3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-10 16:12:03 +00:00

fix build issues

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-10-12 06:56:15 +02:00
parent 94cdbe5d87
commit c5d65cdedd
2 changed files with 146 additions and 164 deletions

View file

@ -412,17 +412,7 @@ namespace smt {
switch (m_state) { switch (m_state) {
case state::is_running: // batch manager is still running, but all threads have processed their cubes, which case state::is_running: // batch manager is still running, but all threads have processed their cubes, which
// means all cubes were unsat // means all cubes were unsat
if (!m_search_tree.is_closed()) throw default_exception("inconsistent end state");
throw default_exception("inconsistent end state");
// case when all cubes were unsat, but depend on nonempty asms, so we need to add these asms to final unsat core
// these asms are stored in the cube tree, at the root node
if (p.ctx.m_unsat_core.empty()) {
SASSERT(root && root->is_closed());
for (auto a : m_search_tree.get_core_from_root())
p.ctx.m_unsat_core.push_back(a);
}
return l_false;
case state::is_unsat: case state::is_unsat:
return l_false; return l_false;
case state::is_sat: case state::is_sat:

View file

@ -111,9 +111,6 @@ namespace search_tree {
m_right->display(out, indent + 2); m_right->display(out, indent + 2);
} }
bool has_core() const {
return !m_core.empty();
}
void set_core(vector<literal> const &core) { void set_core(vector<literal> const &core) {
m_core = core; m_core = core;
} }
@ -161,8 +158,8 @@ namespace search_tree {
if (!n || n->get_status() == status::closed) if (!n || n->get_status() == status::closed)
return; return;
n->set_status(status::closed); n->set_status(status::closed);
close(n->left); close(n->left());
close(n->right); close(n->right());
} }
// Invariants: // Invariants:
@ -172,166 +169,161 @@ namespace search_tree {
if (!n || n->get_status() == status::closed) if (!n || n->get_status() == status::closed)
return; return;
node<Config> *p = n->parent(); node<Config> *p = n->parent();
if (p && any_of(C, [n](auto const& l) { if (p && all_of(C, [n](auto const &l) { return l != n->get_literal(); })) {
return l == n->get_literal(); })) { close_with_core(p, C);
close_with_core(p, C);
return;
}
close(n->left());
close(n->right());
n->set_core(C);
n->set_status(status::closed);
if (p)
try_resolve_upwards(p);
}
// Given complementary sibling nodes for literals x and ¬x, sibling resolvent = (core_left core_right) \ {x, ¬x}
vector<literal>
compute_sibling_resolvent(node<Config> *left, node<Config> *right) {
vector<literal> res;
auto &core_l = left->get_core();
auto &core_r = right->get_core();
if (core_l.empty() || core_r.empty() || left->parent() != right->parent())
return res;
auto lit_l = left->get_literal();
auto lit_r = right->get_literal();
for (auto const &lit : core_l)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
for (auto const &lit : core_r)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
return res;
}
void try_resolve_upwards(node<Config> *p) {
auto left = p->left();
auto right = p->right();
if (!left || !right)
return;
// only attempt when both children are closed and each has a core
if (left->get_status() != status::closed || right->get_status() != status::closed)
return;
auto resolvent = compute_sibling_resolvent(left, right);
close_with_core(p, resolvent);
}
public:
tree(literal const &null_literal) : m_null_literal(null_literal) {
reset();
}
void set_seed(unsigned seed) {
m_rand.set_seed(seed);
}
void reset() {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
}
// Split current node if it is active.
// After the call, n is open and has two children.
void split(node<Config> *n, literal const &a, literal const &b) {
n->split(a, b);
}
// conflict is given by a set of literals.
// they are subsets of the literals on the path from root to n AND the external assumption literals
void backtrack(node<Config> *n, vector<literal> const &conflict) {
if (conflict.empty()) {
close_with_core(m_root.get(), conflict);
return;
}
SASSERT(n != m_root.get());
// all literals in conflict are on the path from root to n
// remove assumptions from conflict to ensure this.
DEBUG_CODE(auto on_path =
[&](literal const &a) {
node<Config> *p = n;
while (p) {
if (p->get_literal() == a)
return true;
p = p->parent();
}
return false;
};
SASSERT(all_of(conflict, [&](auto const &a) { return on_path(a); })););
while (n) {
if (any_of(conflict, [&](auto const &a) { return a == n->get_literal(); })) {
// close the subtree under n (preserves core attached to n), and attempt to resolve upwards
close_with_core(n, conflict);
return; return;
} }
close(n->left());
close(n->right());
n->set_core(C);
n->set_status(status::closed);
n = n->parent(); if (!p)
} return;
UNREACHABLE(); auto left = p->left();
} auto right = p->right();
if (!left || !right)
return;
// return an active node in the tree, or nullptr if there is none // only attempt when both children are closed and each has a core
// first check if there is a node to activate under n, if (left->get_status() != status::closed || right->get_status() != status::closed)
// if not, go up the tree and try to activate a sibling subtree return;
node<Config> *activate_node(node<Config> *n) {
if (!n) { auto resolvent = compute_sibling_resolvent(left, right);
if (m_root->get_status() == status::active) close_with_core(p, resolvent);
return m_root.get();
n = m_root.get();
} }
auto res = activate_from_root(n);
if (res) // Given complementary sibling nodes for literals x and ¬x, sibling resolvent = (core_left core_right) \ {x,
// ¬x}
vector<literal> compute_sibling_resolvent(node<Config> *left, node<Config> *right) {
vector<literal> res;
auto &core_l = left->get_core();
auto &core_r = right->get_core();
if (core_l.empty() || core_r.empty() || left->parent() != right->parent())
return res;
auto lit_l = left->get_literal();
auto lit_r = right->get_literal();
for (auto const &lit : core_l)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
for (auto const &lit : core_r)
if (lit != lit_l && !res.contains(lit))
res.push_back(lit);
return res; return res;
}
auto p = n->parent(); public:
while (p) { tree(literal const &null_literal) : m_null_literal(null_literal) {
if (p->left() && p->left()->get_status() == status::closed && p->right() && reset();
p->right()->get_status() == status::closed) { }
p->set_status(status::closed);
void set_seed(unsigned seed) {
m_rand.set_seed(seed);
}
void reset() {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
}
// Split current node if it is active.
// After the call, n is open and has two children.
void split(node<Config> *n, literal const &a, literal const &b) {
n->split(a, b);
}
// conflict is given by a set of literals.
// they are subsets of the literals on the path from root to n AND the external assumption literals
void backtrack(node<Config> *n, vector<literal> const &conflict) {
if (conflict.empty()) {
close_with_core(m_root.get(), conflict);
return;
}
SASSERT(n != m_root.get());
// all literals in conflict are on the path from root to n
// remove assumptions from conflict to ensure this.
DEBUG_CODE(auto on_path =
[&](literal const &a) {
node<Config> *p = n;
while (p) {
if (p->get_literal() == a)
return true;
p = p->parent();
}
return false;
};
SASSERT(all_of(conflict, [&](auto const &a) { return on_path(a); })););
while (n) {
if (any_of(conflict, [&](auto const &a) { return a == n->get_literal(); })) {
// close the subtree under n (preserves core attached to n), and attempt to resolve upwards
close_with_core(n, conflict);
return;
}
n = n->parent();
}
UNREACHABLE();
}
// return an active node in the tree, or nullptr if there is none
// first check if there is a node to activate under n,
// if not, go up the tree and try to activate a sibling subtree
node<Config> *activate_node(node<Config> *n) {
if (!n) {
if (m_root->get_status() == status::active)
return m_root.get();
n = m_root.get();
}
auto res = activate_from_root(n);
if (res)
return res;
auto p = n->parent();
while (p) {
if (p->left() && p->left()->get_status() == status::closed && p->right() &&
p->right()->get_status() == status::closed) {
p->set_status(status::closed);
n = p;
p = n->parent();
continue;
}
if (n == p->left()) {
res = activate_from_root(p->right());
if (res)
return res;
}
else {
VERIFY(n == p->right());
res = activate_from_root(p->left());
if (res)
return res;
}
n = p; n = p;
p = n->parent(); p = n->parent();
continue;
} }
if (n == p->left()) { return nullptr;
res = activate_from_root(p->right());
if (res)
return res;
}
else {
VERIFY(n == p->right());
res = activate_from_root(p->left());
if (res)
return res;
}
n = p;
p = n->parent();
} }
return nullptr;
}
node<Config> *find_active_node() { node<Config> *find_active_node() {
return m_root->find_active_node(); return m_root->find_active_node();
} }
vector<literal> const &get_core_from_root() const { vector<literal> const &get_core_from_root() const {
return m_root->get_core(); return m_root->get_core();
} }
bool is_closed() const { bool is_closed() const {
return m_root->get_status() == status::closed; return m_root->get_status() == status::closed;
} }
std::ostream &display(std::ostream &out) const { std::ostream &display(std::ostream &out) const {
m_root->display(out, 0); m_root->display(out, 0);
return out; return out;
} }
};
}; } // namespace search_tree
}