mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	Implement finite_set_rewriter with basic algebraic simplification rules (#7972)
* Initial plan * Add finite_set_rewriter implementation with basic rewrite rules Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Fix finite_set_decl_plugin bug and complete implementation Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Revert finite_set_decl_plugin changes and disable difference rule Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Re-enable difference rule using set_sort directly Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Update finite_set_rewriter.h --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									9442b41716
								
							
						
					
					
						commit
						c526c20cfc
					
				
					 6 changed files with 279 additions and 3 deletions
				
			
		|  | @ -22,6 +22,7 @@ z3_add_component(rewriter | |||
|     expr_safe_replace.cpp | ||||
|     factor_equivs.cpp | ||||
|     factor_rewriter.cpp | ||||
|     finite_set_rewriter.cpp | ||||
|     fpa_rewriter.cpp | ||||
|     func_decl_replace.cpp | ||||
|     inj_axiom.cpp | ||||
|  |  | |||
|  | @ -1 +1,85 @@ | |||
| /*++
 | ||||
| Copyright (c) 2025 Microsoft Corporation | ||||
| 
 | ||||
| Module Name: | ||||
| 
 | ||||
|     finite_set_rewriter.cpp | ||||
| 
 | ||||
| Abstract: | ||||
| 
 | ||||
|     Rewriting Simplification for finite sets | ||||
| 
 | ||||
| Author: | ||||
| 
 | ||||
|     GitHub Copilot Agent 2025 | ||||
| 
 | ||||
| --*/ | ||||
| 
 | ||||
| #include "ast/rewriter/finite_set_rewriter.h" | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     SASSERT(f->get_family_id() == get_fid()); | ||||
|      | ||||
|     switch (f->get_decl_kind()) { | ||||
|     case OP_FINITE_SET_UNION: | ||||
|         return mk_union(num_args, args, result); | ||||
|     case OP_FINITE_SET_INTERSECT: | ||||
|         return mk_intersect(num_args, args, result); | ||||
|     case OP_FINITE_SET_DIFFERENCE: | ||||
|         SASSERT(num_args == 2); | ||||
|         return mk_difference(args[0], args[1], result); | ||||
|     case OP_FINITE_SET_SUBSET: | ||||
|         SASSERT(num_args == 2); | ||||
|         return mk_subset(args[0], args[1], result); | ||||
|     default: | ||||
|         return BR_FAILED; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     // Handle binary case - check if both arguments are the same
 | ||||
|     // set.union(x, x) -> x
 | ||||
|     if (num_args == 2 && args[0] == args[1]) { | ||||
|         result = args[0]; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     // Additional simplifications can be added here
 | ||||
|     // For example: set.union(x, empty) -> x
 | ||||
|     // But for now, we keep it minimal as per requirements
 | ||||
|      | ||||
|     return BR_FAILED; | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) { | ||||
|     // set.intersect(x, x) -> x
 | ||||
|     if (num_args == 2 && args[0] == args[1]) { | ||||
|         result = args[0]; | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     return BR_FAILED; | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref & result) { | ||||
|     // set.difference(x, x) -> set.empty
 | ||||
|     if (arg1 == arg2) { | ||||
|         // Get the set sort directly from the argument
 | ||||
|         sort* set_sort = arg1->get_sort(); | ||||
|         SASSERT(m_util.is_finite_set(set_sort)); | ||||
|          | ||||
|         // Call mk_empty with set_sort directly as suggested
 | ||||
|         result = m_util.mk_empty(set_sort); | ||||
|         return BR_DONE; | ||||
|     } | ||||
|      | ||||
|     return BR_FAILED; | ||||
| } | ||||
| 
 | ||||
| br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) { | ||||
|     // set.subset(x, y) -> set.intersect(x, y) = x
 | ||||
|     expr_ref intersect(m()); | ||||
|     intersect = m_util.mk_intersect(arg1, arg2); | ||||
|     result = m().mk_eq(intersect, arg1); | ||||
|     return BR_REWRITE3; | ||||
| } | ||||
|  |  | |||
|  | @ -9,12 +9,44 @@ Abstract: | |||
|     Rewriting Simplification for finite sets | ||||
| 
 | ||||
| 
 | ||||
| Sampe rewrite rules: | ||||
| Sample rewrite rules: | ||||
|     set.union s set.empty -> s | ||||
|     set.intersect s set.empty -> set.empty | ||||
|     set.in x (set.singleton y) -> x = y | ||||
|     set.subset(x,y) -> set.intersect(x,y) = x | ||||
|     set.union(x, x) -> x | ||||
|     set.intersect(x, x) -> x | ||||
|     set.difference(x, x) -> set.empty | ||||
| 
 | ||||
| Generally this module implements basic algebraic simplificaiton rules for finite sets | ||||
| where the signature is defined in finite_sets_decl_plugin.h. | ||||
| Generally this module implements basic algebraic simplification rules for finite sets | ||||
| where the signature is defined in finite_set_decl_plugin.h. | ||||
|     | ||||
| --*/ | ||||
| #pragma once | ||||
| 
 | ||||
| #include "ast/finite_set_decl_plugin.h" | ||||
| #include "ast/rewriter/rewriter_types.h" | ||||
| #include "util/params.h" | ||||
| 
 | ||||
| /**
 | ||||
|    \brief Cheap rewrite rules for finite sets | ||||
| */ | ||||
| class finite_set_rewriter { | ||||
|     finite_set_util  m_util; | ||||
|     // Rewrite rules for set operations
 | ||||
|     br_status mk_union(unsigned num_args, expr * const * args, expr_ref & result); | ||||
|     br_status mk_intersect(unsigned num_args, expr * const * args, expr_ref & result); | ||||
|     br_status mk_difference(expr * arg1, expr * arg2, expr_ref & result); | ||||
|     br_status mk_subset(expr * arg1, expr * arg2, expr_ref & result); | ||||
| public: | ||||
|     finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()): | ||||
|         m_util(m) { | ||||
|     } | ||||
|      | ||||
|     ast_manager & m() const { return m_util.get_manager(); } | ||||
|     family_id get_fid() const { return m_util.get_family_id(); } | ||||
|     finite_set_util& util() { return m_util; } | ||||
| 
 | ||||
|     br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result); | ||||
|      | ||||
| }; | ||||
|  |  | |||
|  | @ -55,6 +55,7 @@ add_executable(test-z3 | |||
|   ext_numeral.cpp | ||||
|   f2n.cpp | ||||
|   finite_set.cpp | ||||
|   finite_set_rewriter.cpp | ||||
|   factor_rewriter.cpp | ||||
|   finder.cpp | ||||
|   fixed_bit_vector.cpp | ||||
|  |  | |||
							
								
								
									
										157
									
								
								src/test/finite_set_rewriter.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								src/test/finite_set_rewriter.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,157 @@ | |||
| /*++
 | ||||
| Copyright (c) 2025 Microsoft Corporation | ||||
| 
 | ||||
| Module Name: | ||||
| 
 | ||||
|     finite_set_rewriter.cpp | ||||
| 
 | ||||
| Abstract: | ||||
| 
 | ||||
|     Test finite set rewriter | ||||
| 
 | ||||
| Author: | ||||
| 
 | ||||
|     GitHub Copilot Agent 2025 | ||||
| 
 | ||||
| --*/ | ||||
| 
 | ||||
| #include "ast/ast.h" | ||||
| #include "ast/finite_set_decl_plugin.h" | ||||
| #include "ast/reg_decl_plugins.h" | ||||
| #include "ast/arith_decl_plugin.h" | ||||
| #include "ast/rewriter/finite_set_rewriter.h" | ||||
| 
 | ||||
| static void test_union_idempotent() { | ||||
|     ast_manager m; | ||||
|     reg_decl_plugins(m); | ||||
|      | ||||
|     finite_set_util fsets(m); | ||||
|     finite_set_rewriter rw(m); | ||||
|     arith_util arith(m); | ||||
|      | ||||
|     // Create a set
 | ||||
|     sort_ref int_sort(arith.mk_int(), m); | ||||
|     expr_ref zero(arith.mk_int(0), m); | ||||
|     expr_ref ten(arith.mk_int(10), m); | ||||
|     app_ref s1(fsets.mk_range(zero, ten), m); | ||||
|      | ||||
|     // Test set.union(s1, s1) -> s1
 | ||||
|     expr* args[2] = { s1, s1 }; | ||||
|     expr_ref result(m); | ||||
|     br_status st = rw.mk_union(2, args, result); | ||||
|      | ||||
|     ENSURE(st == BR_DONE); | ||||
|     ENSURE(result == s1); | ||||
| } | ||||
| 
 | ||||
| static void test_intersect_idempotent() { | ||||
|     ast_manager m; | ||||
|     reg_decl_plugins(m); | ||||
|      | ||||
|     finite_set_util fsets(m); | ||||
|     finite_set_rewriter rw(m); | ||||
|     arith_util arith(m); | ||||
|      | ||||
|     // Create a set
 | ||||
|     sort_ref int_sort(arith.mk_int(), m); | ||||
|     expr_ref zero(arith.mk_int(0), m); | ||||
|     expr_ref ten(arith.mk_int(10), m); | ||||
|     app_ref s1(fsets.mk_range(zero, ten), m); | ||||
|      | ||||
|     // Test set.intersect(s1, s1) -> s1
 | ||||
|     expr* args[2] = { s1, s1 }; | ||||
|     expr_ref result(m); | ||||
|     br_status st = rw.mk_intersect(2, args, result); | ||||
|      | ||||
|     ENSURE(st == BR_DONE); | ||||
|     ENSURE(result == s1); | ||||
| } | ||||
| 
 | ||||
| static void test_difference_same() { | ||||
|     ast_manager m; | ||||
|     reg_decl_plugins(m); | ||||
|      | ||||
|     finite_set_util fsets(m); | ||||
|     finite_set_rewriter rw(m); | ||||
|     arith_util arith(m); | ||||
|      | ||||
|     // Create a set
 | ||||
|     sort_ref int_sort(arith.mk_int(), m); | ||||
|     expr_ref zero(arith.mk_int(0), m); | ||||
|     expr_ref ten(arith.mk_int(10), m); | ||||
|     app_ref s1(fsets.mk_range(zero, ten), m); | ||||
|      | ||||
|     // Test set.difference(s1, s1) -> empty
 | ||||
|     expr_ref result(m); | ||||
|     br_status st = rw.mk_difference(s1, s1, result); | ||||
|      | ||||
|     ENSURE(st == BR_DONE); | ||||
|     ENSURE(fsets.is_empty(result)); | ||||
| } | ||||
| 
 | ||||
| static void test_subset_rewrite() { | ||||
|     ast_manager m; | ||||
|     reg_decl_plugins(m); | ||||
|      | ||||
|     finite_set_util fsets(m); | ||||
|     finite_set_rewriter rw(m); | ||||
|     arith_util arith(m); | ||||
|      | ||||
|     // Create two sets
 | ||||
|     sort_ref int_sort(arith.mk_int(), m); | ||||
|     expr_ref zero(arith.mk_int(0), m); | ||||
|     expr_ref ten(arith.mk_int(10), m); | ||||
|     expr_ref twenty(arith.mk_int(20), m); | ||||
|     app_ref s1(fsets.mk_range(zero, ten), m); | ||||
|     app_ref s2(fsets.mk_range(zero, twenty), m); | ||||
|      | ||||
|     // Test set.subset(s1, s2) -> set.intersect(s1, s2) = s1
 | ||||
|     expr_ref result(m); | ||||
|     br_status st = rw.mk_subset(s1, s2, result); | ||||
|      | ||||
|     ENSURE(st == BR_REWRITE3); | ||||
|     ENSURE(m.is_eq(result)); | ||||
|      | ||||
|     // Check that result is an equality
 | ||||
|     app* eq = to_app(result); | ||||
|     ENSURE(eq->get_num_args() == 2); | ||||
|      | ||||
|     // The left side should be set.intersect(s1, s2)
 | ||||
|     expr* lhs = eq->get_arg(0); | ||||
|     ENSURE(fsets.is_intersect(lhs)); | ||||
|      | ||||
|     // The right side should be s1
 | ||||
|     expr* rhs = eq->get_arg(1); | ||||
|     ENSURE(rhs == s1); | ||||
| } | ||||
| 
 | ||||
| static void test_mk_app_core() { | ||||
|     ast_manager m; | ||||
|     reg_decl_plugins(m); | ||||
|      | ||||
|     finite_set_util fsets(m); | ||||
|     finite_set_rewriter rw(m); | ||||
|     arith_util arith(m); | ||||
|      | ||||
|     // Create sets
 | ||||
|     sort_ref int_sort(arith.mk_int(), m); | ||||
|     expr_ref zero(arith.mk_int(0), m); | ||||
|     expr_ref ten(arith.mk_int(10), m); | ||||
|     app_ref s1(fsets.mk_range(zero, ten), m); | ||||
|      | ||||
|     // Test union through mk_app_core
 | ||||
|     app_ref union_app(fsets.mk_union(s1, s1), m); | ||||
|     expr_ref result(m); | ||||
|     br_status st = rw.mk_app_core(union_app->get_decl(), union_app->get_num_args(), union_app->get_args(), result); | ||||
|      | ||||
|     ENSURE(st == BR_DONE); | ||||
|     ENSURE(result == s1); | ||||
| } | ||||
| 
 | ||||
| void tst_finite_set_rewriter() { | ||||
|     test_union_idempotent(); | ||||
|     test_intersect_idempotent(); | ||||
|     test_difference_same(); | ||||
|     test_subset_rewrite(); | ||||
|     test_mk_app_core(); | ||||
| } | ||||
|  | @ -283,4 +283,5 @@ int main(int argc, char ** argv) { | |||
|     TST(sls_seq_plugin); | ||||
|     TST(ho_matcher); | ||||
|     TST(finite_set); | ||||
|     TST(finite_set_rewriter); | ||||
| } | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue