3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 11:25:51 +00:00

include more qsat features

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-03-19 12:29:23 -07:00
parent f175f864ec
commit c4472ce717
15 changed files with 2197 additions and 190 deletions

427
src/qe/qe_arrays.cpp Normal file
View file

@ -0,0 +1,427 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
qe_arrays.cpp
Abstract:
Model based projection for arrays
Author:
Nikolaj Bjorner (nbjorner) 2015-06-13
Revision History:
--*/
#include "qe_arrays.h"
#include "rewriter_def.h"
#include "expr_functors.h"
#include "expr_safe_replace.h"
#include "lbool.h"
#include "ast_util.h"
#include "ast_pp.h"
namespace qe {
struct array_project_plugin::imp {
// rewriter or direct procedure.
struct rw_cfg : public default_rewriter_cfg {
ast_manager& m;
array_util& a;
expr_ref_vector m_lits;
model* m_model;
imp* m_imp;
rw_cfg(ast_manager& m, array_util& a):
m(m), a(a), m_lits(m), m_model(0) {}
br_status reduce_app(func_decl* f, unsigned n, expr* const* args, expr_ref& result, proof_ref & pr) {
if (a.is_select(f) && a.is_store(args[0])) {
expr_ref val1(m), val2(m);
app* b = to_app(args[0]);
SASSERT(b->get_num_args() == n + 1);
for (unsigned i = 1; i < n; ++i) {
expr* arg1 = args[i];
expr* arg2 = b->get_arg(i);
if (arg1 == arg2) {
val1 = val2 = arg1;
}
else {
VERIFY(m_model->eval(arg1, val1));
VERIFY(m_model->eval(arg2, val2));
}
switch(compare(val1, val2)) {
case l_true:
if (arg1 != arg2) {
m_lits.push_back(m.mk_eq(arg1, arg2));
}
break;
case l_false: {
ptr_vector<expr> new_args;
if (i > 0) {
m_lits.resize(m_lits.size() - i);
}
m_lits.push_back(m.mk_not(m.mk_eq(arg1, arg2)));
new_args.push_back(b->get_arg(0));
new_args.append(n-1, args+1);
result = m.mk_app(f, n, new_args.c_ptr());
return BR_REWRITE1;
}
case l_undef:
return BR_FAILED;
}
}
result = b->get_arg(n);
return BR_DONE;
}
return BR_FAILED;
}
lbool compare(expr* x, expr* y) {
NOT_IMPLEMENTED_YET();
return l_undef;
}
};
struct indices {
expr_ref_vector m_values;
expr* const* m_vars;
indices(ast_manager& m, model& model, unsigned n, expr* const* vars):
m_values(m), m_vars(vars) {
expr_ref val(m);
for (unsigned i = 0; i < n; ++i) {
VERIFY(model.eval(vars[i], val));
m_values.push_back(val);
}
}
};
ast_manager& m;
array_util a;
scoped_ptr<contains_app> m_var;
imp(ast_manager& m): m(m), a(m) {}
~imp() {}
virtual bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
return false;
}
bool operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) {
TRACE("qe", tout << mk_pp(var, m) << "\n" << lits;);
m_var = alloc(contains_app, m, var);
// reduce select-store redeces based on model.
// rw_cfg rw(m);
// rw(lits);
// try first to solve for var.
if (solve_eq(model, vars, lits)) {
return true;
}
app_ref_vector selects(m);
// check that only non-select occurrences are in disequalities.
if (!check_diseqs(lits, selects)) {
TRACE("qe", tout << "Could not project " << mk_pp(var, m) << " for:\n" << lits << "\n";);
return false;
}
// remove disequalities.
elim_diseqs(lits);
// Ackerman reduction on remaining select occurrences
// either replace occurrences by model value or other node
// that is congruent to model value.
ackermanize_select(model, selects, vars, lits);
TRACE("qe", tout << selects << "\n" << lits << "\n";);
return true;
}
void ackermanize_select(model& model, app_ref_vector const& selects, app_ref_vector& vars, expr_ref_vector& lits) {
expr_ref_vector vals(m), reps(m);
expr_ref val(m);
expr_safe_replace sub(m);
if (selects.empty()) {
return;
}
app_ref sel(m);
for (unsigned i = 0; i < selects.size(); ++i) {
sel = m.mk_fresh_const("sel", m.get_sort(selects[i]));
VERIFY (model.eval(selects[i], val));
model.register_decl(sel->get_decl(), val);
vals.push_back(to_app(val));
reps.push_back(val); // TODO: direct pass could handle nested selects.
vars.push_back(sel);
sub.insert(selects[i], val);
}
sub(lits);
remove_true(lits);
project_plugin::partition_args(model, selects, lits);
project_plugin::partition_values(model, reps, lits);
}
void remove_true(expr_ref_vector& lits) {
for (unsigned i = 0; i < lits.size(); ++i) {
if (m.is_true(lits[i].get())) {
project_plugin::erase(lits, i);
}
}
}
bool contains_x(expr* e) {
return (*m_var)(e);
}
void mk_eq(indices& x, indices y, expr_ref_vector& lits) {
unsigned n = x.m_values.size();
for (unsigned j = 0; j < n; ++j) {
lits.push_back(m.mk_eq(x.m_vars[j], y.m_vars[j]));
}
}
// check that x occurs only under selects or in disequalities.
bool check_diseqs(expr_ref_vector const& lits, app_ref_vector& selects) {
expr_mark mark;
ptr_vector<app> todo;
app* e;
for (unsigned i = 0; i < lits.size(); ++i) {
e = to_app(lits[i]);
if (is_diseq_x(e)) {
continue;
}
if (contains_x(e)) {
todo.push_back(e);
}
}
while (!todo.empty()) {
e = todo.back();
todo.pop_back();
if (mark.is_marked(e)) {
continue;
}
mark.mark(e);
if (m_var->x() == e) {
return false;
}
unsigned start = 0;
if (a.is_select(e)) {
if (e->get_arg(0) == m_var->x()) {
start = 1;
selects.push_back(e);
}
}
for (unsigned i = start; i < e->get_num_args(); ++i) {
todo.push_back(to_app(e->get_arg(i)));
}
}
return true;
}
void elim_diseqs(expr_ref_vector& lits) {
for (unsigned i = 0; i < lits.size(); ++i) {
if (is_diseq_x(lits[i].get())) {
project_plugin::erase(lits, i);
}
}
}
bool is_update_x(app* e) {
do {
if (m_var->x() == e) {
return true;
}
if (a.is_store(e) && contains_x(e->get_arg(0))) {
for (unsigned i = 1; i < e->get_num_args(); ++i) {
if (contains_x(e->get_arg(i))) {
return false;
}
}
e = to_app(e->get_arg(0));
continue;
}
}
while (false);
return false;
}
bool is_diseq_x(expr* e) {
expr *f, * s, *t;
if (m.is_not(e, f) && m.is_eq(f, s, t)) {
if (contains_x(s) && !contains_x(t) && is_update_x(to_app(s))) return true;
if (contains_x(t) && !contains_x(s) && is_update_x(to_app(t))) return true;
}
return false;
}
bool solve_eq(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
// find an equality to solve for.
expr* s, *t;
for (unsigned i = 0; i < lits.size(); ++i) {
if (m.is_eq(lits[i].get(), s, t)) {
vector<indices> idxs;
expr_ref save(m), back(m);
save = lits[i].get();
back = lits.back();
lits[i] = back;
lits.pop_back();
unsigned sz = lits.size();
if (contains_x(s) && !contains_x(t) && is_app(s)) {
if (solve(model, to_app(s), t, idxs, vars, lits)) {
return true;
}
}
else if (contains_x(t) && !contains_x(s) && is_app(t)) {
if (solve(model, to_app(t), s, idxs, vars, lits)) {
return true;
}
}
// put back the equality literal.
lits.resize(sz);
lits.push_back(back);
lits[i] = save;
}
// TBD: not distinct?
}
return false;
}
bool solve(model& model, app* s, expr* t, vector<indices>& idxs, app_ref_vector& vars, expr_ref_vector& lits) {
SASSERT(contains_x(s));
SASSERT(!contains_x(t));
if (s == m_var->x()) {
expr_ref result(s, m);
expr_ref_vector args(m);
sort* range = get_array_range(m.get_sort(s));
for (unsigned i = 0; i < idxs.size(); ++i) {
app_ref var(m);
var = m.mk_fresh_const("value", range);
vars.push_back(var);
args.reset();
args.push_back(result);
args.append(idxs[i].m_values.size(), idxs[i].m_vars);
args.push_back(var);
result = a.mk_store(args.size(), args.c_ptr());
}
expr_safe_replace sub(m);
sub.insert(s, result);
for (unsigned i = 0; i < lits.size(); ++i) {
sub(lits[i].get(), result);
lits[i] = result;
}
return true;
}
if (a.is_store(s)) {
unsigned n = s->get_num_args()-2;
indices idx(m, model, n, s->get_args()+1);
for (unsigned i = 1; i < n; ++i) {
if (contains_x(s->get_arg(i))) {
return false;
}
}
unsigned i;
expr_ref_vector args(m);
switch (contains(idx, idxs, i)) {
case l_true:
mk_eq(idx, idxs[i], lits);
return solve(model, to_app(s->get_arg(0)), t, idxs, vars, lits);
case l_false:
for (unsigned i = 0; i < idxs.size(); ++i) {
expr_ref_vector eqs(m);
mk_eq(idx, idxs[i], eqs);
lits.push_back(m.mk_not(mk_and(eqs))); // TBD: extract single index of difference based on model.
}
args.push_back(t);
args.append(n, s->get_args()+1);
lits.push_back(m.mk_eq(a.mk_select(args.size(), args.c_ptr()), s->get_arg(n+1)));
idxs.push_back(idx);
return solve(model, to_app(s->get_arg(0)), t, idxs, vars, lits);
case l_undef:
return false;
}
}
return false;
}
lbool contains(indices const& idx, vector<indices> const& idxs, unsigned& j) {
for (unsigned i = 0; i < idxs.size(); ++i) {
switch (compare(idx, idxs[i])) {
case l_true:
j = i;
return l_true;
case l_false:
break;
case l_undef:
return l_undef;
}
}
return l_false;
}
lbool compare(indices const& idx1, indices const& idx2) {
unsigned n = idx1.m_values.size();
for (unsigned i = 0; i < n; ++i) {
switch (compare(idx1.m_values[i], idx2.m_values[i])) {
case l_true:
break;
case l_false:
return l_false;
case l_undef:
return l_undef;
}
}
return l_true;
}
lbool compare(expr* val1, expr* val2) {
if (val1 == val2) {
return l_true;
}
if (is_uninterp(val1) ||
is_uninterp(val2)) {
// TBD chase definition of nested array.
return l_undef;
}
return l_true;
}
};
array_project_plugin::array_project_plugin(ast_manager& m) {
m_imp = alloc(imp, m);
}
array_project_plugin::~array_project_plugin() {
dealloc(m_imp);
}
bool array_project_plugin::operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits) {
return (*m_imp)(model, var, vars, lits);
}
bool array_project_plugin::solve(model& model, app_ref_vector& vars, expr_ref_vector& lits) {
return m_imp->solve(model, vars, lits);
}
family_id array_project_plugin::get_family_id() {
return m_imp->a.get_family_id();
}
};