3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-03 13:07:53 +00:00

Merge branch 'finite-sets' into copilot/add-rewrite-rules-finite-set-rewriter

This commit is contained in:
Nikolaj Bjorner 2025-10-15 18:45:57 +02:00 committed by GitHub
commit c502c62997
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 347 additions and 18 deletions

View file

@ -204,6 +204,9 @@ bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
return true;
if (r.is_singleton(e1) && r.is_empty(e2))
return true;
if(r.is_singleton(e1) && r.is_singleton(e2))
return m_manager->are_distinct(e1, e2);
// TODO: could be extended to cases where we can prove the sets are different by containing one element
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
return false;

View file

@ -34,14 +34,7 @@ where the signature is defined in finite_set_decl_plugin.h.
*/
class finite_set_rewriter {
finite_set_util m_util;
// Rewrite rules for set operations
br_status mk_union(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_intersect(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_difference(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_subset(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_singleton(expr * arg, expr_ref & result);
br_status mk_in(expr * elem, expr * set, expr_ref & result);
public:
public:
finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()):
m_util(m) {
}
@ -52,5 +45,11 @@ public:
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
// Rewrite rules for set operations
br_status mk_union(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_intersect(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_difference(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_subset(expr * arg1, expr * arg2, expr_ref & result);
};

View file

@ -57,6 +57,7 @@ z3_add_component(smt
theory_char.cpp
theory_datatype.cpp
theory_dense_diff_logic.cpp
theory_finite_set.cpp
theory_diff_logic.cpp
theory_dl.cpp
theory_dummy.cpp

View file

@ -40,6 +40,7 @@ Revision History:
#include "smt/theory_pb.h"
#include "smt/theory_fpa.h"
#include "smt/theory_polymorphism.h"
#include "smt/theory_finite_set.h"
namespace smt {
@ -784,6 +785,10 @@ namespace smt {
m_context.register_plugin(alloc(smt::theory_char, m_context));
}
void setup::setup_finite_set() {
m_context.register_plugin(alloc(smt::theory_finite_set, m_context));
}
void setup::setup_special_relations() {
m_context.register_plugin(alloc(smt::theory_special_relations, m_context, m_manager));
}
@ -807,6 +812,7 @@ namespace smt {
setup_dl();
setup_seq_str(st);
setup_fpa();
setup_finite_set();
setup_special_relations();
setup_polymorphism();
setup_relevancy(st);

View file

@ -102,6 +102,7 @@ namespace smt {
void setup_seq_str(static_features const & st);
void setup_seq();
void setup_char();
void setup_finite_set();
void setup_card();
void setup_sls();
void setup_i_arith();

View file

@ -0,0 +1,262 @@
/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
theory_finite_set.cpp
Abstract:
Theory solver for finite sets.
Implements axiom schemas for finite set operations.
Author:
GitHub Copilot Agent 2025
Revision History:
--*/
#include "smt/theory_finite_set.h"
#include "smt/smt_context.h"
#include "smt/smt_model_generator.h"
#include "ast/ast_pp.h"
namespace smt {
theory_finite_set::theory_finite_set(context& ctx):
theory(ctx, ctx.get_manager().mk_family_id("finite_set")),
u(m),
m_axioms(m)
{
// Setup the add_clause callback for axioms
std::function<void(expr_ref_vector const &)> add_clause_fn =
[this](expr_ref_vector const& clause) {
this->add_clause(clause);
};
m_axioms.set_add_clause(add_clause_fn);
}
bool theory_finite_set::internalize_atom(app * atom, bool gate_ctx) {
TRACE(finite_set, tout << "internalize_atom: " << mk_pp(atom, m) << "\n";);
internalize_term(atom);
// Track membership elements (set.in)
expr* elem = nullptr, *set = nullptr;
if (u.is_in(atom, elem, set)) {
auto n = ctx.get_enode(elem);
if (!m_elements.contains(n)) {
m_elements.insert(n);
ctx.push_trail(insert_obj_trail(m_elements, n));
}
}
return true;
}
bool theory_finite_set::internalize_term(app * term) {
TRACE(finite_set, tout << "internalize_term: " << mk_pp(term, m) << "\n";);
// Internalize all arguments first
for (expr* arg : *term)
ctx.internalize(arg, false);
// Create boolean variable for Boolean terms
if (m.is_bool(term) && !ctx.b_internalized(term)) {
bool_var bv = ctx.mk_bool_var(term);
ctx.set_var_theory(bv, get_id());
}
// Create enode for the term if needed
enode* e = nullptr;
if (ctx.e_internalized(term))
e = ctx.get_enode(term);
else
e = ctx.mk_enode(term, false, m.is_bool(term), true);
// Attach theory variable if this is a set
if (!is_attached_to_var(e))
ctx.attach_th_var(e, this, mk_var(e));
return true;
}
void theory_finite_set::new_eq_eh(theory_var v1, theory_var v2) {
TRACE(finite_set, tout << "new_eq_eh: v" << v1 << " = v" << v2 << "\n";);
// When two sets are equal, propagate membership constraints
// This is handled by congruence closure, so no additional work needed here
}
void theory_finite_set::new_diseq_eh(theory_var v1, theory_var v2) {
TRACE(finite_set, tout << "new_diseq_eh: v" << v1 << " != v" << v2 << "\n";);
// Disequalities could trigger extensionality axioms
// For now, we rely on the final_check to handle this
}
final_check_status theory_finite_set::final_check_eh() {
TRACE(finite_set, tout << "final_check_eh\n";);
// walk all parents of elem in congruence table.
// if a parent is of the form elem' in S u T, or similar.
// create clauses for elem in S u T.
expr* elem1 = nullptr, *set1 = nullptr;
for (auto elem : m_elements) {
if (!ctx.is_relevant(elem))
continue;
for (auto p : enode::parents(elem)) {
if (!u.is_in(p->get_expr(), elem1, set1))
continue;
if (elem->get_root() != p->get_arg(0)->get_root())
continue; // elem is then equal to set1 but not elem1. This is a different case.
if (!ctx.is_relevant(p))
continue;
for (auto sib : *p->get_arg(1))
instantiate_axioms(elem->get_expr(), sib->get_expr());
}
}
if (instantiate_false_lemma())
return FC_CONTINUE;
if (instantiate_unit_propagation())
return FC_CONTINUE;
if (instantiate_free_lemma())
return FC_CONTINUE;
return FC_DONE;
}
void theory_finite_set::instantiate_axioms(expr* elem, expr* set) {
TRACE(finite_set, tout << "instantiate_axioms: " << mk_pp(elem, m) << " in " << mk_pp(set, m) << "\n";);
struct insert_obj_pair_table : public trail {
obj_pair_hashtable<expr, expr> &table;
expr *a, *b;
insert_obj_pair_table(obj_pair_hashtable<expr, expr> &t, expr *a, expr *b) :
table(t), a(a), b(b) {}
void undo() override {
table.erase({a, b});
}
};
if (m_lemma_exprs.contains({elem, set}))
return;
m_lemma_exprs.insert({elem, set});
ctx.push_trail(insert_obj_pair_table(m_lemma_exprs, elem, set));
// Instantiate appropriate axiom based on set structure
if (u.is_empty(set)) {
m_axioms.in_empty_axiom(elem);
}
else if (u.is_singleton(set)) {
m_axioms.in_singleton_axiom(elem, set);
}
else if (u.is_union(set)) {
m_axioms.in_union_axiom(elem, set);
}
else if (u.is_intersect(set)) {
m_axioms.in_intersect_axiom(elem, set);
}
else if (u.is_difference(set)) {
m_axioms.in_difference_axiom(elem, set);
}
else if (u.is_range(set)) {
m_axioms.in_range_axiom(elem, set);
}
else if (u.is_map(set)) {
m_axioms.in_map_axiom(elem, set);
m_axioms.in_map_image_axiom(elem, set);
}
else if (u.is_select(set)) {
m_axioms.in_select_axiom(elem, set);
}
// Instantiate size axioms for singleton sets
// TODO, such axioms don't belong here
if (u.is_singleton(set)) {
m_axioms.size_singleton_axiom(set);
}
}
void theory_finite_set::add_clause(expr_ref_vector const& clause) {
TRACE(finite_set, tout << "add_clause: " << clause << "\n");
ctx.push_trail(push_back_vector(m_lemmas));
m_lemmas.push_back(clause);
}
theory * theory_finite_set::mk_fresh(context * new_ctx) {
return alloc(theory_finite_set, *new_ctx);
}
void theory_finite_set::display(std::ostream & out) const {
out << "theory_finite_set:\n";
}
void theory_finite_set::init_model(model_generator & mg) {
TRACE(finite_set, tout << "init_model\n";);
// Model generation will use default interpretation for sets
// The model will be constructed based on the membership literals that are true
}
model_value_proc * theory_finite_set::mk_value(enode * n, model_generator & mg) {
TRACE(finite_set, tout << "mk_value: " << mk_pp(n->get_expr(), m) << "\n";);
// For now, return nullptr to use default model construction
// A complete implementation would construct explicit set values
// based on true membership literals
return nullptr;
}
bool theory_finite_set::instantiate_false_lemma() {
for (auto const& clause : m_lemmas) {
bool all_false = all_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_false; });
if (!all_false)
continue;
assert_clause(clause);
return true;
}
return false;
}
bool theory_finite_set::instantiate_unit_propagation() {
for (auto const &clause : m_lemmas) {
expr *undef = nullptr;
bool is_unit_propagating = true;
for (auto e : clause) {
switch (ctx.find_assignment(e)) {
case l_false: continue;
case l_true: is_unit_propagating = false; break;
case l_undef:
if (undef != nullptr)
is_unit_propagating = false;
undef = e;
break;
}
if (!is_unit_propagating)
break;
}
if (!is_unit_propagating || undef == nullptr)
continue;
assert_clause(clause);
return true;
}
return false;
}
bool theory_finite_set::instantiate_free_lemma() {
for (auto const& clause : m_lemmas) {
if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; }))
continue;
assert_clause(clause);
return true;
}
return false;
}
void theory_finite_set::assert_clause(expr_ref_vector const &clause) {
literal_vector lclause;
for (auto e : clause)
lclause.push_back(mk_literal(e));
ctx.mk_th_axiom(get_id(), lclause);
}
} // namespace smt

View file

@ -57,20 +57,75 @@ Abstract:
-----------------------------------------------
x in v3 <=> p(x) and x in v4
Rules are encoded in src/ast/rewriter/finite_set_axioms.cpp as clauses.
The central claim is that the above rules are sufficient to
decide satisfiability of finite set constraints.
decide satisfiability of finite set constraints for a subset
of operations, namely union, intersection, difference, singleton, membership.
Model construction proceeds by selecting every set.in(x_i, v) for a
congruence root v. Then the set of elements { x_i | set.in(x_i, v) }
is the interpretation.
This approach, however, does not work with ranges, or is impractical.
For ranges, we are going to extract an interpretation for set variable v
directly from a set of range expressions.
Inductively, the interpretation of a range expression is given by the
range itself. It proceeds by taking unions, intersections and differences of range
interpretations.
This approach for model-construction, however, does not work with ranges, or is impractical.
For ranges we can adapt a different model construction approach.
When introducing select and map, decidability can be lost.
For Boolean lattice constraints given by equality, subset, strict subset and union, intersections,
the theory solver uses a stand-alone satisfiability checker for Boolean algebras to close branches.
Instructions for copilot:
1. Override relevant methods for smt::theory. Add them to the signature and add stubs or implementations in
theory_finite_set.cpp.
2. In final_check_eh add instantiation of theory axioms following the outline in the inference rules above.
An example of how to instantiate axioms is in theory_arrays_base.cpp and theroy_datatypes.cpp and other theory files.
--*/
#pragma once
#include "ast/ast.h"
#include "ast/ast_pp.h"
#include "ast/finite_set_decl_plugin.h"
#include "ast/rewriter/finite_set_axioms.h"
#include "util/obj_pair_hashtable.h"
#include "smt/smt_theory.h"
namespace smt {
class theory_finite_set : public theory {
friend class theory_finite_set_test;
finite_set_util u;
finite_set_axioms m_axioms;
obj_hashtable<enode> m_elements; // set of all 'x' where there is an 'x in S' atom
vector<expr_ref_vector> m_lemmas;
obj_pair_hashtable<expr, expr> m_lemma_exprs;
protected:
// Override relevant methods from smt::theory
bool internalize_atom(app * atom, bool gate_ctx) override;
bool internalize_term(app * term) override;
void new_eq_eh(theory_var v1, theory_var v2) override;
void new_diseq_eh(theory_var v1, theory_var v2) override;
final_check_status final_check_eh() override;
theory * mk_fresh(context * new_ctx) override;
char const * get_name() const override { return "finite_set"; }
void display(std::ostream & out) const override;
void init_model(model_generator & mg) override;
model_value_proc * mk_value(enode * n, model_generator & mg) override;
// Helper methods for axiom instantiation
void instantiate_axioms(expr* elem, expr* set);
void add_clause(expr_ref_vector const& clause);
void assert_clause(expr_ref_vector const &clause);
bool instantiate_false_lemma();
bool instantiate_unit_propagation();
bool instantiate_free_lemma();
lbool truth_value(expr *e);
public:
theory_finite_set(context& ctx);
~theory_finite_set() override {}
};
} // namespace smt

View file

@ -37,16 +37,16 @@ static void tst_finite_set_basic() {
ENSURE(fsets.is_finite_set(finite_set_int.get()));
// Test creating empty set
app_ref empty_set(fsets.mk_empty(int_sort), m);
app_ref empty_set(fsets.mk_empty(finite_set_int), m);
ENSURE(fsets.is_empty(empty_set.get()));
ENSURE(empty_set->get_sort() == finite_set_int.get());
// Test set.singleton
expr_ref five(arith.mk_int(5), m);
app_ref singleton_set(fsets.mk_singleton(five), m);
ENSURE(fsets.is_singleton(singleton_set.get()));
ENSURE(singleton_set->get_sort() == finite_set_int.get());
// Test set.range
expr_ref zero(arith.mk_int(0), m);
expr_ref ten(arith.mk_int(10), m);

View file

@ -70,6 +70,8 @@ X(eq_der, top_sort, "top sort")
X(expr_substitution_simplifier, expr_substitution_simplifier, "expr substitution simplifier")
X(expr_substitution_simplifier, propagate_values, "propagate values")
X(finite_set, finite_set, "finite set")
X(fm_model_converter, fm_model_converter, "fm model converter")
X(fm_model_converter, fm_mc, "fm mc")