, 'enable cross-nested consistency checking'),
|
||||
('arith.nl.log', BOOL, False, 'Log lemmas sent to nra solver'),
|
||||
('arith.propagate_eqs', BOOL, True, 'propagate (cheap) equalities'),
|
||||
('arith.epsilon', DOUBLE, 1.0, 'initial value of epsilon used for model generation of infinitesimals'),
|
||||
('arith.propagation_mode', UINT, 1, '0 - no propagation, 1 - propagate existing literals, 2 - refine finite bounds'),
|
||||
('arith.branch_cut_ratio', UINT, 2, 'branch/cut ratio for linear integer arithmetic'),
|
||||
('arith.int_eq_branch', BOOL, False, 'branching using derived integer equations'),
|
||||
|
|
|
@ -41,6 +41,8 @@ void theory_arith_params::updt_params(params_ref const & _p) {
|
|||
m_nl_arith_propagate_linear_monomials = p.arith_nl_propagate_linear_monomials();
|
||||
m_nl_arith_optimize_bounds = p.arith_nl_optimize_bounds();
|
||||
m_nl_arith_cross_nested = p.arith_nl_cross_nested();
|
||||
auto eps = p.arith_epsilon();
|
||||
m_arith_epsilon = rational(std::max(1, (int)(100000*eps)), 100000);
|
||||
|
||||
arith_rewriter_params ap(_p);
|
||||
m_arith_eq2ineq = ap.eq2ineq();
|
||||
|
@ -99,4 +101,5 @@ void theory_arith_params::display(std::ostream & out) const {
|
|||
DISPLAY_PARAM(m_nl_arith_cross_nested);
|
||||
DISPLAY_PARAM(m_arith_validate);
|
||||
DISPLAY_PARAM(m_arith_dump_lemmas);
|
||||
DISPLAY_PARAM(m_arith_epsilon);
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ Revision History:
|
|||
|
||||
#include<climits>
|
||||
#include "util/params.h"
|
||||
#include "util/rational.h"
|
||||
|
||||
enum class arith_solver_id {
|
||||
AS_NO_ARITH, // 0
|
||||
|
@ -76,6 +77,7 @@ struct theory_arith_params {
|
|||
unsigned m_arith_branch_cut_ratio = 2;
|
||||
bool m_arith_int_eq_branching = false;
|
||||
bool m_arith_enum_const_mod = false;
|
||||
rational m_arith_epsilon = rational::one();
|
||||
|
||||
bool m_arith_gcd_test = true;
|
||||
bool m_arith_eager_gcd = false;
|
||||
|
|
|
@ -3174,7 +3174,8 @@ namespace smt {
|
|||
|
||||
template<typename Ext>
|
||||
void theory_arith<Ext>::compute_epsilon() {
|
||||
m_epsilon = numeral(1);
|
||||
auto eps = ctx.get_fparams().m_arith_epsilon;
|
||||
m_epsilon = numeral(eps);
|
||||
theory_var num = get_num_vars();
|
||||
for (theory_var v = 0; v < num; v++) {
|
||||
bound * l = lower(v);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue