3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 21:38:44 +00:00

add rc2 option

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2022-04-18 10:31:56 +02:00
parent 4a59ae41b3
commit c727e2d048
5 changed files with 105 additions and 28 deletions

View file

@ -1,7 +1,7 @@
z3_add_component(opt
SOURCES
maxcore.cpp
maxlex.cpp
maxres.cpp
maxsmt.cpp
opt_cmds.cpp
opt_context.cpp

View file

@ -3,14 +3,17 @@ Copyright (c) 2014 Microsoft Corporation
Module Name:
maxsres.cpp
maxcore.cpp
Abstract:
MaxRes (weighted) max-sat algorithms:
Core based (weighted) max-sat algorithms:
- mus: max-sat algorithm by Nina and Bacchus, AAAI 2014.
- mu: max-sat algorithm by Nina and Bacchus, AAAI 2014.
- mus-mss: based on dual refinement of bounds.
- binary
- binary-delay
MaxRes is a core-guided approach to maxsat.
MusMssMaxRes extends the core-guided approach by
@ -64,17 +67,18 @@ Notes:
#include "opt/opt_params.hpp"
#include "opt/opt_lns.h"
#include "opt/maxsmt.h"
#include "opt/maxres.h"
#include "opt/maxcore.h"
using namespace opt;
class maxres : public maxsmt_solver_base {
class maxcore : public maxsmt_solver_base {
public:
enum strategy_t {
s_primal,
s_primal_dual,
s_primal_binary,
s_primal_binary_delay
s_primal_binary_delay,
s_rc2
};
private:
struct stats {
@ -86,10 +90,10 @@ private:
}
};
struct lns_maxres : public lns_context {
maxres& i;
lns_maxres(maxres& i) :i(i) {}
~lns_maxres() override {}
struct lns_maxcore : public lns_context {
maxcore& i;
lns_maxcore(maxcore& i) :i(i) {}
~lns_maxcore() override {}
void update_model(model_ref& mdl) override { i.update_assignment(mdl); }
void relax_cores(vector<expr_ref_vector> const& cores) override { i.relax_cores(cores); }
rational cost(model& mdl) override { return i.cost(mdl); }
@ -108,7 +112,7 @@ private:
strategy_t m_st;
rational m_max_upper;
model_ref m_csmodel;
lns_maxres m_lnsctx;
lns_maxcore m_lnsctx;
lns m_lns;
unsigned m_correction_set_size;
bool m_found_feasible_optimum;
@ -130,7 +134,7 @@ private:
typedef ptr_vector<expr> exprs;
public:
maxres(maxsat_context& c, unsigned index,
maxcore(maxsat_context& c, unsigned index,
vector<soft>& soft,
strategy_t st):
maxsmt_solver_base(c, soft, index),
@ -168,7 +172,7 @@ public:
}
}
~maxres() override {}
~maxcore() override {}
bool is_literal(expr* l) {
return
@ -375,8 +379,8 @@ public:
}
void collect_statistics(statistics& st) const override {
st.update("maxres-cores", m_stats.m_num_cores);
st.update("maxres-correction-sets", m_stats.m_num_cs);
st.update("maxsat-cores", m_stats.m_num_cores);
st.update("maxsat-correction-sets", m_stats.m_num_cs);
}
struct weighted_core {
@ -456,8 +460,8 @@ public:
}
struct compare_asm {
maxres& mr;
compare_asm(maxres& mr):mr(mr) {}
maxcore& mr;
compare_asm(maxcore& mr):mr(mr) {}
bool operator()(expr* a, expr* b) const {
rational w1 = mr.get_weight(a);
rational w2 = mr.get_weight(b);
@ -550,6 +554,9 @@ public:
case strategy_t::s_primal_binary_delay:
bin_delay_max_resolve(core, w);
break;
case strategy_t::s_rc2:
max_resolve_rc2(core, w);
break;
default:
max_resolve(core, w);
break;
@ -747,6 +754,7 @@ public:
}
// binary - with delayed unfolding of new soft clauses.
struct unfold_record {
ptr_vector<expr> ws;
rational weight;
@ -823,6 +831,63 @@ public:
s().assert_expr(m.mk_not(core.back()));
}
// rc2, using cardinality constraints
// create and cache at-most k constraints
struct bound_info {
ptr_vector<expr> es;
unsigned k = 0;
rational weight;
bound_info() {}
bound_info(ptr_vector<expr> const& es, unsigned k, rational const& weight):
es(es), k(k), weight(weight) {}
bound_info(expr_ref_vector const& es, unsigned k, rational const& weight):
es(es.size(), es.data()), k(k), weight(weight) {}
};
obj_map<expr, expr*> m_at_mostk;
obj_map<expr, bound_info> m_bounds;
expr* mk_atmost(expr_ref_vector const& es, unsigned bound, rational const& weight) {
pb_util pb(m);
expr_ref am(pb.mk_at_most_k(es, bound), m);
expr* r = nullptr;
if (m_at_mostk.find(am, r))
return r;
r = mk_fresh_bool("r");
m_trail.push_back(am);
bound_info b(es, bound, weight);
m_at_mostk.insert(am, r);
m_bounds.insert(r, b);
expr_ref fml(m);
fml = m.mk_implies(r, am);
add(fml);
m_defs.push_back(fml);
update_model(r, am);
return r;
}
void max_resolve_rc2(exprs const& core, rational weight) {
expr_ref_vector ncore(m);
for (expr* f : core) {
bound_info b;
if (!m_bounds.find(f, b))
continue;
m_bounds.remove(f);
if (b.k + 1 >= b.es.size())
continue;
expr_ref_vector es(m, b.es.size(), b.es.data());
expr* amk = mk_atmost(es, b.k + 1, b.weight);
new_assumption(amk, b.weight);
ncore.push_back(mk_not(m, f));
m_unfold_upper -= b.weight;
}
m_unfold_upper += rational(core.size() - 1) * weight;
expr* am = mk_atmost(ncore, 1, weight);
new_assumption(am, weight);
}
// cs is a correction set (a complement of a (maximal) satisfying assignment).
void cs_max_resolve(exprs const& cs, rational const& w) {
if (cs.empty()) return;
@ -1009,6 +1074,8 @@ public:
m_correction_set_size = 0;
m_unfold.reset();
m_unfold_upper = 0;
m_at_mostk.reset();
m_bounds.reset();
return l_true;
}
@ -1016,8 +1083,7 @@ public:
if (m_found_feasible_optimum) {
add(m_defs);
add(m_asms);
TRACE("opt", tout << "Committing feasible solution\ndefs:" << m_defs << "\nasms:" << m_asms << "\n";);
TRACE("opt", tout << "Committing feasible solution\ndefs:" << m_defs << "\nasms:" << m_asms << "\n");
}
// else: there is only a single assignment to these soft constraints.
}
@ -1071,21 +1137,27 @@ public:
opt::maxsmt_solver_base* opt::mk_maxres(
maxsat_context& c, unsigned id, vector<soft>& soft) {
return alloc(maxres, c, id, soft, maxres::s_primal);
return alloc(maxcore, c, id, soft, maxcore::s_primal);
}
opt::maxsmt_solver_base* opt::mk_rc2(
maxsat_context& c, unsigned id, vector<soft>& soft) {
return alloc(maxcore, c, id, soft, maxcore::s_rc2);
}
opt::maxsmt_solver_base* opt::mk_maxres_binary(
maxsat_context& c, unsigned id, vector<soft>& soft) {
return alloc(maxres, c, id, soft, maxres::s_primal_binary);
return alloc(maxcore, c, id, soft, maxcore::s_primal_binary);
}
opt::maxsmt_solver_base* opt::mk_maxres_binary_delay(
maxsat_context& c, unsigned id, vector<soft>& soft) {
return alloc(maxres, c, id, soft, maxres::s_primal_binary_delay);
return alloc(maxcore, c, id, soft, maxcore::s_primal_binary_delay);
}
opt::maxsmt_solver_base* opt::mk_primal_dual_maxres(
maxsat_context& c, unsigned id, vector<soft>& soft) {
return alloc(maxres, c, id, soft, maxres::s_primal_dual);
return alloc(maxcore, c, id, soft, maxcore::s_primal_dual);
}

View file

@ -7,7 +7,7 @@ Module Name:
Abstract:
MaxRes (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
Maxcore (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
Author:
@ -21,6 +21,8 @@ Notes:
namespace opt {
maxsmt_solver_base* mk_rc2(maxsat_context& c, unsigned id, vector<soft>& soft);
maxsmt_solver_base* mk_maxres(maxsat_context& c, unsigned id, vector<soft>& soft);
maxsmt_solver_base* mk_maxres_binary(maxsat_context& c, unsigned id, vector<soft>& soft);

View file

@ -23,7 +23,7 @@ Notes:
#include "ast/ast_util.h"
#include "ast/pb_decl_plugin.h"
#include "opt/maxsmt.h"
#include "opt/maxres.h"
#include "opt/maxcore.h"
#include "opt/maxlex.h"
#include "opt/wmax.h"
#include "opt/opt_params.hpp"
@ -194,6 +194,9 @@ namespace opt {
else if (maxsat_engine == symbol("maxres-bin")) {
m_msolver = mk_maxres_binary(m_c, m_index, m_soft);
}
else if (maxsat_engine == symbol("rc2")) {
m_msolver = mk_rc2(m_c, m_index, m_soft);
}
else if (maxsat_engine == symbol("maxres-bin-delay")) {
m_msolver = mk_maxres_binary_delay(m_c, m_index, m_soft);
}

View file

@ -2,7 +2,7 @@ def_module_params('opt',
description='optimization parameters',
export=True,
params=(('optsmt_engine', SYMBOL, 'basic', "select optimization engine: 'basic', 'symba'"),
('maxsat_engine', SYMBOL, 'maxres', "select engine for maxsat: 'core_maxsat', 'wmax', 'maxres', 'pd-maxres', 'maxres-bin', 'maxres-bin-delay'"),
('maxsat_engine', SYMBOL, 'maxres', "select engine for maxsat: 'core_maxsat', 'wmax', 'maxres', 'pd-maxres', 'maxres-bin', 'maxres-bin-delay', 'rc2'"),
('priority', SYMBOL, 'lex', "select how to priortize objectives: 'lex' (lexicographic), 'pareto', 'box'"),
('dump_benchmarks', BOOL, False, 'dump benchmarks for profiling'),
('dump_models', BOOL, False, 'display intermediary models to stdout'),