3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-04 23:13:57 +00:00

moving parameters to theory_pb

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-01-01 20:00:10 -08:00
parent 4027de42f6
commit c5b82796ca
15 changed files with 159 additions and 162 deletions

View file

@ -55,8 +55,6 @@ namespace opt {
unsigned m_lower;
model_ref m_model;
bool m_use_new_bv_solver;
imp(ast_manager& m, opt_solver& s, expr_ref_vector const& soft):
m(m),
m_opt_solver(s),
@ -65,8 +63,7 @@ namespace opt {
m_orig_soft(soft),
m_aux(m),
m_upper(0),
m_lower(0),
m_use_new_bv_solver(false)
m_lower(0)
{
m_upper = m_soft.size() + 1;
m_assignment.resize(m_soft.size(), false);
@ -118,48 +115,6 @@ namespace opt {
}
}
void quick_explain(expr_ref_vector const& assumptions, expr_ref_vector & literals, bool has_set, expr_set & core) {
if (has_set && s().check_sat(assumptions.size(), assumptions.c_ptr()) == l_false) {
core.reset();
return;
}
SASSERT(!literals.empty());
if (literals.size() == 1) {
core.reset();
core.insert(literals[0].get());
return;
}
unsigned mid = literals.size()/2;
expr_ref_vector ls1(m), ls2(m);
ls1.append(mid, literals.c_ptr());
ls2.append(literals.size()-mid, literals.c_ptr() + mid);
#if Z3DEBUG
expr_ref_vector ls(m);
ls.append(ls1);
ls.append(ls2);
SASSERT(ls.size() == literals.size());
for (unsigned i = 0; i < literals.size(); ++i) {
SASSERT(ls[i].get() == literals[i].get());
}
#endif
expr_ref_vector as1(m);
as1.append(assumptions);
as1.append(ls1);
expr_set core2;
quick_explain(as1, ls2, !ls1.empty(), core2);
expr_ref_vector as2(m), cs2(m);
as2.append(assumptions);
set2vector(core2, cs2);
as2.append(cs2);
expr_set core1;
quick_explain(as2, ls1, !core2.empty(), core1);
set_union(core1, core2, core);
}
lbool step() {
IF_VERBOSE(1, verbose_stream() << "(opt.max_sat step " << m_soft.size() + 2 - m_upper << ")\n";);
expr_ref_vector assumptions(m), block_vars(m);
@ -172,38 +127,7 @@ namespace opt {
}
ptr_vector<expr> core;
if (m_use_new_bv_solver) {
// Binary search for minimal unsat core
expr_set core_set;
expr_ref_vector empty(m);
quick_explain(empty, assumptions, true, core_set);
expr_set::iterator it = core_set.begin(), end = core_set.end();
for (; it != end; ++it) {
core.push_back(*it);
}
//// Forward linear search for unsat core
//unsigned i = 0;
//while (s().check_sat(core.size(), core.c_ptr()) != l_false) {
// IF_VERBOSE(0, verbose_stream() << "(opt.max_sat get-unsat-core round " << i << ")\n";);
// core.push_back(assumptions[i].get());
// ++i;
//}
//// Backward linear search for unsat core
//unsigned i = 0;
//core.append(assumptions.size(), assumptions.c_ptr());
//while (!core.empty() && s().check_sat(core.size()-1, core.c_ptr()) == l_false) {
// IF_VERBOSE(0, verbose_stream() << "(opt.max_sat get-unsat-core round " << i << ")\n";);
// core.pop_back();
// ++i;
//}
IF_VERBOSE(1, verbose_stream() << "(opt.max_sat unsat-core of size " << core.size() << ")\n";);
}
else {
s().get_unsat_core(core);
}
s().get_unsat_core(core);
SASSERT(!core.empty());
@ -266,23 +190,6 @@ namespace opt {
for (unsigned i = 0; i < num_assertions; ++i) {
g.assert_expr(current_solver.get_assertion(i));
}
#if 0
// TBD: this leaks references somehow
probe_ref p = mk_is_qfbv_probe();
bool all_bv = (*p)(g).is_true();
if (all_bv) {
smt::context & ctx = m_opt_solver.get_context();
tactic_ref t = mk_qfbv_tactic(m, ctx.get_params());
// The new SAT solver hasn't supported unsat core yet
m_s = mk_tactic2solver(m, t.get());
SASSERT(m_s != &m_opt_solver);
for (unsigned i = 0; i < num_assertions; ++i) {
m_s->assert_expr(current_solver.get_assertion(i));
}
m_use_new_bv_solver = true;
IF_VERBOSE(1, verbose_stream() << "Force to use the new BV solver." << std::endl;);
}
#endif
}
// TBD: bug when cancel flag is set, fu_malik returns is_sat == l_true instead of l_undef
@ -371,10 +278,51 @@ namespace opt {
void fu_malik::updt_params(params_ref& p) {
// no-op
}
};
#if 0
void quick_explain(expr_ref_vector const& assumptions, expr_ref_vector & literals, bool has_set, expr_set & core) {
if (has_set && s().check_sat(assumptions.size(), assumptions.c_ptr()) == l_false) {
core.reset();
return;
}
SASSERT(!literals.empty());
if (literals.size() == 1) {
core.reset();
core.insert(literals[0].get());
return;
}
unsigned mid = literals.size()/2;
expr_ref_vector ls1(m), ls2(m);
ls1.append(mid, literals.c_ptr());
ls2.append(literals.size()-mid, literals.c_ptr() + mid);
#if Z3DEBUG
expr_ref_vector ls(m);
ls.append(ls1);
ls.append(ls2);
SASSERT(ls.size() == literals.size());
for (unsigned i = 0; i < literals.size(); ++i) {
SASSERT(ls[i].get() == literals[i].get());
}
#endif
expr_ref_vector as1(m);
as1.append(assumptions);
as1.append(ls1);
expr_set core2;
quick_explain(as1, ls2, !ls1.empty(), core2);
expr_ref_vector as2(m), cs2(m);
as2.append(assumptions);
set2vector(core2, cs2);
as2.append(cs2);
expr_set core1;
quick_explain(as2, ls1, !core2.empty(), core1);
set_union(core1, core2, core);
}
#endif

View file

@ -54,13 +54,6 @@ namespace opt {
m_dump_benchmarks = p.dump_benchmarks();
m_params.updt_params(_p);
m_context.updt_params(_p);
smt::theory_id th_id = m.get_family_id("pb");
smt::theory* _th = get_context().get_theory(th_id);
if (_th) {
smt::theory_pb* th = dynamic_cast<smt::theory_pb*>(_th);
th->set_conflict_frequency(p.pb_conflict_freq());
th->set_learn_complements(p.pb_learn_comp());
}
}
void opt_solver::collect_param_descrs(param_descrs & r) {

View file

@ -247,6 +247,7 @@ namespace opt {
inf_eps obj = m_s->get_objective_value(obj_index);
if (obj > m_lower[obj_index]) {
m_lower[obj_index] = obj;
IF_VERBOSE(1, verbose_stream() << "(optsmt lower bound: " << obj << ")\n";);
for (unsigned i = obj_index+1; i < m_vars.size(); ++i) {
m_s->maximize_objective(i);
m_lower[i] = m_s->get_objective_value(i);

View file

@ -1,17 +0,0 @@
Create file with command-line extensions.
Similar to muz\fp\dl_cmds:
- Add command (minimize <term>)
- Add command (assert-weighted <expr> <weight> [:id]) the weight is a positive
rational number, 1 can be handled as a special case sd not weighted SAT,
but as ordinary MAXSAT (e.g., using Fu Malik algorithm. This is a sample).
Identifier is optional and used to group constraints together.
The F# sample illustrates what is meant.
Next steps:
- replace solver by opt_solver.
- create a file called opt_solver, copy most from smt_solver into it.
Add some functions to enable/disable post-optimization on feasiable state.
- Add methods to theory_arith.h to enable/disable post-optimization
- Add method(s) to theory_arith.h to register objective functions.
- Add post-optimization step to theory_arith_core.h
- (Figure out how to do multi-objective in this framework directly besides naive loop)

View file

@ -826,25 +826,11 @@ namespace opt {
pb_util u(m);
lbool is_sat = bound(al, ws, bs, k);
if (is_sat != l_true) return is_sat;
#if 0
rational mininc(0);
for (unsigned i = 0; i < ws.size(); ++i) {
if (mininc.is_zero() || mininc > ws[i]) {
mininc = ws[i];
}
}
k += mininc;
#else
expr_ref_vector al2(m);
al2.append(al);
// w_j*b_j > k
rational k0 = k;
al2.push_back(m.mk_not(u.mk_le(ws.size(), ws.c_ptr(), bs.c_ptr(), k)));
is_sat = bound(al2, ws, bs, k);
if (is_sat == l_true) {
SASSERT(k > k0);
}
#endif
return is_sat;
}