3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00

merge with master

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-03-25 14:57:01 -07:00
commit c513f3ca09
883 changed files with 13979 additions and 16480 deletions

View file

@ -555,7 +555,7 @@ namespace qe {
}
void reset() {
void reset() override {
//m_solver.reset();
m_asms.reset();
m_cached_asms.reset();
@ -764,7 +764,7 @@ namespace qe {
for (; it != end; ++it) {
expr * a = it->m_key;
nlsat::bool_var b = it->m_value;
if (a == 0 || !is_uninterp_const(a) || b == m_is_true.var() || !m_free_vars.contains(a) || m_aux_vars.contains(a))
if (a == nullptr || !is_uninterp_const(a) || b == m_is_true.var() || !m_free_vars.contains(a) || m_aux_vars.contains(a))
continue;
lbool val = m_bmodel0.get(b, l_undef);
if (val == l_undef)
@ -780,8 +780,8 @@ namespace qe {
m(m),
m_mode(mode),
m_params(p),
m_solver(m.limit(), p),
m_nftactic(0),
m_solver(m.limit(), p, true),
m_nftactic(nullptr),
m_rmodel(m_solver.am()),
m_rmodel0(m_solver.am()),
m_valid_model(false),
@ -796,21 +796,21 @@ namespace qe {
m_nftactic = mk_tseitin_cnf_tactic(m);
}
virtual ~nlqsat() {
~nlqsat() override {
}
void updt_params(params_ref const & p) {
void updt_params(params_ref const & p) override {
params_ref p2(p);
p2.set_bool("factor", false);
m_solver.updt_params(p2);
}
void collect_param_descrs(param_descrs & r) {
void collect_param_descrs(param_descrs & r) override {
}
void operator()(/* in */ goal_ref const & in,
/* out */ goal_ref_buffer & result) {
/* out */ goal_ref_buffer & result) override {
tactic_report report("nlqsat-tactic", *in);
@ -859,197 +859,29 @@ namespace qe {
}
void collect_statistics(statistics & st) const {
void collect_statistics(statistics & st) const override {
st.copy(m_st);
st.update("qsat num rounds", m_stats.m_num_rounds);
}
void reset_statistics() {
void reset_statistics() override {
m_stats.reset();
m_solver.reset_statistics();
}
void cleanup() {
void cleanup() override {
reset();
}
void set_logic(symbol const & l) {
void set_logic(symbol const & l) override {
}
void set_progress_callback(progress_callback * callback) {
void set_progress_callback(progress_callback * callback) override {
}
tactic * translate(ast_manager & m) {
tactic * translate(ast_manager & m) override {
return alloc(nlqsat, m, m_mode, m_params);
}
#if 0
/**
Algorithm:
I := true
while there is M, such that M |= ~B & I:
find P, such that M => P => exists y . ~B & I
; forall y B => ~P
C := core of P with respect to A
; A => ~ C => ~ P
I := I & ~C
Alternative Algorithm:
R := false
while there is M, such that M |= A & ~R:
find I, such that M => I => forall y . B
R := R | I
*/
lbool interpolate(expr* a, expr* b, expr_ref& result) {
SASSERT(m_mode == interp_t);
reset();
app_ref enableA(m), enableB(m);
expr_ref A(m), B(m), fml(m);
expr_ref_vector fmls(m), answer(m);
// varsB are private to B.
nlsat::var_vector vars;
uint_set fvars;
private_vars(a, b, vars, fvars);
enableA = m.mk_const(symbol("#A"), m.mk_bool_sort());
enableB = m.mk_not(enableA);
A = m.mk_implies(enableA, a);
B = m.mk_implies(enableB, m.mk_not(b));
fml = m.mk_and(A, B);
hoist(fml);
nlsat::literal _enableB = nlsat::literal(m_a2b.to_var(enableB), false);
nlsat::literal _enableA = ~_enableB;
while (true) {
m_mode = qsat_t;
// enable B
m_assumptions.reset();
m_assumptions.push_back(_enableB);
lbool is_sat = check_sat();
switch (is_sat) {
case l_undef:
return l_undef;
case l_true:
break;
case l_false:
result = mk_and(answer);
return l_true;
}
// disable B, enable A
m_assumptions.reset();
m_assumptions.push_back(_enableA);
// add blocking clause to solver.
nlsat::scoped_literal_vector core(m_solver);
m_mode = elim_t;
mbp(vars, fvars, core);
// minimize core.
nlsat::literal_vector _core(core.size(), core.c_ptr());
_core.push_back(_enableA);
is_sat = m_solver.check(_core); // TBD: only for quantifier-free A. Generalize output of elim_t to be a core.
switch (is_sat) {
case l_undef:
return l_undef;
case l_true:
UNREACHABLE();
case l_false:
core.reset();
core.append(_core.size(), _core.c_ptr());
break;
}
negate_clause(core);
// keep polarity of enableA, such that clause is only
// used when checking satisfiability of B.
for (unsigned i = 0; i < core.size(); ++i) {
if (core[i].var() == _enableA.var()) core.set(i, ~core[i]);
}
add_clause(core); // Invariant is added as assumption for B.
answer.push_back(clause2fml(core)); // TBD: remove answer literal.
}
}
/**
\brief extract variables that are private to a (not used in b).
vars cover the real variables, and fvars cover the Boolean variables.
TBD: We want fvars to be the complement such that returned core contains
Shared boolean variables, but not the ones private to B.
*/
void private_vars(expr* a, expr* b, nlsat::var_vector& vars, uint_set& fvars) {
app_ref_vector varsA(m), varsB(m);
obj_hashtable<expr> varsAS;
pred_abs abs(m);
abs.get_free_vars(a, varsA);
abs.get_free_vars(b, varsB);
insert_set(varsAS, varsA);
for (unsigned i = 0; i < varsB.size(); ++i) {
if (varsAS.contains(varsB[i].get())) {
varsB[i] = varsB.back();
varsB.pop_back();
--i;
}
}
for (unsigned j = 0; j < varsB.size(); ++j) {
app* v = varsB[j].get();
if (m_a2b.is_var(v)) {
fvars.insert(m_a2b.to_var(v));
}
else if (m_t2x.is_var(v)) {
vars.push_back(m_t2x.to_var(v));
}
}
}
lbool maximize(app* _x, expr* _fml, scoped_anum& result, bool& unbounded) {
expr_ref fml(_fml, m);
reset();
hoist(fml);
nlsat::literal_vector lits;
lbool is_sat = l_true;
nlsat::var x = m_t2x.to_var(_x);
m_mode = qsat_t;
while (is_sat == l_true) {
is_sat = check_sat();
if (is_sat == l_true) {
// m_asms is minimized set of literals that satisfy formula.
nlsat::explain& ex = m_solver.get_explain();
polynomial::manager& pm = m_solver.pm();
anum_manager& am = m_solver.am();
ex.maximize(x, m_asms.size(), m_asms.c_ptr(), result, unbounded);
if (unbounded) {
break;
}
// TBD: assert the new bound on x using the result.
bool is_even = false;
polynomial::polynomial_ref pr(pm);
pr = pm.mk_polynomial(x);
rational r;
am.get_upper(result, r);
// result is algebraic numeral, but polynomials are not defined over extension field.
polynomial::polynomial* p = pr;
nlsat::bool_var b = m_solver.mk_ineq_atom(nlsat::atom::GT, 1, &p, &is_even);
nlsat::literal bound(b, false);
m_solver.mk_clause(1, &bound);
}
}
return is_sat;
}
#endif
};
};