mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Merge branch 'bvsls' of https://git01.codeplex.com/z3 into opt
Conflicts: scripts/mk_project.py src/duality/duality.h src/duality/duality_solver.cpp src/duality/duality_wrapper.h src/interp/iz3hash.h Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
commit
c3b7c738f8
3
.gitattributes
vendored
3
.gitattributes
vendored
|
@ -1 +1,4 @@
|
|||
# Set default behaviour, in case users don't have core.autocrlf set.
|
||||
* text=auto
|
||||
|
||||
src/api/dotnet/Properties/AssemblyInfo.cs text eol=crlf
|
||||
|
|
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -56,6 +56,8 @@ src/api/api_log_macros.cpp
|
|||
src/api/dll/api_dll.def
|
||||
src/api/dotnet/Enumerations.cs
|
||||
src/api/dotnet/Native.cs
|
||||
src/api/dotnet/Properties/AssemblyInfo.cs
|
||||
src/api/dotnet/Microsoft.Z3.xml
|
||||
src/api/python/z3consts.py
|
||||
src/api/python/z3core.py
|
||||
src/ast/pattern/database.h
|
||||
|
|
|
@ -43,17 +43,18 @@ def init_project_def():
|
|||
# Simplifier module will be deleted in the future.
|
||||
# It has been replaced with rewriter module.
|
||||
add_lib('simplifier', ['rewriter'], 'ast/simplifier')
|
||||
add_lib('fpa', ['ast', 'util', 'simplifier'], 'ast/fpa')
|
||||
add_lib('macros', ['simplifier'], 'ast/macros')
|
||||
add_lib('pattern', ['normal_forms', 'smt2parser', 'simplifier'], 'ast/pattern')
|
||||
add_lib('bit_blaster', ['rewriter', 'simplifier'], 'ast/rewriter/bit_blaster')
|
||||
add_lib('smt_params', ['ast', 'simplifier', 'pattern', 'bit_blaster'], 'smt/params')
|
||||
add_lib('proto_model', ['model', 'simplifier', 'smt_params'], 'smt/proto_model')
|
||||
add_lib('smt', ['bit_blaster', 'macros', 'normal_forms', 'cmd_context', 'proto_model',
|
||||
'substitution', 'grobner', 'euclid', 'simplex', 'proof_checker', 'pattern', 'parser_util'])
|
||||
'substitution', 'grobner', 'euclid', 'simplex', 'proof_checker', 'pattern', 'parser_util', 'fpa'])
|
||||
add_lib('user_plugin', ['smt'], 'smt/user_plugin')
|
||||
add_lib('bv_tactics', ['tactic', 'bit_blaster'], 'tactic/bv')
|
||||
add_lib('fuzzing', ['ast'], 'test/fuzzing')
|
||||
add_lib('fpa', ['core_tactics', 'bv_tactics', 'sat_tactic'], 'tactic/fpa')
|
||||
add_lib('fpa_tactics', ['fpa', 'core_tactics', 'bv_tactics', 'sat_tactic'], 'tactic/fpa')
|
||||
add_lib('smt_tactic', ['smt'], 'smt/tactic')
|
||||
add_lib('sls_tactic', ['tactic', 'normal_forms', 'core_tactics', 'bv_tactics'], 'tactic/sls')
|
||||
add_lib('qe', ['smt','sat'], 'qe')
|
||||
|
@ -69,7 +70,7 @@ def init_project_def():
|
|||
add_lib('fp', ['muz', 'pdr', 'clp', 'tab', 'rel', 'bmc', 'duality_intf'], 'muz/fp')
|
||||
add_lib('smtlogic_tactics', ['arith_tactics', 'bv_tactics', 'nlsat_tactic', 'smt_tactic', 'aig_tactic', 'fp', 'muz','qe'], 'tactic/smtlogics')
|
||||
add_lib('ufbv_tactic', ['normal_forms', 'core_tactics', 'macros', 'smt_tactic', 'rewriter'], 'tactic/ufbv')
|
||||
add_lib('portfolio', ['smtlogic_tactics', 'ufbv_tactic', 'fpa', 'aig_tactic', 'fp', 'qe','sls_tactic', 'subpaving_tactic'], 'tactic/portfolio')
|
||||
add_lib('portfolio', ['smtlogic_tactics', 'ufbv_tactic', 'fpa_tactics', 'aig_tactic', 'fp', 'qe','sls_tactic', 'subpaving_tactic'], 'tactic/portfolio')
|
||||
add_lib('smtparser', ['portfolio'], 'parsers/smt')
|
||||
add_lib('opt', ['smt', 'smtlogic_tactics', 'sls_tactic'], 'opt')
|
||||
API_files = ['z3_api.h', 'z3_algebraic.h', 'z3_polynomial.h', 'z3_rcf.h']
|
||||
|
|
|
@ -54,6 +54,7 @@ CPP_COMPONENT='cpp'
|
|||
IS_WINDOWS=False
|
||||
IS_LINUX=False
|
||||
IS_OSX=False
|
||||
IS_FREEBSD=False
|
||||
VERBOSE=True
|
||||
DEBUG_MODE=False
|
||||
SHOW_CPPS = True
|
||||
|
@ -98,6 +99,9 @@ def is_windows():
|
|||
def is_linux():
|
||||
return IS_LINUX
|
||||
|
||||
def is_freebsd():
|
||||
return IS_FREEBSD
|
||||
|
||||
def is_osx():
|
||||
return IS_OSX
|
||||
|
||||
|
@ -426,6 +430,8 @@ elif os.name == 'posix':
|
|||
IS_OSX=True
|
||||
elif os.uname()[0] == 'Linux':
|
||||
IS_LINUX=True
|
||||
elif os.uname()[0] == 'FreeBSD':
|
||||
IS_FREEBSD=True
|
||||
|
||||
def display_help(exit_code):
|
||||
print("mk_make.py: Z3 Makefile generator\n")
|
||||
|
@ -1181,6 +1187,8 @@ class JavaDLLComponent(Component):
|
|||
t = t.replace('PLATFORM', 'darwin')
|
||||
elif IS_LINUX:
|
||||
t = t.replace('PLATFORM', 'linux')
|
||||
elif IS_FREEBSD:
|
||||
t = t.replace('PLATFORM', 'freebsd')
|
||||
else:
|
||||
t = t.replace('PLATFORM', 'win32')
|
||||
out.write(t)
|
||||
|
|
|
@ -144,7 +144,7 @@ def mk_z3_core(x64):
|
|||
cmds.append('call "%VCINSTALLDIR%vcvarsall.bat" amd64')
|
||||
cmds.append('cd %s' % BUILD_X64_DIR)
|
||||
else:
|
||||
cmds.append('"call %VCINSTALLDIR%vcvarsall.bat" x86')
|
||||
cmds.append('call "%VCINSTALLDIR%vcvarsall.bat" x86')
|
||||
cmds.append('cd %s' % BUILD_X86_DIR)
|
||||
cmds.append('nmake')
|
||||
if exec_cmds(cmds) != 0:
|
||||
|
|
|
@ -117,6 +117,7 @@ Z3_ast Z3_API NAME(Z3_context c, unsigned i, Z3_ast n) { \
|
|||
Z3_sort int_s = Z3_mk_int_sort(c);
|
||||
if (is_signed) {
|
||||
Z3_ast r = Z3_mk_bv2int(c, n, false);
|
||||
Z3_inc_ref(c, r);
|
||||
Z3_sort s = Z3_get_sort(c, n);
|
||||
unsigned sz = Z3_get_bv_sort_size(c, s);
|
||||
rational max_bound = power(rational(2), sz);
|
||||
|
@ -135,6 +136,7 @@ Z3_ast Z3_API NAME(Z3_context c, unsigned i, Z3_ast n) { \
|
|||
Z3_dec_ref(c, pred);
|
||||
Z3_dec_ref(c, sub);
|
||||
Z3_dec_ref(c, zero);
|
||||
Z3_dec_ref(c, r);
|
||||
RETURN_Z3(res);
|
||||
}
|
||||
else {
|
||||
|
|
|
@ -302,11 +302,11 @@ namespace Microsoft.Z3
|
|||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a new finite domain sort.
|
||||
/// <param name="name">The name used to identify the sort</param>
|
||||
/// <param size="size">The size of the sort</param>
|
||||
/// <returns>The result is a sort</returns>
|
||||
/// Create a new finite domain sort.
|
||||
/// <returns>The result is a sort</returns>
|
||||
/// </summary>
|
||||
/// <param name="name">The name used to identify the sort</param>
|
||||
/// <param name="size">The size of the sort</param>
|
||||
public FiniteDomainSort MkFiniteDomainSort(Symbol name, ulong size)
|
||||
{
|
||||
Contract.Requires(name != null);
|
||||
|
@ -317,13 +317,13 @@ namespace Microsoft.Z3
|
|||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a new finite domain sort.
|
||||
/// <param name="name">The name used to identify the sort</param>
|
||||
/// <param size="size">The size of the sort</param>
|
||||
/// <returns>The result is a sort</returns>
|
||||
/// Elements of the sort are created using <seealso cref="MkNumeral"/>,
|
||||
/// and the elements range from 0 to <tt>size-1</tt>.
|
||||
/// Create a new finite domain sort.
|
||||
/// <returns>The result is a sort</returns>
|
||||
/// Elements of the sort are created using <seealso cref="MkNumeral(ulong, Sort)"/>,
|
||||
/// and the elements range from 0 to <tt>size-1</tt>.
|
||||
/// </summary>
|
||||
/// <param name="name">The name used to identify the sort</param>
|
||||
/// <param name="size">The size of the sort</param>
|
||||
public FiniteDomainSort MkFiniteDomainSort(string name, ulong size)
|
||||
{
|
||||
Contract.Ensures(Contract.Result<FiniteDomainSort>() != null);
|
||||
|
|
|
@ -99,7 +99,7 @@ namespace Microsoft.Z3
|
|||
Contract.Requires(Contract.ForAll(args, a => a != null));
|
||||
|
||||
Context.CheckContextMatch(args);
|
||||
if (args.Length != NumArgs)
|
||||
if (IsApp && args.Length != NumArgs)
|
||||
throw new Z3Exception("Number of arguments does not match");
|
||||
NativeObject = Native.Z3_update_term(Context.nCtx, NativeObject, (uint)args.Length, Expr.ArrayToNative(args));
|
||||
}
|
||||
|
@ -269,57 +269,57 @@ namespace Microsoft.Z3
|
|||
/// <summary>
|
||||
/// Indicates whether the term is the constant true.
|
||||
/// </summary>
|
||||
public bool IsTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TRUE; } }
|
||||
public bool IsTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TRUE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is the constant false.
|
||||
/// </summary>
|
||||
public bool IsFalse { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FALSE; } }
|
||||
public bool IsFalse { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FALSE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an equality predicate.
|
||||
/// </summary>
|
||||
public bool IsEq { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EQ; } }
|
||||
public bool IsEq { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct).
|
||||
/// </summary>
|
||||
public bool IsDistinct { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DISTINCT; } }
|
||||
public bool IsDistinct { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DISTINCT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a ternary if-then-else term
|
||||
/// </summary>
|
||||
public bool IsITE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ITE; } }
|
||||
public bool IsITE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ITE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an n-ary conjunction
|
||||
/// </summary>
|
||||
public bool IsAnd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AND; } }
|
||||
public bool IsAnd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AND; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an n-ary disjunction
|
||||
/// </summary>
|
||||
public bool IsOr { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OR; } }
|
||||
public bool IsOr { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an if-and-only-if (Boolean equivalence, binary)
|
||||
/// </summary>
|
||||
public bool IsIff { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IFF; } }
|
||||
public bool IsIff { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IFF; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an exclusive or
|
||||
/// </summary>
|
||||
public bool IsXor { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR; } }
|
||||
public bool IsXor { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a negation
|
||||
/// </summary>
|
||||
public bool IsNot { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT; } }
|
||||
public bool IsNot { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_NOT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an implication
|
||||
/// </summary>
|
||||
public bool IsImplies { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IMPLIES; } }
|
||||
public bool IsImplies { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IMPLIES; } }
|
||||
|
||||
#endregion
|
||||
|
||||
|
@ -347,82 +347,82 @@ namespace Microsoft.Z3
|
|||
/// <summary>
|
||||
/// Indicates whether the term is an arithmetic numeral.
|
||||
/// </summary>
|
||||
public bool IsArithmeticNumeral { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ANUM; } }
|
||||
public bool IsArithmeticNumeral { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ANUM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a less-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsLE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LE; } }
|
||||
public bool IsLE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a greater-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GE; } }
|
||||
public bool IsGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a less-than
|
||||
/// </summary>
|
||||
public bool IsLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LT; } }
|
||||
public bool IsLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a greater-than
|
||||
/// </summary>
|
||||
public bool IsGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GT; } }
|
||||
public bool IsGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_GT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is addition (binary)
|
||||
/// </summary>
|
||||
public bool IsAdd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ADD; } }
|
||||
public bool IsAdd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ADD; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is subtraction (binary)
|
||||
/// </summary>
|
||||
public bool IsSub { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SUB; } }
|
||||
public bool IsSub { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SUB; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a unary minus
|
||||
/// </summary>
|
||||
public bool IsUMinus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UMINUS; } }
|
||||
public bool IsUMinus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UMINUS; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is multiplication (binary)
|
||||
/// </summary>
|
||||
public bool IsMul { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MUL; } }
|
||||
public bool IsMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MUL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is division (binary)
|
||||
/// </summary>
|
||||
public bool IsDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DIV; } }
|
||||
public bool IsDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_DIV; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is integer division (binary)
|
||||
/// </summary>
|
||||
public bool IsIDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IDIV; } }
|
||||
public bool IsIDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IDIV; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is remainder (binary)
|
||||
/// </summary>
|
||||
public bool IsRemainder { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REM; } }
|
||||
public bool IsRemainder { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is modulus (binary)
|
||||
/// </summary>
|
||||
public bool IsModulus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MOD; } }
|
||||
public bool IsModulus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_MOD; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a coercion of integer to real (unary)
|
||||
/// </summary>
|
||||
public bool IsIntToReal { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_REAL; } }
|
||||
public bool IsIntToReal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_REAL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a coercion of real to integer (unary)
|
||||
/// </summary>
|
||||
public bool IsRealToInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_INT; } }
|
||||
public bool IsRealToInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_TO_INT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a check that tests whether a real is integral (unary)
|
||||
/// </summary>
|
||||
public bool IsRealIsInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IS_INT; } }
|
||||
public bool IsRealIsInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_IS_INT; } }
|
||||
#endregion
|
||||
|
||||
#region Array Terms
|
||||
|
@ -444,64 +444,64 @@ namespace Microsoft.Z3
|
|||
/// </summary>
|
||||
/// <remarks>It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
|
||||
/// Array store takes at least 3 arguments. </remarks>
|
||||
public bool IsStore { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }
|
||||
public bool IsStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_STORE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an array select.
|
||||
/// </summary>
|
||||
public bool IsSelect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT; } }
|
||||
public bool IsSelect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SELECT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a constant array.
|
||||
/// </summary>
|
||||
/// <remarks>For example, select(const(v),i) = v holds for every v and i. The function is unary.</remarks>
|
||||
public bool IsConstantArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONST_ARRAY; } }
|
||||
public bool IsConstantArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONST_ARRAY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a default array.
|
||||
/// </summary>
|
||||
/// <remarks>For example default(const(v)) = v. The function is unary.</remarks>
|
||||
public bool IsDefaultArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT; } }
|
||||
public bool IsDefaultArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_DEFAULT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an array map.
|
||||
/// </summary>
|
||||
/// <remarks>It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i.</remarks>
|
||||
public bool IsArrayMap { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_MAP; } }
|
||||
public bool IsArrayMap { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ARRAY_MAP; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an as-array term.
|
||||
/// </summary>
|
||||
/// <remarks>An as-array term is n array value that behaves as the function graph of the
|
||||
/// function passed as parameter.</remarks>
|
||||
public bool IsAsArray { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }
|
||||
public bool IsAsArray { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_AS_ARRAY; } }
|
||||
#endregion
|
||||
|
||||
#region Set Terms
|
||||
/// <summary>
|
||||
/// Indicates whether the term is set union
|
||||
/// </summary>
|
||||
public bool IsSetUnion { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_UNION; } }
|
||||
public bool IsSetUnion { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_UNION; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is set intersection
|
||||
/// </summary>
|
||||
public bool IsSetIntersect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_INTERSECT; } }
|
||||
public bool IsSetIntersect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_INTERSECT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is set difference
|
||||
/// </summary>
|
||||
public bool IsSetDifference { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_DIFFERENCE; } }
|
||||
public bool IsSetDifference { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_DIFFERENCE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is set complement
|
||||
/// </summary>
|
||||
public bool IsSetComplement { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_COMPLEMENT; } }
|
||||
public bool IsSetComplement { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_COMPLEMENT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is set subset
|
||||
/// </summary>
|
||||
public bool IsSetSubset { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_SUBSET; } }
|
||||
public bool IsSetSubset { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SET_SUBSET; } }
|
||||
#endregion
|
||||
|
||||
#region Bit-vector terms
|
||||
|
@ -516,266 +516,266 @@ namespace Microsoft.Z3
|
|||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector numeral
|
||||
/// </summary>
|
||||
public bool IsBVNumeral { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNUM; } }
|
||||
public bool IsBVNumeral { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNUM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a one-bit bit-vector with value one
|
||||
/// </summary>
|
||||
public bool IsBVBitOne { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT1; } }
|
||||
public bool IsBVBitOne { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT1; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a one-bit bit-vector with value zero
|
||||
/// </summary>
|
||||
public bool IsBVBitZero { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT0; } }
|
||||
public bool IsBVBitZero { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BIT0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector unary minus
|
||||
/// </summary>
|
||||
public bool IsBVUMinus { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNEG; } }
|
||||
public bool IsBVUMinus { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNEG; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector addition (binary)
|
||||
/// </summary>
|
||||
public bool IsBVAdd { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BADD; } }
|
||||
public bool IsBVAdd { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BADD; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector subtraction (binary)
|
||||
/// </summary>
|
||||
public bool IsBVSub { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSUB; } }
|
||||
public bool IsBVSub { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSUB; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector multiplication (binary)
|
||||
/// </summary>
|
||||
public bool IsBVMul { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BMUL; } }
|
||||
public bool IsBVMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BMUL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed division (binary)
|
||||
/// </summary>
|
||||
public bool IsBVSDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV; } }
|
||||
public bool IsBVSDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector unsigned division (binary)
|
||||
/// </summary>
|
||||
public bool IsBVUDiv { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV; } }
|
||||
public bool IsBVUDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed remainder (binary)
|
||||
/// </summary>
|
||||
public bool IsBVSRem { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM; } }
|
||||
public bool IsBVSRem { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector unsigned remainder (binary)
|
||||
/// </summary>
|
||||
public bool IsBVURem { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM; } }
|
||||
public bool IsBVURem { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed modulus
|
||||
/// </summary>
|
||||
public bool IsBVSMod { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD; } }
|
||||
public bool IsBVSMod { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed division by zero
|
||||
/// </summary>
|
||||
internal bool IsBVSDiv0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV0; } }
|
||||
internal bool IsBVSDiv0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSDIV0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector unsigned division by zero
|
||||
/// </summary>
|
||||
internal bool IsBVUDiv0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV0; } }
|
||||
internal bool IsBVUDiv0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUDIV0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed remainder by zero
|
||||
/// </summary>
|
||||
internal bool IsBVSRem0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM0; } }
|
||||
internal bool IsBVSRem0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSREM0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector unsigned remainder by zero
|
||||
/// </summary>
|
||||
internal bool IsBVURem0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM0; } }
|
||||
internal bool IsBVURem0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BUREM0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector signed modulus by zero
|
||||
/// </summary>
|
||||
internal bool IsBVSMod0 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD0; } }
|
||||
internal bool IsBVSMod0 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSMOD0; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an unsigned bit-vector less-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsBVULE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULEQ; } }
|
||||
public bool IsBVULE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a signed bit-vector less-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsBVSLE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLEQ; } }
|
||||
public bool IsBVSLE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an unsigned bit-vector greater-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsBVUGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGEQ; } }
|
||||
public bool IsBVUGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a signed bit-vector greater-than-or-equal
|
||||
/// </summary>
|
||||
public bool IsBVSGE { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGEQ; } }
|
||||
public bool IsBVSGE { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an unsigned bit-vector less-than
|
||||
/// </summary>
|
||||
public bool IsBVULT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULT; } }
|
||||
public bool IsBVULT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ULT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a signed bit-vector less-than
|
||||
/// </summary>
|
||||
public bool IsBVSLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLT; } }
|
||||
public bool IsBVSLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SLT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an unsigned bit-vector greater-than
|
||||
/// </summary>
|
||||
public bool IsBVUGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGT; } }
|
||||
public bool IsBVUGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_UGT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a signed bit-vector greater-than
|
||||
/// </summary>
|
||||
public bool IsBVSGT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGT; } }
|
||||
public bool IsBVSGT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SGT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise AND
|
||||
/// </summary>
|
||||
public bool IsBVAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BAND; } }
|
||||
public bool IsBVAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BAND; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise OR
|
||||
/// </summary>
|
||||
public bool IsBVOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BOR; } }
|
||||
public bool IsBVOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise NOT
|
||||
/// </summary>
|
||||
public bool IsBVNOT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOT; } }
|
||||
public bool IsBVNOT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise XOR
|
||||
/// </summary>
|
||||
public bool IsBVXOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXOR; } }
|
||||
public bool IsBVXOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise NAND
|
||||
/// </summary>
|
||||
public bool IsBVNAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNAND; } }
|
||||
public bool IsBVNAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNAND; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise NOR
|
||||
/// </summary>
|
||||
public bool IsBVNOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOR; } }
|
||||
public bool IsBVNOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BNOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-wise XNOR
|
||||
/// </summary>
|
||||
public bool IsBVXNOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXNOR; } }
|
||||
public bool IsBVXNOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BXNOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector concatenation (binary)
|
||||
/// </summary>
|
||||
public bool IsBVConcat { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONCAT; } }
|
||||
public bool IsBVConcat { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CONCAT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector sign extension
|
||||
/// </summary>
|
||||
public bool IsBVSignExtension { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SIGN_EXT; } }
|
||||
public bool IsBVSignExtension { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_SIGN_EXT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector zero extension
|
||||
/// </summary>
|
||||
public bool IsBVZeroExtension { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ZERO_EXT; } }
|
||||
public bool IsBVZeroExtension { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ZERO_EXT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector extraction
|
||||
/// </summary>
|
||||
public bool IsBVExtract { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXTRACT; } }
|
||||
public bool IsBVExtract { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXTRACT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector repetition
|
||||
/// </summary>
|
||||
public bool IsBVRepeat { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REPEAT; } }
|
||||
public bool IsBVRepeat { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_REPEAT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector reduce OR
|
||||
/// </summary>
|
||||
public bool IsBVReduceOR { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDOR; } }
|
||||
public bool IsBVReduceOR { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDOR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector reduce AND
|
||||
/// </summary>
|
||||
public bool IsBVReduceAND { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDAND; } }
|
||||
public bool IsBVReduceAND { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BREDAND; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector comparison
|
||||
/// </summary>
|
||||
public bool IsBVComp { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BCOMP; } }
|
||||
public bool IsBVComp { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BCOMP; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector shift left
|
||||
/// </summary>
|
||||
public bool IsBVShiftLeft { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSHL; } }
|
||||
public bool IsBVShiftLeft { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BSHL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector logical shift right
|
||||
/// </summary>
|
||||
public bool IsBVShiftRightLogical { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BLSHR; } }
|
||||
public bool IsBVShiftRightLogical { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BLSHR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector arithmetic shift left
|
||||
/// </summary>
|
||||
public bool IsBVShiftRightArithmetic { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BASHR; } }
|
||||
public bool IsBVShiftRightArithmetic { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BASHR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector rotate left
|
||||
/// </summary>
|
||||
public bool IsBVRotateLeft { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_LEFT; } }
|
||||
public bool IsBVRotateLeft { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_LEFT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector rotate right
|
||||
/// </summary>
|
||||
public bool IsBVRotateRight { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_RIGHT; } }
|
||||
public bool IsBVRotateRight { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_ROTATE_RIGHT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector rotate left (extended)
|
||||
/// </summary>
|
||||
/// <remarks>Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.</remarks>
|
||||
public bool IsBVRotateLeftExtended { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT; } }
|
||||
public bool IsBVRotateLeftExtended { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_LEFT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector rotate right (extended)
|
||||
/// </summary>
|
||||
/// <remarks>Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.</remarks>
|
||||
public bool IsBVRotateRightExtended { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT; } }
|
||||
public bool IsBVRotateRightExtended { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_EXT_ROTATE_RIGHT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a coercion from integer to bit-vector
|
||||
/// </summary>
|
||||
/// <remarks>This function is not supported by the decision procedures. Only the most
|
||||
/// rudimentary simplification rules are applied to this function.</remarks>
|
||||
public bool IsIntToBV { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }
|
||||
public bool IsIntToBV { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_INT2BV; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a coercion from bit-vector to integer
|
||||
/// </summary>
|
||||
/// <remarks>This function is not supported by the decision procedures. Only the most
|
||||
/// rudimentary simplification rules are applied to this function.</remarks>
|
||||
public bool IsBVToInt { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }
|
||||
public bool IsBVToInt { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_BV2INT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector carry
|
||||
/// </summary>
|
||||
/// <remarks>Compute the carry bit in a full-adder. The meaning is given by the
|
||||
/// equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))</remarks>
|
||||
public bool IsBVCarry { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }
|
||||
public bool IsBVCarry { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_CARRY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a bit-vector ternary XOR
|
||||
/// </summary>
|
||||
/// <remarks>The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)</remarks>
|
||||
public bool IsBVXOR3 { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR3; } }
|
||||
public bool IsBVXOR3 { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_XOR3; } }
|
||||
|
||||
#endregion
|
||||
|
||||
|
@ -784,13 +784,13 @@ namespace Microsoft.Z3
|
|||
/// Indicates whether the term is a label (used by the Boogie Verification condition generator).
|
||||
/// </summary>
|
||||
/// <remarks>The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.</remarks>
|
||||
public bool IsLabel { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }
|
||||
public bool IsLabel { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
|
||||
/// </summary>
|
||||
/// <remarks>A label literal has a set of string parameters. It takes no arguments.</remarks>
|
||||
public bool IsLabelLit { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
|
||||
public bool IsLabelLit { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_LABEL_LIT; } }
|
||||
#endregion
|
||||
|
||||
#region Proof Terms
|
||||
|
@ -799,22 +799,22 @@ namespace Microsoft.Z3
|
|||
/// </summary>
|
||||
/// <remarks>This binary predicate is used in proof terms.
|
||||
/// It captures equisatisfiability and equivalence modulo renamings.</remarks>
|
||||
public bool IsOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OEQ; } }
|
||||
public bool IsOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_OEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a Proof for the expression 'true'.
|
||||
/// </summary>
|
||||
public bool IsProofTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRUE; } }
|
||||
public bool IsProofTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRUE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a fact asserted by the user.
|
||||
/// </summary>
|
||||
public bool IsProofAsserted { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ASSERTED; } }
|
||||
public bool IsProofAsserted { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ASSERTED; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user.
|
||||
/// </summary>
|
||||
public bool IsProofGoal { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_GOAL; } }
|
||||
public bool IsProofGoal { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_GOAL; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is proof via modus ponens
|
||||
|
@ -825,7 +825,7 @@ namespace Microsoft.Z3
|
|||
/// T2: (implies p q)
|
||||
/// [mp T1 T2]: q
|
||||
/// The second antecedents may also be a proof for (iff p q).</remarks>
|
||||
public bool IsProofModusPonens { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS; } }
|
||||
public bool IsProofModusPonens { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
|
||||
|
@ -834,7 +834,7 @@ namespace Microsoft.Z3
|
|||
/// The only reflexive relations that are used are
|
||||
/// equivalence modulo namings, equality and equivalence.
|
||||
/// That is, R is either '~', '=' or 'iff'.</remarks>
|
||||
public bool IsProofReflexivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }
|
||||
public bool IsProofReflexivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REFLEXIVITY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is proof by symmetricity of a relation
|
||||
|
@ -845,7 +845,7 @@ namespace Microsoft.Z3
|
|||
/// [symmetry T1]: (R s t)
|
||||
/// T1 is the antecedent of this proof object.
|
||||
/// </remarks>
|
||||
public bool IsProofSymmetry { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SYMMETRY; } }
|
||||
public bool IsProofSymmetry { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SYMMETRY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by transitivity of a relation
|
||||
|
@ -857,7 +857,7 @@ namespace Microsoft.Z3
|
|||
/// T2: (R s u)
|
||||
/// [trans T1 T2]: (R t u)
|
||||
/// </remarks>
|
||||
public bool IsProofTransitivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY; } }
|
||||
public bool IsProofTransitivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by condensed transitivity of a relation
|
||||
|
@ -878,7 +878,7 @@ namespace Microsoft.Z3
|
|||
/// if there is a path from s to t, if we view every
|
||||
/// antecedent (R a b) as an edge between a and b.
|
||||
/// </remarks>
|
||||
public bool IsProofTransitivityStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR; } }
|
||||
public bool IsProofTransitivityStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TRANSITIVITY_STAR; } }
|
||||
|
||||
|
||||
/// <summary>
|
||||
|
@ -892,7 +892,7 @@ namespace Microsoft.Z3
|
|||
/// Remark: if t_i == s_i, then the antecedent Ti is suppressed.
|
||||
/// That is, reflexivity proofs are supressed to save space.
|
||||
/// </remarks>
|
||||
public bool IsProofMonotonicity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
|
||||
public bool IsProofMonotonicity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a quant-intro proof
|
||||
|
@ -902,7 +902,7 @@ namespace Microsoft.Z3
|
|||
/// T1: (~ p q)
|
||||
/// [quant-intro T1]: (~ (forall (x) p) (forall (x) q))
|
||||
/// </remarks>
|
||||
public bool IsProofQuantIntro { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }
|
||||
public bool IsProofQuantIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INTRO; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a distributivity proof object.
|
||||
|
@ -920,7 +920,7 @@ namespace Microsoft.Z3
|
|||
/// Remark. This rule is used by the CNF conversion pass and
|
||||
/// instantiated by f = or, and g = and.
|
||||
/// </remarks>
|
||||
public bool IsProofDistributivity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }
|
||||
public bool IsProofDistributivity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DISTRIBUTIVITY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by elimination of AND
|
||||
|
@ -930,7 +930,7 @@ namespace Microsoft.Z3
|
|||
/// T1: (and l_1 ... l_n)
|
||||
/// [and-elim T1]: l_i
|
||||
/// </remarks>
|
||||
public bool IsProofAndElimination { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }
|
||||
public bool IsProofAndElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by eliminiation of not-or
|
||||
|
@ -940,7 +940,7 @@ namespace Microsoft.Z3
|
|||
/// T1: (not (or l_1 ... l_n))
|
||||
/// [not-or-elim T1]: (not l_i)
|
||||
/// </remarks>
|
||||
public bool IsProofOrElimination { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }
|
||||
public bool IsProofOrElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NOT_OR_ELIM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by rewriting
|
||||
|
@ -959,7 +959,7 @@ namespace Microsoft.Z3
|
|||
/// (= (+ x 1 2) (+ 3 x))
|
||||
/// (iff (or x false) x)
|
||||
/// </remarks>
|
||||
public bool IsProofRewrite { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }
|
||||
public bool IsProofRewrite { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by rewriting
|
||||
|
@ -975,7 +975,7 @@ namespace Microsoft.Z3
|
|||
/// - When converting bit-vectors to Booleans (BIT2BOOL=true)
|
||||
/// - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
|
||||
/// </remarks>
|
||||
public bool IsProofRewriteStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }
|
||||
public bool IsProofRewriteStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_REWRITE_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for pulling quantifiers out.
|
||||
|
@ -983,7 +983,7 @@ namespace Microsoft.Z3
|
|||
/// <remarks>
|
||||
/// A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
|
||||
/// </remarks>
|
||||
public bool IsProofPullQuant { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }
|
||||
public bool IsProofPullQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for pulling quantifiers out.
|
||||
|
@ -993,7 +993,7 @@ namespace Microsoft.Z3
|
|||
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
/// This proof object has no antecedents
|
||||
/// </remarks>
|
||||
public bool IsProofPullQuantStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR; } }
|
||||
public bool IsProofPullQuantStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PULL_QUANT_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for pushing quantifiers in.
|
||||
|
@ -1006,7 +1006,7 @@ namespace Microsoft.Z3
|
|||
/// (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
|
||||
/// This proof object has no antecedents
|
||||
/// </remarks>
|
||||
public bool IsProofPushQuant { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }
|
||||
public bool IsProofPushQuant { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_PUSH_QUANT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for elimination of unused variables.
|
||||
|
@ -1018,7 +1018,7 @@ namespace Microsoft.Z3
|
|||
/// It is used to justify the elimination of unused variables.
|
||||
/// This proof object has no antecedents.
|
||||
/// </remarks>
|
||||
public bool IsProofElimUnusedVars { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS; } }
|
||||
public bool IsProofElimUnusedVars { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_ELIM_UNUSED_VARS; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for destructive equality resolution
|
||||
|
@ -1032,7 +1032,7 @@ namespace Microsoft.Z3
|
|||
///
|
||||
/// Several variables can be eliminated simultaneously.
|
||||
/// </remarks>
|
||||
public bool IsProofDER { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }
|
||||
public bool IsProofDER { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DER; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for quantifier instantiation
|
||||
|
@ -1040,13 +1040,13 @@ namespace Microsoft.Z3
|
|||
/// <remarks>
|
||||
/// A proof of (or (not (forall (x) (P x))) (P a))
|
||||
/// </remarks>
|
||||
public bool IsProofQuantInst { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }
|
||||
public bool IsProofQuantInst { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a hypthesis marker.
|
||||
/// </summary>
|
||||
/// <remarks>Mark a hypothesis in a natural deduction style proof.</remarks>
|
||||
public bool IsProofHypothesis { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }
|
||||
public bool IsProofHypothesis { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by lemma
|
||||
|
@ -1059,7 +1059,7 @@ namespace Microsoft.Z3
|
|||
/// It converts the proof in a proof for (or (not l_1) ... (not l_n)),
|
||||
/// when T1 contains the hypotheses: l_1, ..., l_n.
|
||||
/// </remarks>
|
||||
public bool IsProofLemma { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_LEMMA; } }
|
||||
public bool IsProofLemma { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_LEMMA; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by unit resolution
|
||||
|
@ -1071,7 +1071,7 @@ namespace Microsoft.Z3
|
|||
/// T(n+1): (not l_n)
|
||||
/// [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
|
||||
/// </remarks>
|
||||
public bool IsProofUnitResolution { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION; } }
|
||||
public bool IsProofUnitResolution { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_UNIT_RESOLUTION; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by iff-true
|
||||
|
@ -1080,7 +1080,7 @@ namespace Microsoft.Z3
|
|||
/// T1: p
|
||||
/// [iff-true T1]: (iff p true)
|
||||
/// </remarks>
|
||||
public bool IsProofIFFTrue { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_TRUE; } }
|
||||
public bool IsProofIFFTrue { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_TRUE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by iff-false
|
||||
|
@ -1089,7 +1089,7 @@ namespace Microsoft.Z3
|
|||
/// T1: (not p)
|
||||
/// [iff-false T1]: (iff p false)
|
||||
/// </remarks>
|
||||
public bool IsProofIFFFalse { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_FALSE; } }
|
||||
public bool IsProofIFFFalse { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_FALSE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by commutativity
|
||||
|
@ -1102,7 +1102,7 @@ namespace Microsoft.Z3
|
|||
/// This proof object has no antecedents.
|
||||
/// Remark: if f is bool, then = is iff.
|
||||
/// </remarks>
|
||||
public bool IsProofCommutativity { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY; } }
|
||||
public bool IsProofCommutativity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_COMMUTATIVITY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for Tseitin-like axioms
|
||||
|
@ -1138,7 +1138,7 @@ namespace Microsoft.Z3
|
|||
/// unfolding the Boolean connectives in the axioms a small
|
||||
/// bounded number of steps (=3).
|
||||
/// </remarks>
|
||||
public bool IsProofDefAxiom { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM; } }
|
||||
public bool IsProofDefAxiom { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_AXIOM; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for introduction of a name
|
||||
|
@ -1161,7 +1161,7 @@ namespace Microsoft.Z3
|
|||
/// Otherwise:
|
||||
/// [def-intro]: (= n e)
|
||||
/// </remarks>
|
||||
public bool IsProofDefIntro { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }
|
||||
public bool IsProofDefIntro { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_DEF_INTRO; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for application of a definition
|
||||
|
@ -1171,7 +1171,7 @@ namespace Microsoft.Z3
|
|||
/// F is 'equivalent' to n, given that T1 is a proof that
|
||||
/// n is a name for F.
|
||||
/// </remarks>
|
||||
public bool IsProofApplyDef { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_APPLY_DEF; } }
|
||||
public bool IsProofApplyDef { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_APPLY_DEF; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof iff-oeq
|
||||
|
@ -1180,7 +1180,7 @@ namespace Microsoft.Z3
|
|||
/// T1: (iff p q)
|
||||
/// [iff~ T1]: (~ p q)
|
||||
/// </remarks>
|
||||
public bool IsProofIFFOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_OEQ; } }
|
||||
public bool IsProofIFFOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_IFF_OEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a positive NNF step
|
||||
|
@ -1208,7 +1208,7 @@ namespace Microsoft.Z3
|
|||
/// NNF_NEG furthermore handles the case where negation is pushed
|
||||
/// over Boolean connectives 'and' and 'or'.
|
||||
/// </remarks>
|
||||
public bool IsProofNNFPos { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_POS; } }
|
||||
public bool IsProofNNFPos { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_POS; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a negative NNF step
|
||||
|
@ -1233,7 +1233,7 @@ namespace Microsoft.Z3
|
|||
/// [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
|
||||
/// (and (or r_1 r_2) (or r_1' r_2')))
|
||||
/// </remarks>
|
||||
public bool IsProofNNFNeg { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }
|
||||
public bool IsProofNNFNeg { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_NEG; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form.
|
||||
|
@ -1245,7 +1245,7 @@ namespace Microsoft.Z3
|
|||
///
|
||||
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
/// </remarks>
|
||||
public bool IsProofNNFStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_STAR; } }
|
||||
public bool IsProofNNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_NNF_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form.
|
||||
|
@ -1255,7 +1255,7 @@ namespace Microsoft.Z3
|
|||
/// This proof object is only used if the parameter PROOF_MODE is 1.
|
||||
/// This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
|
||||
/// </remarks>
|
||||
public bool IsProofCNFStar { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_CNF_STAR; } }
|
||||
public bool IsProofCNFStar { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_CNF_STAR; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for a Skolemization step
|
||||
|
@ -1268,7 +1268,7 @@ namespace Microsoft.Z3
|
|||
///
|
||||
/// This proof object has no antecedents.
|
||||
/// </remarks>
|
||||
public bool IsProofSkolemize { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }
|
||||
public bool IsProofSkolemize { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_SKOLEMIZE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof by modus ponens for equi-satisfiability.
|
||||
|
@ -1279,7 +1279,7 @@ namespace Microsoft.Z3
|
|||
/// T2: (~ p q)
|
||||
/// [mp~ T1 T2]: q
|
||||
/// </remarks>
|
||||
public bool IsProofModusPonensOEQ { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }
|
||||
public bool IsProofModusPonensOEQ { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MODUS_PONENS_OEQ; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a proof for theory lemma
|
||||
|
@ -1298,7 +1298,7 @@ namespace Microsoft.Z3
|
|||
/// (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
|
||||
/// - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
|
||||
/// </remarks>
|
||||
public bool IsProofTheoryLemma { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TH_LEMMA; } }
|
||||
public bool IsProofTheoryLemma { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_TH_LEMMA; } }
|
||||
#endregion
|
||||
|
||||
#region Relational Terms
|
||||
|
@ -1323,40 +1323,40 @@ namespace Microsoft.Z3
|
|||
/// The function takes <c>n+1</c> arguments, where the first argument is the relation and the remaining <c>n</c> elements
|
||||
/// correspond to the <c>n</c> columns of the relation.
|
||||
/// </remarks>
|
||||
public bool IsRelationStore { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }
|
||||
public bool IsRelationStore { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_STORE; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an empty relation
|
||||
/// </summary>
|
||||
public bool IsEmptyRelation { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_EMPTY; } }
|
||||
public bool IsEmptyRelation { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_EMPTY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a test for the emptiness of a relation
|
||||
/// </summary>
|
||||
public bool IsIsEmptyRelation { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_IS_EMPTY; } }
|
||||
public bool IsIsEmptyRelation { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_IS_EMPTY; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a relational join
|
||||
/// </summary>
|
||||
public bool IsRelationalJoin { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }
|
||||
public bool IsRelationalJoin { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_JOIN; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is the union or convex hull of two relations.
|
||||
/// </summary>
|
||||
/// <remarks>The function takes two arguments.</remarks>
|
||||
public bool IsRelationUnion { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }
|
||||
public bool IsRelationUnion { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_UNION; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is the widening of two relations
|
||||
/// </summary>
|
||||
/// <remarks>The function takes two arguments.</remarks>
|
||||
public bool IsRelationWiden { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_WIDEN; } }
|
||||
public bool IsRelationWiden { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_WIDEN; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a projection of columns (provided as numbers in the parameters).
|
||||
/// </summary>
|
||||
/// <remarks>The function takes one argument.</remarks>
|
||||
public bool IsRelationProject { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_PROJECT; } }
|
||||
public bool IsRelationProject { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_PROJECT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a relation filter
|
||||
|
@ -1368,7 +1368,7 @@ namespace Microsoft.Z3
|
|||
/// corresponding to the columns of the relation.
|
||||
/// So the first column in the relation has index 0.
|
||||
/// </remarks>
|
||||
public bool IsRelationFilter { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_FILTER; } }
|
||||
public bool IsRelationFilter { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_FILTER; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is an intersection of a relation with the negation of another.
|
||||
|
@ -1384,7 +1384,7 @@ namespace Microsoft.Z3
|
|||
/// target are elements in x in pos, such that there is no y in neg that agrees with
|
||||
/// x on the columns c1, d1, .., cN, dN.
|
||||
/// </remarks>
|
||||
public bool IsRelationNegationFilter { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER; } }
|
||||
public bool IsRelationNegationFilter { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_NEGATION_FILTER; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is the renaming of a column in a relation
|
||||
|
@ -1393,12 +1393,12 @@ namespace Microsoft.Z3
|
|||
/// The function takes one argument.
|
||||
/// The parameters contain the renaming as a cycle.
|
||||
/// </remarks>
|
||||
public bool IsRelationRename { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_RENAME; } }
|
||||
public bool IsRelationRename { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_RENAME; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is the complement of a relation
|
||||
/// </summary>
|
||||
public bool IsRelationComplement { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_COMPLEMENT; } }
|
||||
public bool IsRelationComplement { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_COMPLEMENT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a relational select
|
||||
|
@ -1408,7 +1408,7 @@ namespace Microsoft.Z3
|
|||
/// The function takes <c>n+1</c> arguments, where the first argument is a relation,
|
||||
/// and the remaining <c>n</c> arguments correspond to a record.
|
||||
/// </remarks>
|
||||
public bool IsRelationSelect { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_SELECT; } }
|
||||
public bool IsRelationSelect { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_SELECT; } }
|
||||
|
||||
/// <summary>
|
||||
/// Indicates whether the term is a relational clone (copy)
|
||||
|
@ -1420,7 +1420,7 @@ namespace Microsoft.Z3
|
|||
/// for terms of kind <seealso cref="IsRelationUnion"/>
|
||||
/// to perform destructive updates to the first argument.
|
||||
/// </remarks>
|
||||
public bool IsRelationClone { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }
|
||||
public bool IsRelationClone { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_RA_CLONE; } }
|
||||
#endregion
|
||||
|
||||
#region Finite domain terms
|
||||
|
@ -1439,7 +1439,7 @@ namespace Microsoft.Z3
|
|||
/// <summary>
|
||||
/// Indicates whether the term is a less than predicate over a finite domain.
|
||||
/// </summary>
|
||||
public bool IsFiniteDomainLT { get { return FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FD_LT; } }
|
||||
public bool IsFiniteDomainLT { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FD_LT; } }
|
||||
#endregion
|
||||
#endregion
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ namespace Microsoft.Z3
|
|||
/// The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
|
||||
/// Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
|
||||
/// This function can be used to set parameters for a specific Z3 module.
|
||||
/// This can be done by using <module-name>.<parameter-name>.
|
||||
/// This can be done by using [module-name].[parameter-name].
|
||||
/// For example:
|
||||
/// Z3_global_param_set('pp.decimal', 'true')
|
||||
/// will set the parameter "decimal" in the module "pp" to true.
|
||||
|
|
|
@ -24,8 +24,7 @@
|
|||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>
|
||||
</DocumentationFile>
|
||||
<DocumentationFile>..\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
<CodeContractsEnableRuntimeChecking>False</CodeContractsEnableRuntimeChecking>
|
||||
<CodeContractsRuntimeOnlyPublicSurface>False</CodeContractsRuntimeOnlyPublicSurface>
|
||||
<CodeContractsRuntimeThrowOnFailure>True</CodeContractsRuntimeThrowOnFailure>
|
||||
|
@ -140,6 +139,7 @@
|
|||
<CodeContractsRuntimeCheckingLevel>Full</CodeContractsRuntimeCheckingLevel>
|
||||
<CodeContractsReferenceAssembly>%28none%29</CodeContractsReferenceAssembly>
|
||||
<CodeContractsAnalysisWarningLevel>0</CodeContractsAnalysisWarningLevel>
|
||||
<DocumentationFile>..\x64\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x64'">
|
||||
<OutputPath>..\x64\external_64\</OutputPath>
|
||||
|
@ -193,7 +193,7 @@
|
|||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'external|x64'">
|
||||
<OutputPath>..\x64\external\</OutputPath>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\external\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>..\x64\external\Microsoft.Z3.XML</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
|
@ -220,7 +220,7 @@
|
|||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release_delaysign|AnyCPU'">
|
||||
<OutputPath>..\Release_delaysign\</OutputPath>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\Release_delaysign\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>..\Release_delaysign\Microsoft.Z3.XML</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>AnyCPU</PlatformTarget>
|
||||
|
@ -238,7 +238,7 @@
|
|||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release_delaysign|x64'">
|
||||
<OutputPath>bin\x64\Release_delaysign\</OutputPath>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\x64\external_64\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>bin\x64\Release_delaysign\Microsoft.Z3.XML</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
|
@ -266,11 +266,12 @@
|
|||
<CodeAnalysisRuleSet>MinimumRecommendedRules.ruleset</CodeAnalysisRuleSet>
|
||||
<CodeAnalysisRuleSetDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\\Rule Sets</CodeAnalysisRuleSetDirectories>
|
||||
<CodeAnalysisRuleDirectories>;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules</CodeAnalysisRuleDirectories>
|
||||
<DocumentationFile>bin\x86\Debug\Microsoft.Z3.XML</DocumentationFile>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x86'">
|
||||
<OutputPath>bin\x86\Release\</OutputPath>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\external\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>bin\x86\Release\Microsoft.Z3.xml</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x86</PlatformTarget>
|
||||
|
@ -285,7 +286,7 @@
|
|||
<PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'external|x86'">
|
||||
<OutputPath>bin\x86\external\</OutputPath>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\external\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>bin\x86\external\Microsoft.Z3.XML</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x86</PlatformTarget>
|
||||
|
@ -303,7 +304,7 @@
|
|||
<OutputPath>bin\x86\Release_delaysign\</OutputPath>
|
||||
<DefineConstants>DELAYSIGN</DefineConstants>
|
||||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
|
||||
<DocumentationFile>..\Release_delaysign\Microsoft.Z3.xml</DocumentationFile>
|
||||
<DocumentationFile>bin\x86\Release_delaysign\Microsoft.Z3.XML</DocumentationFile>
|
||||
<Optimize>true</Optimize>
|
||||
<DebugType>pdbonly</DebugType>
|
||||
<PlatformTarget>x86</PlatformTarget>
|
||||
|
@ -399,4 +400,4 @@
|
|||
<Target Name="AfterBuild">
|
||||
</Target>
|
||||
-->
|
||||
</Project>
|
||||
</Project>
|
|
@ -132,7 +132,8 @@ namespace Microsoft.Z3
|
|||
/// <remarks>
|
||||
/// This API is an alternative to <see cref="Check"/> with assumptions for extracting unsat cores.
|
||||
/// Both APIs can be used in the same solver. The unsat core will contain a combination
|
||||
/// of the Boolean variables provided using <see cref="AssertAndTrack"/> and the Boolean literals
|
||||
/// of the Boolean variables provided using <see cref="AssertAndTrack(BoolExpr[],BoolExpr[])"/>
|
||||
/// and the Boolean literals
|
||||
/// provided using <see cref="Check"/> with assumptions.
|
||||
/// </remarks>
|
||||
public void AssertAndTrack(BoolExpr[] constraints, BoolExpr[] ps)
|
||||
|
@ -156,7 +157,8 @@ namespace Microsoft.Z3
|
|||
/// <remarks>
|
||||
/// This API is an alternative to <see cref="Check"/> with assumptions for extracting unsat cores.
|
||||
/// Both APIs can be used in the same solver. The unsat core will contain a combination
|
||||
/// of the Boolean variables provided using <see cref="AssertAndTrack"/> and the Boolean literals
|
||||
/// of the Boolean variables provided using <see cref="AssertAndTrack(BoolExpr[],BoolExpr[])"/>
|
||||
/// and the Boolean literals
|
||||
/// provided using <see cref="Check"/> with assumptions.
|
||||
/// </remarks>
|
||||
public void AssertAndTrack(BoolExpr constraint, BoolExpr p)
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -872,8 +872,19 @@ void fpa2bv_converter::mk_div(func_decl * f, unsigned num, expr * const * args,
|
|||
sticky = m.mk_app(m_bv_util.get_fid(), OP_BREDOR, m_bv_util.mk_extract(extra_bits-2, 0, quotient));
|
||||
res_sig = m_bv_util.mk_concat(m_bv_util.mk_extract(extra_bits+sbits+1, extra_bits-1, quotient), sticky);
|
||||
|
||||
SASSERT(m_bv_util.get_bv_size(res_sig) == (sbits + 4));
|
||||
SASSERT(m_bv_util.get_bv_size(res_sig) == (sbits + 4));
|
||||
|
||||
expr_ref res_sig_lz(m);
|
||||
mk_leading_zeros(res_sig, sbits + 4, res_sig_lz);
|
||||
dbg_decouple("fpa2bv_div_res_sig_lz", res_sig_lz);
|
||||
expr_ref res_sig_shift_amount(m);
|
||||
res_sig_shift_amount = m_bv_util.mk_bv_sub(res_sig_lz, m_bv_util.mk_numeral(1, sbits + 4));
|
||||
dbg_decouple("fpa2bv_div_res_sig_shift_amount", res_sig_shift_amount);
|
||||
expr_ref shift_cond(m);
|
||||
shift_cond = m_bv_util.mk_ule(res_sig_lz, m_bv_util.mk_numeral(1, sbits + 4));
|
||||
m_simp.mk_ite(shift_cond, res_sig, m_bv_util.mk_bv_shl(res_sig, res_sig_shift_amount), res_sig);
|
||||
m_simp.mk_ite(shift_cond, res_exp, m_bv_util.mk_bv_sub(res_exp, m_bv_util.mk_extract(ebits+1, 0, res_sig_shift_amount)), res_exp);
|
||||
|
||||
round(f->get_range(), rm, res_sgn, res_sig, res_exp, v8);
|
||||
|
||||
// And finally, we tie them together.
|
||||
|
@ -2743,215 +2754,3 @@ void fpa2bv_converter::round(sort * s, expr_ref & rm, expr_ref & sgn, expr_ref &
|
|||
|
||||
TRACE("fpa2bv_round", tout << "ROUND = " << mk_ismt2_pp(result, m) << std::endl; );
|
||||
}
|
||||
|
||||
void fpa2bv_model_converter::display(std::ostream & out) {
|
||||
out << "(fpa2bv-model-converter";
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = m_uf2bvuf.begin();
|
||||
it != m_uf2bvuf.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = m_uf23bvuf.begin();
|
||||
it != m_uf23bvuf.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value.f_sgn, m, indent) << " ; " <<
|
||||
mk_ismt2_pp(it->m_value.f_sig, m, indent) << " ; " <<
|
||||
mk_ismt2_pp(it->m_value.f_exp, m, indent) << " ; " <<
|
||||
")";
|
||||
}
|
||||
out << ")" << std::endl;
|
||||
}
|
||||
|
||||
model_converter * fpa2bv_model_converter::translate(ast_translation & translator) {
|
||||
fpa2bv_model_converter * res = alloc(fpa2bv_model_converter, translator.to());
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * k = translator(it->m_key);
|
||||
expr * v = translator(it->m_value);
|
||||
res->m_const2bv.insert(k, v);
|
||||
translator.to().inc_ref(k);
|
||||
translator.to().inc_ref(v);
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * k = translator(it->m_key);
|
||||
expr * v = translator(it->m_value);
|
||||
res->m_rm_const2bv.insert(k, v);
|
||||
translator.to().inc_ref(k);
|
||||
translator.to().inc_ref(v);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void fpa2bv_model_converter::convert(model * bv_mdl, model * float_mdl) {
|
||||
float_util fu(m);
|
||||
bv_util bu(m);
|
||||
mpf fp_val;
|
||||
unsynch_mpz_manager & mpzm = fu.fm().mpz_manager();
|
||||
unsynch_mpq_manager & mpqm = fu.fm().mpq_manager();
|
||||
|
||||
TRACE("fpa2bv_mc", tout << "BV Model: " << std::endl;
|
||||
for (unsigned i = 0 ; i < bv_mdl->get_num_constants(); i++)
|
||||
tout << bv_mdl->get_constant(i)->get_name() << " --> " <<
|
||||
mk_ismt2_pp(bv_mdl->get_const_interp(bv_mdl->get_constant(i)), m) << std::endl;
|
||||
);
|
||||
|
||||
obj_hashtable<func_decl> seen;
|
||||
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * var = it->m_key;
|
||||
app * a = to_app(it->m_value);
|
||||
SASSERT(fu.is_float(var->get_range()));
|
||||
SASSERT(var->get_range()->get_num_parameters() == 2);
|
||||
|
||||
unsigned ebits = fu.get_ebits(var->get_range());
|
||||
unsigned sbits = fu.get_sbits(var->get_range());
|
||||
|
||||
expr_ref sgn(m), sig(m), exp(m);
|
||||
sgn = bv_mdl->get_const_interp(to_app(a->get_arg(0))->get_decl());
|
||||
sig = bv_mdl->get_const_interp(to_app(a->get_arg(1))->get_decl());
|
||||
exp = bv_mdl->get_const_interp(to_app(a->get_arg(2))->get_decl());
|
||||
|
||||
seen.insert(to_app(a->get_arg(0))->get_decl());
|
||||
seen.insert(to_app(a->get_arg(1))->get_decl());
|
||||
seen.insert(to_app(a->get_arg(2))->get_decl());
|
||||
|
||||
if (!sgn && !sig && !exp)
|
||||
continue;
|
||||
|
||||
unsigned sgn_sz = bu.get_bv_size(m.get_sort(a->get_arg(0)));
|
||||
unsigned sig_sz = bu.get_bv_size(m.get_sort(a->get_arg(1))) - 1;
|
||||
unsigned exp_sz = bu.get_bv_size(m.get_sort(a->get_arg(2)));
|
||||
|
||||
rational sgn_q(0), sig_q(0), exp_q(0);
|
||||
|
||||
if (sgn) bu.is_numeral(sgn, sgn_q, sgn_sz);
|
||||
if (sig) bu.is_numeral(sig, sig_q, sig_sz);
|
||||
if (exp) bu.is_numeral(exp, exp_q, exp_sz);
|
||||
|
||||
// un-bias exponent
|
||||
rational exp_unbiased_q;
|
||||
exp_unbiased_q = exp_q - fu.fm().m_powers2.m1(ebits-1);
|
||||
|
||||
mpz sig_z; mpf_exp_t exp_z;
|
||||
mpzm.set(sig_z, sig_q.to_mpq().numerator());
|
||||
exp_z = mpzm.get_int64(exp_unbiased_q.to_mpq().numerator());
|
||||
|
||||
TRACE("fpa2bv_mc", tout << var->get_name() << " == [" << sgn_q.to_string() << " " <<
|
||||
mpzm.to_string(sig_z) << " " << exp_z << "(" << exp_q.to_string() << ")]" << std::endl; );
|
||||
|
||||
fu.fm().set(fp_val, ebits, sbits, !mpqm.is_zero(sgn_q.to_mpq()), sig_z, exp_z);
|
||||
|
||||
float_mdl->register_decl(var, fu.mk_value(fp_val));
|
||||
|
||||
mpzm.del(sig_z);
|
||||
}
|
||||
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * var = it->m_key;
|
||||
app * a = to_app(it->m_value);
|
||||
SASSERT(fu.is_rm(var->get_range()));
|
||||
rational val(0);
|
||||
unsigned sz = 0;
|
||||
if (a && bu.is_numeral(a, val, sz)) {
|
||||
TRACE("fpa2bv_mc", tout << var->get_name() << " == " << val.to_string() << std::endl; );
|
||||
SASSERT(val.is_uint64());
|
||||
switch (val.get_uint64())
|
||||
{
|
||||
case BV_RM_TIES_TO_AWAY: float_mdl->register_decl(var, fu.mk_round_nearest_ties_to_away()); break;
|
||||
case BV_RM_TIES_TO_EVEN: float_mdl->register_decl(var, fu.mk_round_nearest_ties_to_even()); break;
|
||||
case BV_RM_TO_NEGATIVE: float_mdl->register_decl(var, fu.mk_round_toward_negative()); break;
|
||||
case BV_RM_TO_POSITIVE: float_mdl->register_decl(var, fu.mk_round_toward_positive()); break;
|
||||
case BV_RM_TO_ZERO:
|
||||
default: float_mdl->register_decl(var, fu.mk_round_toward_zero());
|
||||
}
|
||||
seen.insert(var);
|
||||
}
|
||||
}
|
||||
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = m_uf2bvuf.begin();
|
||||
it != m_uf2bvuf.end();
|
||||
it++)
|
||||
seen.insert(it->m_value);
|
||||
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = m_uf23bvuf.begin();
|
||||
it != m_uf23bvuf.end();
|
||||
it++)
|
||||
{
|
||||
seen.insert(it->m_value.f_sgn);
|
||||
seen.insert(it->m_value.f_sig);
|
||||
seen.insert(it->m_value.f_exp);
|
||||
}
|
||||
|
||||
fu.fm().del(fp_val);
|
||||
|
||||
// Keep all the non-float constants.
|
||||
unsigned sz = bv_mdl->get_num_constants();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
func_decl * c = bv_mdl->get_constant(i);
|
||||
if (!seen.contains(c))
|
||||
float_mdl->register_decl(c, bv_mdl->get_const_interp(c));
|
||||
}
|
||||
|
||||
// And keep everything else
|
||||
sz = bv_mdl->get_num_functions();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
func_decl * f = bv_mdl->get_function(i);
|
||||
if (!seen.contains(f))
|
||||
{
|
||||
TRACE("fpa2bv_mc", tout << "Keeping: " << mk_ismt2_pp(f, m) << std::endl; );
|
||||
func_interp * val = bv_mdl->get_func_interp(f);
|
||||
float_mdl->register_decl(f, val);
|
||||
}
|
||||
}
|
||||
|
||||
sz = bv_mdl->get_num_uninterpreted_sorts();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
sort * s = bv_mdl->get_uninterpreted_sort(i);
|
||||
ptr_vector<expr> u = bv_mdl->get_universe(s);
|
||||
float_mdl->register_usort(s, u.size(), u.c_ptr());
|
||||
}
|
||||
}
|
||||
|
||||
model_converter * mk_fpa2bv_model_converter(ast_manager & m,
|
||||
obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf) {
|
||||
return alloc(fpa2bv_model_converter, m, const2bv, rm_const2bv, uf2bvuf, uf23bvuf);
|
||||
}
|
|
@ -24,13 +24,10 @@ Notes:
|
|||
#include"ref_util.h"
|
||||
#include"float_decl_plugin.h"
|
||||
#include"bv_decl_plugin.h"
|
||||
#include"model_converter.h"
|
||||
#include"basic_simplifier_plugin.h"
|
||||
|
||||
typedef enum { BV_RM_TIES_TO_AWAY=0, BV_RM_TIES_TO_EVEN=1, BV_RM_TO_NEGATIVE=2, BV_RM_TO_POSITIVE=3, BV_RM_TO_ZERO=4 } BV_RM_VAL;
|
||||
|
||||
class fpa2bv_model_converter;
|
||||
|
||||
struct func_decl_triple {
|
||||
func_decl_triple () { f_sgn = 0; f_sig = 0; f_exp = 0; }
|
||||
func_decl_triple (func_decl * sgn, func_decl * sig, func_decl * exp)
|
||||
|
@ -173,86 +170,4 @@ protected:
|
|||
expr_ref & res_sgn, expr_ref & res_sig, expr_ref & res_exp);
|
||||
};
|
||||
|
||||
|
||||
class fpa2bv_model_converter : public model_converter {
|
||||
ast_manager & m;
|
||||
obj_map<func_decl, expr*> m_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
obj_map<func_decl, func_decl*> m_uf2bvuf;
|
||||
obj_map<func_decl, func_decl_triple> m_uf23bvuf;
|
||||
|
||||
public:
|
||||
fpa2bv_model_converter(ast_manager & m, obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf) :
|
||||
m(m) {
|
||||
// Just create a copy?
|
||||
for (obj_map<func_decl, expr*>::iterator it = const2bv.begin();
|
||||
it != const2bv.end();
|
||||
it++)
|
||||
{
|
||||
m_const2bv.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = rm_const2bv.begin();
|
||||
it != rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
m_rm_const2bv.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = uf2bvuf.begin();
|
||||
it != uf2bvuf.end();
|
||||
it++)
|
||||
{
|
||||
m_uf2bvuf.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = uf23bvuf.begin();
|
||||
it != uf23bvuf.end();
|
||||
it++)
|
||||
{
|
||||
m_uf23bvuf.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~fpa2bv_model_converter() {
|
||||
dec_ref_map_key_values(m, m_const2bv);
|
||||
dec_ref_map_key_values(m, m_rm_const2bv);
|
||||
}
|
||||
|
||||
virtual void operator()(model_ref & md, unsigned goal_idx) {
|
||||
SASSERT(goal_idx == 0);
|
||||
model * new_model = alloc(model, m);
|
||||
obj_hashtable<func_decl> bits;
|
||||
convert(md.get(), new_model);
|
||||
md = new_model;
|
||||
}
|
||||
|
||||
virtual void operator()(model_ref & md) {
|
||||
operator()(md, 0);
|
||||
}
|
||||
|
||||
void display(std::ostream & out);
|
||||
|
||||
virtual model_converter * translate(ast_translation & translator);
|
||||
|
||||
protected:
|
||||
fpa2bv_model_converter(ast_manager & m) : m(m) { }
|
||||
|
||||
void convert(model * bv_mdl, model * float_mdl);
|
||||
};
|
||||
|
||||
|
||||
model_converter * mk_fpa2bv_model_converter(ast_manager & m,
|
||||
obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf);
|
||||
|
||||
#endif
|
2638
src/duality/duality.h
Executable file → Normal file
2638
src/duality/duality.h
Executable file → Normal file
File diff suppressed because it is too large
Load diff
|
@ -1,134 +1,134 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_profiling.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
collection performance information for duality
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef _WINDOWS
|
||||
#pragma warning(disable:4996)
|
||||
#pragma warning(disable:4800)
|
||||
#pragma warning(disable:4267)
|
||||
#endif
|
||||
|
||||
#include "duality_wrapper.h"
|
||||
#include "iz3profiling.h"
|
||||
|
||||
namespace Duality {
|
||||
|
||||
void show_time(){
|
||||
output_time(std::cout,current_time());
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
typedef std::map<const char*, struct node> nmap;
|
||||
|
||||
struct node {
|
||||
std::string name;
|
||||
clock_t time;
|
||||
clock_t start_time;
|
||||
nmap sub;
|
||||
struct node *parent;
|
||||
|
||||
node();
|
||||
} top;
|
||||
|
||||
node::node(){
|
||||
time = 0;
|
||||
parent = 0;
|
||||
}
|
||||
|
||||
struct node *current;
|
||||
|
||||
struct init {
|
||||
init(){
|
||||
top.name = "TOTAL";
|
||||
current = ⊤
|
||||
}
|
||||
} initializer;
|
||||
|
||||
struct time_entry {
|
||||
clock_t t;
|
||||
time_entry(){t = 0;};
|
||||
void add(clock_t incr){t += incr;}
|
||||
};
|
||||
|
||||
struct ltstr
|
||||
{
|
||||
bool operator()(const char* s1, const char* s2) const
|
||||
{
|
||||
return strcmp(s1, s2) < 0;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::map<const char*, time_entry, ltstr> tmap;
|
||||
|
||||
static std::ostream *pfs;
|
||||
|
||||
void print_node(node &top, int indent, tmap &totals){
|
||||
for(int i = 0; i < indent; i++) (*pfs) << " ";
|
||||
(*pfs) << top.name;
|
||||
int dots = 70 - 2 * indent - top.name.size();
|
||||
for(int i = 0; i <dots; i++) (*pfs) << ".";
|
||||
output_time(*pfs, top.time);
|
||||
(*pfs) << std::endl;
|
||||
if(indent != 0)totals[top.name.c_str()].add(top.time);
|
||||
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
|
||||
print_node(it->second,indent+1,totals);
|
||||
}
|
||||
|
||||
void print_profile(std::ostream &os) {
|
||||
pfs = &os;
|
||||
top.time = 0;
|
||||
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
|
||||
top.time += it->second.time;
|
||||
tmap totals;
|
||||
print_node(top,0,totals);
|
||||
(*pfs) << "TOTALS:" << std::endl;
|
||||
for(tmap::iterator it = totals.begin(); it != totals.end(); it++){
|
||||
(*pfs) << (it->first) << " ";
|
||||
output_time(*pfs, it->second.t);
|
||||
(*pfs) << std::endl;
|
||||
}
|
||||
profiling::print(os); // print the interpolation stats
|
||||
}
|
||||
|
||||
void timer_start(const char *name){
|
||||
node &child = current->sub[name];
|
||||
if(child.name.empty()){ // a new node
|
||||
child.parent = current;
|
||||
child.name = name;
|
||||
}
|
||||
child.start_time = current_time();
|
||||
current = &child;
|
||||
}
|
||||
|
||||
void timer_stop(const char *name){
|
||||
if(current->name != name || !current->parent){
|
||||
std::cerr << "imbalanced timer_start and timer_stop";
|
||||
exit(1);
|
||||
}
|
||||
current->time += (current_time() - current->start_time);
|
||||
current = current->parent;
|
||||
}
|
||||
}
|
||||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_profiling.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
collection performance information for duality
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef _WINDOWS
|
||||
#pragma warning(disable:4996)
|
||||
#pragma warning(disable:4800)
|
||||
#pragma warning(disable:4267)
|
||||
#endif
|
||||
|
||||
#include "duality_wrapper.h"
|
||||
#include "iz3profiling.h"
|
||||
|
||||
namespace Duality {
|
||||
|
||||
void show_time(){
|
||||
output_time(std::cout,current_time());
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
typedef std::map<const char*, struct node> nmap;
|
||||
|
||||
struct node {
|
||||
std::string name;
|
||||
clock_t time;
|
||||
clock_t start_time;
|
||||
nmap sub;
|
||||
struct node *parent;
|
||||
|
||||
node();
|
||||
} top;
|
||||
|
||||
node::node(){
|
||||
time = 0;
|
||||
parent = 0;
|
||||
}
|
||||
|
||||
struct node *current;
|
||||
|
||||
struct init {
|
||||
init(){
|
||||
top.name = "TOTAL";
|
||||
current = ⊤
|
||||
}
|
||||
} initializer;
|
||||
|
||||
struct time_entry {
|
||||
clock_t t;
|
||||
time_entry(){t = 0;};
|
||||
void add(clock_t incr){t += incr;}
|
||||
};
|
||||
|
||||
struct ltstr
|
||||
{
|
||||
bool operator()(const char* s1, const char* s2) const
|
||||
{
|
||||
return strcmp(s1, s2) < 0;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::map<const char*, time_entry, ltstr> tmap;
|
||||
|
||||
static std::ostream *pfs;
|
||||
|
||||
void print_node(node &top, int indent, tmap &totals){
|
||||
for(int i = 0; i < indent; i++) (*pfs) << " ";
|
||||
(*pfs) << top.name;
|
||||
int dots = 70 - 2 * indent - top.name.size();
|
||||
for(int i = 0; i <dots; i++) (*pfs) << ".";
|
||||
output_time(*pfs, top.time);
|
||||
(*pfs) << std::endl;
|
||||
if(indent != 0)totals[top.name.c_str()].add(top.time);
|
||||
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
|
||||
print_node(it->second,indent+1,totals);
|
||||
}
|
||||
|
||||
void print_profile(std::ostream &os) {
|
||||
pfs = &os;
|
||||
top.time = 0;
|
||||
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
|
||||
top.time += it->second.time;
|
||||
tmap totals;
|
||||
print_node(top,0,totals);
|
||||
(*pfs) << "TOTALS:" << std::endl;
|
||||
for(tmap::iterator it = totals.begin(); it != totals.end(); it++){
|
||||
(*pfs) << (it->first) << " ";
|
||||
output_time(*pfs, it->second.t);
|
||||
(*pfs) << std::endl;
|
||||
}
|
||||
profiling::print(os); // print the interpolation stats
|
||||
}
|
||||
|
||||
void timer_start(const char *name){
|
||||
node &child = current->sub[name];
|
||||
if(child.name.empty()){ // a new node
|
||||
child.parent = current;
|
||||
child.name = name;
|
||||
}
|
||||
child.start_time = current_time();
|
||||
current = &child;
|
||||
}
|
||||
|
||||
void timer_stop(const char *name){
|
||||
if(current->name != name || !current->parent){
|
||||
std::cerr << "imbalanced timer_start and timer_stop";
|
||||
exit(1);
|
||||
}
|
||||
current->time += (current_time() - current->start_time);
|
||||
current = current->parent;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,38 +1,38 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_profiling.h
|
||||
|
||||
Abstract:
|
||||
|
||||
collection performance information for duality
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef DUALITYPROFILING_H
|
||||
#define DUALITYPROFILING_H
|
||||
|
||||
#include <ostream>
|
||||
|
||||
namespace Duality {
|
||||
/** Start a timer with given name */
|
||||
void timer_start(const char *);
|
||||
/** Stop a timer with given name */
|
||||
void timer_stop(const char *);
|
||||
/** Print out timings */
|
||||
void print_profile(std::ostream &s);
|
||||
/** Show the current time. */
|
||||
void show_time();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
duality_profiling.h
|
||||
|
||||
Abstract:
|
||||
|
||||
collection performance information for duality
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef DUALITYPROFILING_H
|
||||
#define DUALITYPROFILING_H
|
||||
|
||||
#include <ostream>
|
||||
|
||||
namespace Duality {
|
||||
/** Start a timer with given name */
|
||||
void timer_start(const char *);
|
||||
/** Stop a timer with given name */
|
||||
void timer_stop(const char *);
|
||||
/** Print out timings */
|
||||
void print_profile(std::ostream &s);
|
||||
/** Show the current time. */
|
||||
void show_time();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load diff
6264
src/duality/duality_solver.cpp
Executable file → Normal file
6264
src/duality/duality_solver.cpp
Executable file → Normal file
File diff suppressed because it is too large
Load diff
|
@ -340,6 +340,12 @@ expr context::make_quant(decl_kind op, const std::vector<sort> &_sorts, const st
|
|||
params p;
|
||||
return simplify(p);
|
||||
}
|
||||
|
||||
expr context::make_var(int idx, const sort &s){
|
||||
::sort * a = to_sort(s.raw());
|
||||
return cook(m().mk_var(idx,a));
|
||||
}
|
||||
|
||||
|
||||
expr expr::qe_lite() const {
|
||||
::qe_lite qe(m());
|
||||
|
@ -374,6 +380,12 @@ expr context::make_quant(decl_kind op, const std::vector<sort> &_sorts, const st
|
|||
return q.ctx().cook(q.m().update_quantifier(thing, is_forall, num_patterns, &_patterns[0], to_expr(b.raw())));
|
||||
}
|
||||
|
||||
expr clone_quantifier(decl_kind dk, const expr &q, const expr &b){
|
||||
quantifier *thing = to_quantifier(q.raw());
|
||||
bool is_forall = dk == Forall;
|
||||
return q.ctx().cook(q.m().update_quantifier(thing, is_forall, to_expr(b.raw())));
|
||||
}
|
||||
|
||||
void expr::get_patterns(std::vector<expr> &pats) const {
|
||||
quantifier *thing = to_quantifier(raw());
|
||||
unsigned num_patterns = thing->get_num_patterns();
|
||||
|
|
2961
src/duality/duality_wrapper.h
Executable file → Normal file
2961
src/duality/duality_wrapper.h
Executable file → Normal file
File diff suppressed because it is too large
Load diff
|
@ -1,195 +1,195 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3base.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Base class for interpolators. Includes an AST manager and a scoping
|
||||
object as bases.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef IZ3BASE_H
|
||||
#define IZ3BASE_H
|
||||
|
||||
#include "iz3mgr.h"
|
||||
#include "iz3scopes.h"
|
||||
|
||||
namespace hash_space {
|
||||
template <>
|
||||
class hash<func_decl *> {
|
||||
public:
|
||||
size_t operator()(func_decl * const &s) const {
|
||||
return (size_t) s;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/* Base class for interpolators. Includes an AST manager and a scoping
|
||||
object as bases. */
|
||||
|
||||
class iz3base : public iz3mgr, public scopes {
|
||||
|
||||
public:
|
||||
|
||||
/** Get the range in which an expression occurs. This is the
|
||||
smallest subtree containing all occurrences of the
|
||||
expression. */
|
||||
range &ast_range(ast);
|
||||
|
||||
/** Get the scope of an expression. This is the set of tree nodes in
|
||||
which all of the expression's symbols are in scope. */
|
||||
range &ast_scope(ast);
|
||||
|
||||
/** Get the range of a symbol. This is the smallest subtree containing
|
||||
all occurrences of the symbol. */
|
||||
range &sym_range(symb);
|
||||
|
||||
/** Is an expression local (in scope in some frame)? */
|
||||
|
||||
bool is_local(ast node){
|
||||
return !range_is_empty(ast_scope(node));
|
||||
}
|
||||
|
||||
/** Simplify an expression */
|
||||
|
||||
ast simplify(ast);
|
||||
|
||||
/** Constructor */
|
||||
|
||||
iz3base(ast_manager &_m_manager,
|
||||
const std::vector<ast> &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(_m_manager), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other,
|
||||
const std::vector<ast> &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(other), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other,
|
||||
const std::vector<std::vector<ast> > &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(other), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other)
|
||||
: iz3mgr(other), scopes() {
|
||||
weak = false;
|
||||
}
|
||||
|
||||
/* Set our options */
|
||||
void set_option(const std::string &name, const std::string &value){
|
||||
if(name == "weak" && value == "1") weak = true;
|
||||
}
|
||||
|
||||
/* Are we doing weak interpolants? */
|
||||
bool weak_mode(){return weak;}
|
||||
|
||||
/** Print interpolation problem to an SMTLIB format file */
|
||||
void print(const std::string &filename);
|
||||
|
||||
/** Check correctness of a solutino to this problem. */
|
||||
void check_interp(const std::vector<ast> &itps, std::vector<ast> &theory);
|
||||
|
||||
/** For convenience -- is this formula SAT? */
|
||||
bool is_sat(const std::vector<ast> &consts, ast &_proof);
|
||||
|
||||
/** Interpolator for clauses, to be implemented */
|
||||
virtual void interpolate_clause(std::vector<ast> &lits, std::vector<ast> &itps){
|
||||
throw "no interpolator";
|
||||
}
|
||||
|
||||
ast get_proof_check_assump(range &rng){
|
||||
std::vector<ast> cs(theory);
|
||||
cs.push_back(cnsts[rng.hi]);
|
||||
return make(And,cs);
|
||||
}
|
||||
|
||||
int frame_of_assertion(const ast &ass){
|
||||
stl_ext::hash_map<ast,int>::iterator it = frame_map.find(ass);
|
||||
if(it == frame_map.end())
|
||||
throw "unknown assertion";
|
||||
return it->second;
|
||||
}
|
||||
|
||||
|
||||
void to_parents_vec_representation(const std::vector<ast> &_cnsts,
|
||||
const ast &tree,
|
||||
std::vector<ast> &cnsts,
|
||||
std::vector<int> &parents,
|
||||
std::vector<ast> &theory,
|
||||
std::vector<int> &pos_map,
|
||||
bool merge = false
|
||||
);
|
||||
|
||||
protected:
|
||||
std::vector<ast> cnsts;
|
||||
std::vector<ast> theory;
|
||||
|
||||
private:
|
||||
|
||||
struct ranges {
|
||||
range rng;
|
||||
range scp;
|
||||
bool scope_computed;
|
||||
ranges(){scope_computed = false;}
|
||||
};
|
||||
|
||||
stl_ext::hash_map<symb,range> sym_range_hash;
|
||||
stl_ext::hash_map<ast,ranges> ast_ranges_hash;
|
||||
stl_ext::hash_map<ast,ast> simplify_memo;
|
||||
stl_ext::hash_map<ast,int> frame_map; // map assertions to frames
|
||||
|
||||
int frames; // number of frames
|
||||
|
||||
protected:
|
||||
void add_frame_range(int frame, ast t);
|
||||
|
||||
private:
|
||||
void initialize(const std::vector<ast> &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
|
||||
|
||||
void initialize(const std::vector<std::vector<ast> > &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
|
||||
|
||||
bool is_literal(ast n);
|
||||
void gather_conjuncts_rec(ast n, std::vector<ast> &conjuncts, stl_ext::hash_set<ast> &memo);
|
||||
void gather_conjuncts(ast n, std::vector<ast> &conjuncts);
|
||||
ast simplify_and(std::vector<ast> &conjuncts);
|
||||
ast simplify_with_lit_rec(ast n, ast lit, stl_ext::hash_map<ast,ast> &memo, int depth);
|
||||
ast simplify_with_lit(ast n, ast lit);
|
||||
void find_children(const stl_ext::hash_set<ast> &cnsts_set,
|
||||
const ast &tree,
|
||||
std::vector<ast> &cnsts,
|
||||
std::vector<int> &parents,
|
||||
std::vector<ast> &conjuncts,
|
||||
std::vector<int> &children,
|
||||
std::vector<int> &pos_map,
|
||||
bool merge
|
||||
);
|
||||
bool weak;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3base.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Base class for interpolators. Includes an AST manager and a scoping
|
||||
object as bases.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef IZ3BASE_H
|
||||
#define IZ3BASE_H
|
||||
|
||||
#include "iz3mgr.h"
|
||||
#include "iz3scopes.h"
|
||||
|
||||
namespace hash_space {
|
||||
template <>
|
||||
class hash<func_decl *> {
|
||||
public:
|
||||
size_t operator()(func_decl * const &s) const {
|
||||
return (size_t) s;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/* Base class for interpolators. Includes an AST manager and a scoping
|
||||
object as bases. */
|
||||
|
||||
class iz3base : public iz3mgr, public scopes {
|
||||
|
||||
public:
|
||||
|
||||
/** Get the range in which an expression occurs. This is the
|
||||
smallest subtree containing all occurrences of the
|
||||
expression. */
|
||||
range &ast_range(ast);
|
||||
|
||||
/** Get the scope of an expression. This is the set of tree nodes in
|
||||
which all of the expression's symbols are in scope. */
|
||||
range &ast_scope(ast);
|
||||
|
||||
/** Get the range of a symbol. This is the smallest subtree containing
|
||||
all occurrences of the symbol. */
|
||||
range &sym_range(symb);
|
||||
|
||||
/** Is an expression local (in scope in some frame)? */
|
||||
|
||||
bool is_local(ast node){
|
||||
return !range_is_empty(ast_scope(node));
|
||||
}
|
||||
|
||||
/** Simplify an expression */
|
||||
|
||||
ast simplify(ast);
|
||||
|
||||
/** Constructor */
|
||||
|
||||
iz3base(ast_manager &_m_manager,
|
||||
const std::vector<ast> &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(_m_manager), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other,
|
||||
const std::vector<ast> &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(other), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other,
|
||||
const std::vector<std::vector<ast> > &_cnsts,
|
||||
const std::vector<int> &_parents,
|
||||
const std::vector<ast> &_theory)
|
||||
: iz3mgr(other), scopes(_parents) {
|
||||
initialize(_cnsts,_parents,_theory);
|
||||
weak = false;
|
||||
}
|
||||
|
||||
iz3base(const iz3mgr& other)
|
||||
: iz3mgr(other), scopes() {
|
||||
weak = false;
|
||||
}
|
||||
|
||||
/* Set our options */
|
||||
void set_option(const std::string &name, const std::string &value){
|
||||
if(name == "weak" && value == "1") weak = true;
|
||||
}
|
||||
|
||||
/* Are we doing weak interpolants? */
|
||||
bool weak_mode(){return weak;}
|
||||
|
||||
/** Print interpolation problem to an SMTLIB format file */
|
||||
void print(const std::string &filename);
|
||||
|
||||
/** Check correctness of a solutino to this problem. */
|
||||
void check_interp(const std::vector<ast> &itps, std::vector<ast> &theory);
|
||||
|
||||
/** For convenience -- is this formula SAT? */
|
||||
bool is_sat(const std::vector<ast> &consts, ast &_proof);
|
||||
|
||||
/** Interpolator for clauses, to be implemented */
|
||||
virtual void interpolate_clause(std::vector<ast> &lits, std::vector<ast> &itps){
|
||||
throw "no interpolator";
|
||||
}
|
||||
|
||||
ast get_proof_check_assump(range &rng){
|
||||
std::vector<ast> cs(theory);
|
||||
cs.push_back(cnsts[rng.hi]);
|
||||
return make(And,cs);
|
||||
}
|
||||
|
||||
int frame_of_assertion(const ast &ass){
|
||||
stl_ext::hash_map<ast,int>::iterator it = frame_map.find(ass);
|
||||
if(it == frame_map.end())
|
||||
throw "unknown assertion";
|
||||
return it->second;
|
||||
}
|
||||
|
||||
|
||||
void to_parents_vec_representation(const std::vector<ast> &_cnsts,
|
||||
const ast &tree,
|
||||
std::vector<ast> &cnsts,
|
||||
std::vector<int> &parents,
|
||||
std::vector<ast> &theory,
|
||||
std::vector<int> &pos_map,
|
||||
bool merge = false
|
||||
);
|
||||
|
||||
protected:
|
||||
std::vector<ast> cnsts;
|
||||
std::vector<ast> theory;
|
||||
|
||||
private:
|
||||
|
||||
struct ranges {
|
||||
range rng;
|
||||
range scp;
|
||||
bool scope_computed;
|
||||
ranges(){scope_computed = false;}
|
||||
};
|
||||
|
||||
stl_ext::hash_map<symb,range> sym_range_hash;
|
||||
stl_ext::hash_map<ast,ranges> ast_ranges_hash;
|
||||
stl_ext::hash_map<ast,ast> simplify_memo;
|
||||
stl_ext::hash_map<ast,int> frame_map; // map assertions to frames
|
||||
|
||||
int frames; // number of frames
|
||||
|
||||
protected:
|
||||
void add_frame_range(int frame, ast t);
|
||||
|
||||
private:
|
||||
void initialize(const std::vector<ast> &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
|
||||
|
||||
void initialize(const std::vector<std::vector<ast> > &_parts, const std::vector<int> &_parents, const std::vector<ast> &_theory);
|
||||
|
||||
bool is_literal(ast n);
|
||||
void gather_conjuncts_rec(ast n, std::vector<ast> &conjuncts, stl_ext::hash_set<ast> &memo);
|
||||
void gather_conjuncts(ast n, std::vector<ast> &conjuncts);
|
||||
ast simplify_and(std::vector<ast> &conjuncts);
|
||||
ast simplify_with_lit_rec(ast n, ast lit, stl_ext::hash_map<ast,ast> &memo, int depth);
|
||||
ast simplify_with_lit(ast n, ast lit);
|
||||
void find_children(const stl_ext::hash_set<ast> &cnsts_set,
|
||||
const ast &tree,
|
||||
std::vector<ast> &cnsts,
|
||||
std::vector<int> &parents,
|
||||
std::vector<ast> &conjuncts,
|
||||
std::vector<int> &children,
|
||||
std::vector<int> &pos_map,
|
||||
bool merge
|
||||
);
|
||||
bool weak;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
|
|
@ -464,7 +464,9 @@ namespace hash_space {
|
|||
|
||||
Value &operator[](const Key& key) {
|
||||
std::pair<Key,Value> kvp(key,Value());
|
||||
return this->lookup(kvp,true)->val.second;
|
||||
return
|
||||
hashtable<std::pair<Key,Value>,Key,HashFun,proj1<Key,Value>,EqFun>::
|
||||
lookup(kvp,true)->val.second;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -814,6 +814,10 @@ class iz3proof_itp_impl : public iz3proof_itp {
|
|||
ast equa = sep_cond(arg(pf,0),cond);
|
||||
if(is_equivrel_chain(equa)){
|
||||
ast lhs,rhs; eq_from_ineq(arg(neg_equality,0),lhs,rhs); // get inequality we need to prove
|
||||
if(!rewrites_from_to(equa,lhs,rhs)){
|
||||
lhs = arg(arg(neg_equality,0),0); // the equality proved is ambiguous, sadly
|
||||
rhs = arg(arg(neg_equality,0),1);
|
||||
}
|
||||
LitType lhst = get_term_type(lhs), rhst = get_term_type(rhs);
|
||||
if(lhst != LitMixed && rhst != LitMixed)
|
||||
return unmixed_eq2ineq(lhs, rhs, op(arg(neg_equality,0)), equa, cond);
|
||||
|
@ -1671,9 +1675,20 @@ class iz3proof_itp_impl : public iz3proof_itp {
|
|||
return head;
|
||||
}
|
||||
|
||||
// split a rewrite chain into head and tail at last non-mixed term
|
||||
bool has_mixed_summands(const ast &e){
|
||||
if(op(e) == Plus){
|
||||
int nargs = num_args(e);
|
||||
for(int i = 0; i < nargs; i++)
|
||||
if(has_mixed_summands(arg(e,i)))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
return get_term_type(e) == LitMixed;
|
||||
}
|
||||
|
||||
// split a rewrite chain into head and tail at last sum with no mixed sumands
|
||||
ast get_right_movers(const ast &chain, const ast &rhs, ast &tail, ast &mid){
|
||||
if(is_true(chain) || get_term_type(rhs) != LitMixed){
|
||||
if(is_true(chain) || !has_mixed_summands(rhs)){
|
||||
mid = rhs;
|
||||
tail = mk_true();
|
||||
return chain;
|
||||
|
@ -1686,11 +1701,11 @@ class iz3proof_itp_impl : public iz3proof_itp {
|
|||
return res;
|
||||
}
|
||||
|
||||
// split a rewrite chain into head and tail at first non-mixed term
|
||||
// split a rewrite chain into head and tail at first sum with no mixed sumands
|
||||
ast get_left_movers(const ast &chain, const ast &lhs, ast &tail, ast &mid){
|
||||
if(is_true(chain)){
|
||||
mid = lhs;
|
||||
if(get_term_type(lhs) != LitMixed){
|
||||
if(!has_mixed_summands(lhs)){
|
||||
tail = mk_true();
|
||||
return chain;
|
||||
}
|
||||
|
@ -1790,10 +1805,21 @@ class iz3proof_itp_impl : public iz3proof_itp {
|
|||
}
|
||||
|
||||
|
||||
bool rewrites_from_to(const ast &chain, const ast &lhs, const ast &rhs){
|
||||
if(is_true(chain))
|
||||
return lhs == rhs;
|
||||
ast last = chain_last(chain);
|
||||
ast rest = chain_rest(chain);
|
||||
ast mid = subst_in_pos(rhs,rewrite_pos(last),rewrite_lhs(last));
|
||||
return rewrites_from_to(rest,lhs,mid);
|
||||
}
|
||||
|
||||
struct bad_ineq_inference {};
|
||||
|
||||
ast chain_ineqs(opr comp_op, LitType t, const ast &chain, const ast &lhs, const ast &rhs){
|
||||
if(is_true(chain)){
|
||||
if(lhs != rhs)
|
||||
throw "bad ineq inference";
|
||||
throw bad_ineq_inference();
|
||||
return make(Leq,make_int(rational(0)),make_int(rational(0)));
|
||||
}
|
||||
ast last = chain_last(chain);
|
||||
|
@ -2656,9 +2682,11 @@ class iz3proof_itp_impl : public iz3proof_itp {
|
|||
pf = make_refl(e); // proof that e = e
|
||||
|
||||
prover::range erng = pv->ast_scope(e);
|
||||
#if 0
|
||||
if(!(erng.lo > erng.hi) && pv->ranges_intersect(pv->ast_scope(e),rng)){
|
||||
return e; // this term occurs in range, so it's O.K.
|
||||
}
|
||||
#endif
|
||||
|
||||
hash_map<ast,ast>::iterator it = localization_map.find(e);
|
||||
|
||||
|
|
|
@ -1,321 +1,321 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3scopes.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Calculations with scopes, for both sequence and tree interpolation.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "iz3scopes.h"
|
||||
|
||||
|
||||
/** computes the least common ancestor of two nodes in the tree, or SHRT_MAX if none */
|
||||
int scopes::tree_lca(int n1, int n2){
|
||||
if(!tree_mode())
|
||||
return std::max(n1,n2);
|
||||
if(n1 == SHRT_MIN) return n2;
|
||||
if(n2 == SHRT_MIN) return n1;
|
||||
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
|
||||
while(n1 != n2){
|
||||
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
|
||||
assert(n1 >= 0 && n2 >= 0 && n1 < (int)parents.size() && n2 < (int)parents.size());
|
||||
if(n1 < n2) n1 = parents[n1];
|
||||
else n2 = parents[n2];
|
||||
}
|
||||
return n1;
|
||||
}
|
||||
|
||||
/** computes the greatest common descendant two nodes in the tree, or SHRT_MIN if none */
|
||||
int scopes::tree_gcd(int n1, int n2){
|
||||
if(!tree_mode())
|
||||
return std::min(n1,n2);
|
||||
int foo = tree_lca(n1,n2);
|
||||
if(foo == n1) return n2;
|
||||
if(foo == n2) return n1;
|
||||
return SHRT_MIN;
|
||||
}
|
||||
|
||||
#ifndef FULL_TREE
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool scopes::in_range(int n, const range &rng){
|
||||
return tree_lca(rng.lo,n) == n && tree_gcd(rng.hi,n) == n;
|
||||
}
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
|
||||
return tree_lca(rng1.lo,rng2.hi) == rng2.hi && tree_lca(rng1.hi,rng2.lo) == rng1.hi;
|
||||
}
|
||||
|
||||
|
||||
bool scopes::range_contained(const range &rng1, const range &rng2){
|
||||
return tree_lca(rng2.lo,rng1.lo) == rng1.lo
|
||||
&& tree_lca(rng1.hi,rng2.hi) == rng2.hi;
|
||||
}
|
||||
|
||||
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
|
||||
range res;
|
||||
res.lo = tree_gcd(rng1.lo,rng2.lo);
|
||||
res.hi = tree_lca(rng1.hi,rng2.hi);
|
||||
return res;
|
||||
}
|
||||
|
||||
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
|
||||
range res;
|
||||
res.lo = tree_lca(rng1.lo,rng2.lo);
|
||||
res.hi = tree_gcd(rng1.hi,rng2.hi);
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class hash<scopes::range_lo > {
|
||||
public:
|
||||
size_t operator()(const scopes::range_lo &p) const {
|
||||
return p.lo + (size_t)p.next;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <> inline
|
||||
size_t stdext::hash_value<scopes::range_lo >(const scopes::range_lo& p)
|
||||
{
|
||||
std::hash<scopes::range_lo> h;
|
||||
return h(p);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class less<scopes::range_lo > {
|
||||
public:
|
||||
bool operator()(const scopes::range_lo &x, const scopes::range_lo &y) const {
|
||||
return x.lo < y.lo || x.lo == y.lo && (size_t)x.next < (size_t)y.next;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
struct range_op {
|
||||
scopes::range_lo *x, *y;
|
||||
int hi;
|
||||
range_op(scopes::range_lo *_x, scopes::range_lo *_y, int _hi){
|
||||
x = _x; y = _y; hi = _hi;
|
||||
}
|
||||
};
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class hash<range_op > {
|
||||
public:
|
||||
size_t operator()(const range_op &p) const {
|
||||
return (size_t) p.x + (size_t)p.y + p.hi;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <> inline
|
||||
size_t stdext::hash_value<range_op >(const range_op& p)
|
||||
{
|
||||
std::hash<range_op> h;
|
||||
return h(p);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class less<range_op > {
|
||||
public:
|
||||
bool operator()(const range_op &x, const range_op &y) const {
|
||||
return (size_t)x.x < (size_t)y.x || x.x == y.x &&
|
||||
((size_t)x.y < (size_t)y.y || x.y == y.y && x.hi < y.hi);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
struct range_tables {
|
||||
hash_map<scopes::range_lo, scopes::range_lo *> unique;
|
||||
hash_map<range_op,scopes::range_lo *> lub;
|
||||
hash_map<range_op,scopes::range_lo *> glb;
|
||||
};
|
||||
|
||||
|
||||
scopes::range_lo *scopes::find_range_lo(int lo, range_lo *next){
|
||||
range_lo foo(lo,next);
|
||||
std::pair<range_lo,range_lo *> baz(foo,(range_lo *)0);
|
||||
std::pair<hash_map<range_lo,scopes::range_lo *>::iterator,bool> bar = rt->unique.insert(baz);
|
||||
if(bar.second)
|
||||
bar.first->second = new range_lo(lo,next);
|
||||
return bar.first->second;
|
||||
//std::pair<hash_set<scopes::range_lo>::iterator,bool> bar = rt->unique.insert(foo);
|
||||
// const range_lo *baz = &*(bar.first);
|
||||
// return (range_lo *)baz; // exit const hell
|
||||
}
|
||||
|
||||
scopes::range_lo *scopes::range_lub_lo(range_lo *rng1, range_lo *rng2){
|
||||
if(!rng1) return rng2;
|
||||
if(!rng2) return rng1;
|
||||
if(rng1->lo > rng2->lo)
|
||||
std::swap(rng1,rng2);
|
||||
std::pair<range_op,range_lo *> foo(range_op(rng1,rng2,0),(range_lo *)0);
|
||||
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->lub.insert(foo);
|
||||
range_lo *&res = bar.first->second;
|
||||
if(!bar.second) return res;
|
||||
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
|
||||
for(int lo = rng1->lo; lo <= rng2->lo; lo = parents[lo])
|
||||
if(lo == rng2->lo)
|
||||
{rng2 = rng2->next; break;}
|
||||
}
|
||||
range_lo *baz = range_lub_lo(rng1->next,rng2);
|
||||
res = find_range_lo(rng1->lo,baz);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
scopes::range_lo *scopes::range_glb_lo(range_lo *rng1, range_lo *rng2, int hi){
|
||||
if(!rng1) return rng1;
|
||||
if(!rng2) return rng2;
|
||||
if(rng1->lo > rng2->lo)
|
||||
std::swap(rng1,rng2);
|
||||
std::pair<range_op,range_lo *> cand(range_op(rng1,rng2,hi),(range_lo *)0);
|
||||
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->glb.insert(cand);
|
||||
range_lo *&res = bar.first->second;
|
||||
if(!bar.second) return res;
|
||||
range_lo *foo;
|
||||
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
|
||||
int lim = hi;
|
||||
if(rng1->next) lim = std::min(lim,rng1->next->lo);
|
||||
int a = rng1->lo, b = rng2->lo;
|
||||
while(a != b && b <= lim){
|
||||
a = parents[a];
|
||||
if(a > b)std::swap(a,b);
|
||||
}
|
||||
if(a == b && b <= lim){
|
||||
foo = range_glb_lo(rng1->next,rng2->next,hi);
|
||||
foo = find_range_lo(b,foo);
|
||||
}
|
||||
else
|
||||
foo = range_glb_lo(rng2,rng1->next,hi);
|
||||
}
|
||||
else foo = range_glb_lo(rng1->next,rng2,hi);
|
||||
res = foo;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
|
||||
int hi = tree_lca(rng1.hi,rng2.hi);
|
||||
if(hi == SHRT_MAX) return range_full();
|
||||
range_lo *lo = range_lub_lo(rng1.lo,rng2.lo);
|
||||
return range(hi,lo);
|
||||
}
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
|
||||
if(rng1.hi == SHRT_MAX) return rng2;
|
||||
if(rng2.hi == SHRT_MAX) return rng1;
|
||||
int hi = tree_gcd(rng1.hi,rng2.hi);
|
||||
range_lo *lo = hi == SHRT_MIN ? 0 : range_glb_lo(rng1.lo,rng2.lo,hi);
|
||||
if(!lo) hi = SHRT_MIN;
|
||||
return range(hi,lo);
|
||||
}
|
||||
|
||||
/** is this range empty? */
|
||||
bool scopes::range_is_empty(const range &rng){
|
||||
return rng.hi == SHRT_MIN;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
scopes::range scopes::range_empty(){
|
||||
return range(SHRT_MIN,0);
|
||||
}
|
||||
|
||||
/** return a full range */
|
||||
scopes::range scopes::range_full(){
|
||||
return range(SHRT_MAX,0);
|
||||
}
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int scopes::range_max(const range &rng){
|
||||
return rng.hi;
|
||||
}
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int scopes::range_min(const range &rng){
|
||||
if(rng.hi == SHRT_MAX) return SHRT_MIN;
|
||||
return rng.lo ? rng.lo->lo : SHRT_MAX;
|
||||
}
|
||||
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
scopes::range scopes::range_downward(int _hi){
|
||||
std::vector<bool> descendants(parents.size());
|
||||
for(int i = descendants.size() - 1; i >= 0 ; i--)
|
||||
descendants[i] = i == _hi || parents[i] < parents.size() && descendants[parents[i]];
|
||||
for(unsigned i = 0; i < descendants.size() - 1; i++)
|
||||
if(parents[i] < parents.size())
|
||||
descendants[parents[i]] = false;
|
||||
range_lo *foo = 0;
|
||||
for(int i = descendants.size() - 1; i >= 0; --i)
|
||||
if(descendants[i]) foo = find_range_lo(i,foo);
|
||||
return range(_hi,foo);
|
||||
}
|
||||
|
||||
/** add an element to a range */
|
||||
void scopes::range_add(int i, range &n){
|
||||
range foo = range(i, find_range_lo(i,0));
|
||||
n = range_lub(foo,n);
|
||||
}
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int scopes::range_near(const range &rng1, const range &rng2){
|
||||
|
||||
int frame;
|
||||
int thing = tree_lca(rng1.hi,rng2.hi);
|
||||
if(thing != rng1.hi) return rng1.hi;
|
||||
range line = range(rng1.hi,find_range_lo(rng2.hi,(range_lo *)0));
|
||||
line = range_glb(line,rng1);
|
||||
return range_min(line);
|
||||
}
|
||||
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool scopes::in_range(int n, const range &rng){
|
||||
range r = range_empty();
|
||||
range_add(n,r);
|
||||
r = range_glb(rng,r);
|
||||
return !range_is_empty(r);
|
||||
}
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
|
||||
range r = range_glb(rng1,rng2);
|
||||
return !range_is_empty(r);
|
||||
}
|
||||
|
||||
|
||||
bool scopes::range_contained(const range &rng1, const range &rng2){
|
||||
range r = range_glb(rng1,rng2);
|
||||
return r.hi == rng1.hi && r.lo == rng1.lo;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3scopes.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Calculations with scopes, for both sequence and tree interpolation.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "iz3scopes.h"
|
||||
|
||||
|
||||
/** computes the least common ancestor of two nodes in the tree, or SHRT_MAX if none */
|
||||
int scopes::tree_lca(int n1, int n2){
|
||||
if(!tree_mode())
|
||||
return std::max(n1,n2);
|
||||
if(n1 == SHRT_MIN) return n2;
|
||||
if(n2 == SHRT_MIN) return n1;
|
||||
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
|
||||
while(n1 != n2){
|
||||
if(n1 == SHRT_MAX || n2 == SHRT_MAX) return SHRT_MAX;
|
||||
assert(n1 >= 0 && n2 >= 0 && n1 < (int)parents.size() && n2 < (int)parents.size());
|
||||
if(n1 < n2) n1 = parents[n1];
|
||||
else n2 = parents[n2];
|
||||
}
|
||||
return n1;
|
||||
}
|
||||
|
||||
/** computes the greatest common descendant two nodes in the tree, or SHRT_MIN if none */
|
||||
int scopes::tree_gcd(int n1, int n2){
|
||||
if(!tree_mode())
|
||||
return std::min(n1,n2);
|
||||
int foo = tree_lca(n1,n2);
|
||||
if(foo == n1) return n2;
|
||||
if(foo == n2) return n1;
|
||||
return SHRT_MIN;
|
||||
}
|
||||
|
||||
#ifndef FULL_TREE
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool scopes::in_range(int n, const range &rng){
|
||||
return tree_lca(rng.lo,n) == n && tree_gcd(rng.hi,n) == n;
|
||||
}
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
|
||||
return tree_lca(rng1.lo,rng2.hi) == rng2.hi && tree_lca(rng1.hi,rng2.lo) == rng1.hi;
|
||||
}
|
||||
|
||||
|
||||
bool scopes::range_contained(const range &rng1, const range &rng2){
|
||||
return tree_lca(rng2.lo,rng1.lo) == rng1.lo
|
||||
&& tree_lca(rng1.hi,rng2.hi) == rng2.hi;
|
||||
}
|
||||
|
||||
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
|
||||
range res;
|
||||
res.lo = tree_gcd(rng1.lo,rng2.lo);
|
||||
res.hi = tree_lca(rng1.hi,rng2.hi);
|
||||
return res;
|
||||
}
|
||||
|
||||
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
|
||||
range res;
|
||||
res.lo = tree_lca(rng1.lo,rng2.lo);
|
||||
res.hi = tree_gcd(rng1.hi,rng2.hi);
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class hash<scopes::range_lo > {
|
||||
public:
|
||||
size_t operator()(const scopes::range_lo &p) const {
|
||||
return p.lo + (size_t)p.next;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <> inline
|
||||
size_t stdext::hash_value<scopes::range_lo >(const scopes::range_lo& p)
|
||||
{
|
||||
std::hash<scopes::range_lo> h;
|
||||
return h(p);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class less<scopes::range_lo > {
|
||||
public:
|
||||
bool operator()(const scopes::range_lo &x, const scopes::range_lo &y) const {
|
||||
return x.lo < y.lo || x.lo == y.lo && (size_t)x.next < (size_t)y.next;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
struct range_op {
|
||||
scopes::range_lo *x, *y;
|
||||
int hi;
|
||||
range_op(scopes::range_lo *_x, scopes::range_lo *_y, int _hi){
|
||||
x = _x; y = _y; hi = _hi;
|
||||
}
|
||||
};
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class hash<range_op > {
|
||||
public:
|
||||
size_t operator()(const range_op &p) const {
|
||||
return (size_t) p.x + (size_t)p.y + p.hi;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <> inline
|
||||
size_t stdext::hash_value<range_op >(const range_op& p)
|
||||
{
|
||||
std::hash<range_op> h;
|
||||
return h(p);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template <>
|
||||
class less<range_op > {
|
||||
public:
|
||||
bool operator()(const range_op &x, const range_op &y) const {
|
||||
return (size_t)x.x < (size_t)y.x || x.x == y.x &&
|
||||
((size_t)x.y < (size_t)y.y || x.y == y.y && x.hi < y.hi);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
struct range_tables {
|
||||
hash_map<scopes::range_lo, scopes::range_lo *> unique;
|
||||
hash_map<range_op,scopes::range_lo *> lub;
|
||||
hash_map<range_op,scopes::range_lo *> glb;
|
||||
};
|
||||
|
||||
|
||||
scopes::range_lo *scopes::find_range_lo(int lo, range_lo *next){
|
||||
range_lo foo(lo,next);
|
||||
std::pair<range_lo,range_lo *> baz(foo,(range_lo *)0);
|
||||
std::pair<hash_map<range_lo,scopes::range_lo *>::iterator,bool> bar = rt->unique.insert(baz);
|
||||
if(bar.second)
|
||||
bar.first->second = new range_lo(lo,next);
|
||||
return bar.first->second;
|
||||
//std::pair<hash_set<scopes::range_lo>::iterator,bool> bar = rt->unique.insert(foo);
|
||||
// const range_lo *baz = &*(bar.first);
|
||||
// return (range_lo *)baz; // exit const hell
|
||||
}
|
||||
|
||||
scopes::range_lo *scopes::range_lub_lo(range_lo *rng1, range_lo *rng2){
|
||||
if(!rng1) return rng2;
|
||||
if(!rng2) return rng1;
|
||||
if(rng1->lo > rng2->lo)
|
||||
std::swap(rng1,rng2);
|
||||
std::pair<range_op,range_lo *> foo(range_op(rng1,rng2,0),(range_lo *)0);
|
||||
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->lub.insert(foo);
|
||||
range_lo *&res = bar.first->second;
|
||||
if(!bar.second) return res;
|
||||
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
|
||||
for(int lo = rng1->lo; lo <= rng2->lo; lo = parents[lo])
|
||||
if(lo == rng2->lo)
|
||||
{rng2 = rng2->next; break;}
|
||||
}
|
||||
range_lo *baz = range_lub_lo(rng1->next,rng2);
|
||||
res = find_range_lo(rng1->lo,baz);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
scopes::range_lo *scopes::range_glb_lo(range_lo *rng1, range_lo *rng2, int hi){
|
||||
if(!rng1) return rng1;
|
||||
if(!rng2) return rng2;
|
||||
if(rng1->lo > rng2->lo)
|
||||
std::swap(rng1,rng2);
|
||||
std::pair<range_op,range_lo *> cand(range_op(rng1,rng2,hi),(range_lo *)0);
|
||||
std::pair<hash_map<range_op,scopes::range_lo *>::iterator,bool> bar = rt->glb.insert(cand);
|
||||
range_lo *&res = bar.first->second;
|
||||
if(!bar.second) return res;
|
||||
range_lo *foo;
|
||||
if(!(rng1->next && rng1->next->lo <= rng2->lo)){
|
||||
int lim = hi;
|
||||
if(rng1->next) lim = std::min(lim,rng1->next->lo);
|
||||
int a = rng1->lo, b = rng2->lo;
|
||||
while(a != b && b <= lim){
|
||||
a = parents[a];
|
||||
if(a > b)std::swap(a,b);
|
||||
}
|
||||
if(a == b && b <= lim){
|
||||
foo = range_glb_lo(rng1->next,rng2->next,hi);
|
||||
foo = find_range_lo(b,foo);
|
||||
}
|
||||
else
|
||||
foo = range_glb_lo(rng2,rng1->next,hi);
|
||||
}
|
||||
else foo = range_glb_lo(rng1->next,rng2,hi);
|
||||
res = foo;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
scopes::range scopes::range_lub(const range &rng1, const range &rng2){
|
||||
int hi = tree_lca(rng1.hi,rng2.hi);
|
||||
if(hi == SHRT_MAX) return range_full();
|
||||
range_lo *lo = range_lub_lo(rng1.lo,rng2.lo);
|
||||
return range(hi,lo);
|
||||
}
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
scopes::range scopes::range_glb(const range &rng1, const range &rng2){
|
||||
if(rng1.hi == SHRT_MAX) return rng2;
|
||||
if(rng2.hi == SHRT_MAX) return rng1;
|
||||
int hi = tree_gcd(rng1.hi,rng2.hi);
|
||||
range_lo *lo = hi == SHRT_MIN ? 0 : range_glb_lo(rng1.lo,rng2.lo,hi);
|
||||
if(!lo) hi = SHRT_MIN;
|
||||
return range(hi,lo);
|
||||
}
|
||||
|
||||
/** is this range empty? */
|
||||
bool scopes::range_is_empty(const range &rng){
|
||||
return rng.hi == SHRT_MIN;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
scopes::range scopes::range_empty(){
|
||||
return range(SHRT_MIN,0);
|
||||
}
|
||||
|
||||
/** return a full range */
|
||||
scopes::range scopes::range_full(){
|
||||
return range(SHRT_MAX,0);
|
||||
}
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int scopes::range_max(const range &rng){
|
||||
return rng.hi;
|
||||
}
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int scopes::range_min(const range &rng){
|
||||
if(rng.hi == SHRT_MAX) return SHRT_MIN;
|
||||
return rng.lo ? rng.lo->lo : SHRT_MAX;
|
||||
}
|
||||
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
scopes::range scopes::range_downward(int _hi){
|
||||
std::vector<bool> descendants(parents.size());
|
||||
for(int i = descendants.size() - 1; i >= 0 ; i--)
|
||||
descendants[i] = i == _hi || parents[i] < parents.size() && descendants[parents[i]];
|
||||
for(unsigned i = 0; i < descendants.size() - 1; i++)
|
||||
if(parents[i] < parents.size())
|
||||
descendants[parents[i]] = false;
|
||||
range_lo *foo = 0;
|
||||
for(int i = descendants.size() - 1; i >= 0; --i)
|
||||
if(descendants[i]) foo = find_range_lo(i,foo);
|
||||
return range(_hi,foo);
|
||||
}
|
||||
|
||||
/** add an element to a range */
|
||||
void scopes::range_add(int i, range &n){
|
||||
range foo = range(i, find_range_lo(i,0));
|
||||
n = range_lub(foo,n);
|
||||
}
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int scopes::range_near(const range &rng1, const range &rng2){
|
||||
|
||||
int frame;
|
||||
int thing = tree_lca(rng1.hi,rng2.hi);
|
||||
if(thing != rng1.hi) return rng1.hi;
|
||||
range line = range(rng1.hi,find_range_lo(rng2.hi,(range_lo *)0));
|
||||
line = range_glb(line,rng1);
|
||||
return range_min(line);
|
||||
}
|
||||
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool scopes::in_range(int n, const range &rng){
|
||||
range r = range_empty();
|
||||
range_add(n,r);
|
||||
r = range_glb(rng,r);
|
||||
return !range_is_empty(r);
|
||||
}
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool scopes::ranges_intersect(const range &rng1, const range &rng2){
|
||||
range r = range_glb(rng1,rng2);
|
||||
return !range_is_empty(r);
|
||||
}
|
||||
|
||||
|
||||
bool scopes::range_contained(const range &rng1, const range &rng2){
|
||||
range r = range_glb(rng1,rng2);
|
||||
return r.hi == rng1.hi && r.lo == rng1.lo;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
|
@ -1,197 +1,197 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3scopes.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Calculations with scopes, for both sequence and tree interpolation.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
#ifndef IZ3SOPES_H
|
||||
#define IZ3SOPES_H
|
||||
|
||||
#include <vector>
|
||||
#include <limits.h>
|
||||
|
||||
class scopes {
|
||||
|
||||
public:
|
||||
/** Construct from parents vector. */
|
||||
scopes(const std::vector<int> &_parents){
|
||||
parents = _parents;
|
||||
}
|
||||
|
||||
scopes(){
|
||||
}
|
||||
|
||||
void initialize(const std::vector<int> &_parents){
|
||||
parents = _parents;
|
||||
}
|
||||
|
||||
/** The parents vector defining the tree structure */
|
||||
std::vector<int> parents;
|
||||
|
||||
// #define FULL_TREE
|
||||
#ifndef FULL_TREE
|
||||
struct range {
|
||||
range(){
|
||||
lo = SHRT_MAX;
|
||||
hi = SHRT_MIN;
|
||||
}
|
||||
short lo, hi;
|
||||
};
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
range range_lub(const range &rng1, const range &rng2);
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
range range_glb(const range &rng1, const range &rng2);
|
||||
|
||||
/** is this range empty? */
|
||||
bool range_is_empty(const range &rng){
|
||||
return rng.hi < rng.lo;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
range range_empty(){
|
||||
range res;
|
||||
res.lo = SHRT_MAX;
|
||||
res.hi = SHRT_MIN;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
range range_full(){
|
||||
range res;
|
||||
res.lo = SHRT_MIN;
|
||||
res.hi = SHRT_MAX;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int range_max(const range &rng){
|
||||
return rng.hi;
|
||||
}
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int range_min(const range &rng){
|
||||
return rng.lo;
|
||||
}
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
range range_downward(int _hi){
|
||||
range foo;
|
||||
foo.lo = SHRT_MIN;
|
||||
foo.hi = _hi;
|
||||
return foo;
|
||||
}
|
||||
|
||||
void range_add(int i, range &n){
|
||||
#if 0
|
||||
if(i < n.lo) n.lo = i;
|
||||
if(i > n.hi) n.hi = i;
|
||||
#else
|
||||
range rng; rng.lo = i; rng.hi = i;
|
||||
n = range_lub(rng,n);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int range_near(const range &rng1, const range &rng2){
|
||||
int frame;
|
||||
int thing = tree_lca(rng1.lo,rng2.hi);
|
||||
if(thing == rng1.lo) frame = rng1.lo;
|
||||
else frame = tree_gcd(thing,rng1.hi);
|
||||
return frame;
|
||||
}
|
||||
#else
|
||||
|
||||
struct range_lo {
|
||||
int lo;
|
||||
range_lo *next;
|
||||
range_lo(int _lo, range_lo *_next){
|
||||
lo = _lo;
|
||||
next = _next;
|
||||
}
|
||||
};
|
||||
|
||||
struct range {
|
||||
int hi;
|
||||
range_lo *lo;
|
||||
range(int _hi, range_lo *_lo){
|
||||
hi = _hi;
|
||||
lo = _lo;
|
||||
}
|
||||
range(){
|
||||
hi = SHRT_MIN;
|
||||
lo = 0;
|
||||
}
|
||||
};
|
||||
|
||||
range_tables *rt;
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
range range_lub(const range &rng1, const range &rng2);
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
range range_glb(const range &rng1, const range &rng2);
|
||||
|
||||
/** is this range empty? */
|
||||
bool range_is_empty(const range &rng);
|
||||
|
||||
/** return an empty range */
|
||||
range range_empty();
|
||||
|
||||
/** return a full range */
|
||||
range range_full();
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int range_max(const range &rng);
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int range_min(const range &rng);
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
range range_downward(int _hi);
|
||||
|
||||
/** add an element to a range */
|
||||
void range_add(int i, range &n);
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int range_near(const range &rng1, const range &rng2);
|
||||
|
||||
range_lo *find_range_lo(int lo, range_lo *next);
|
||||
range_lo *range_lub_lo(range_lo *rng1, range_lo *rng2);
|
||||
range_lo *range_glb_lo(range_lo *rng1, range_lo *rng2, int lim);
|
||||
|
||||
#endif
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool in_range(int n, const range &rng);
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool ranges_intersect(const range &rng1, const range &rng2);
|
||||
|
||||
/** test whether range rng1 contained in range rng2 */
|
||||
bool range_contained(const range &rng1, const range &rng2);
|
||||
|
||||
private:
|
||||
int tree_lca(int n1, int n2);
|
||||
int tree_gcd(int n1, int n2);
|
||||
bool tree_mode(){return parents.size() != 0;}
|
||||
|
||||
|
||||
|
||||
};
|
||||
#endif
|
||||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
iz3scopes.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Calculations with scopes, for both sequence and tree interpolation.
|
||||
|
||||
Author:
|
||||
|
||||
Ken McMillan (kenmcmil)
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
#ifndef IZ3SOPES_H
|
||||
#define IZ3SOPES_H
|
||||
|
||||
#include <vector>
|
||||
#include <limits.h>
|
||||
|
||||
class scopes {
|
||||
|
||||
public:
|
||||
/** Construct from parents vector. */
|
||||
scopes(const std::vector<int> &_parents){
|
||||
parents = _parents;
|
||||
}
|
||||
|
||||
scopes(){
|
||||
}
|
||||
|
||||
void initialize(const std::vector<int> &_parents){
|
||||
parents = _parents;
|
||||
}
|
||||
|
||||
/** The parents vector defining the tree structure */
|
||||
std::vector<int> parents;
|
||||
|
||||
// #define FULL_TREE
|
||||
#ifndef FULL_TREE
|
||||
struct range {
|
||||
range(){
|
||||
lo = SHRT_MAX;
|
||||
hi = SHRT_MIN;
|
||||
}
|
||||
short lo, hi;
|
||||
};
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
range range_lub(const range &rng1, const range &rng2);
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
range range_glb(const range &rng1, const range &rng2);
|
||||
|
||||
/** is this range empty? */
|
||||
bool range_is_empty(const range &rng){
|
||||
return rng.hi < rng.lo;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
range range_empty(){
|
||||
range res;
|
||||
res.lo = SHRT_MAX;
|
||||
res.hi = SHRT_MIN;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** return an empty range */
|
||||
range range_full(){
|
||||
range res;
|
||||
res.lo = SHRT_MIN;
|
||||
res.hi = SHRT_MAX;
|
||||
return res;
|
||||
}
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int range_max(const range &rng){
|
||||
return rng.hi;
|
||||
}
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int range_min(const range &rng){
|
||||
return rng.lo;
|
||||
}
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
range range_downward(int _hi){
|
||||
range foo;
|
||||
foo.lo = SHRT_MIN;
|
||||
foo.hi = _hi;
|
||||
return foo;
|
||||
}
|
||||
|
||||
void range_add(int i, range &n){
|
||||
#if 0
|
||||
if(i < n.lo) n.lo = i;
|
||||
if(i > n.hi) n.hi = i;
|
||||
#else
|
||||
range rng; rng.lo = i; rng.hi = i;
|
||||
n = range_lub(rng,n);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int range_near(const range &rng1, const range &rng2){
|
||||
int frame;
|
||||
int thing = tree_lca(rng1.lo,rng2.hi);
|
||||
if(thing == rng1.lo) frame = rng1.lo;
|
||||
else frame = tree_gcd(thing,rng1.hi);
|
||||
return frame;
|
||||
}
|
||||
#else
|
||||
|
||||
struct range_lo {
|
||||
int lo;
|
||||
range_lo *next;
|
||||
range_lo(int _lo, range_lo *_next){
|
||||
lo = _lo;
|
||||
next = _next;
|
||||
}
|
||||
};
|
||||
|
||||
struct range {
|
||||
int hi;
|
||||
range_lo *lo;
|
||||
range(int _hi, range_lo *_lo){
|
||||
hi = _hi;
|
||||
lo = _lo;
|
||||
}
|
||||
range(){
|
||||
hi = SHRT_MIN;
|
||||
lo = 0;
|
||||
}
|
||||
};
|
||||
|
||||
range_tables *rt;
|
||||
|
||||
/** computes the lub (smallest containing subtree) of two ranges */
|
||||
range range_lub(const range &rng1, const range &rng2);
|
||||
|
||||
/** computes the glb (intersection) of two ranges */
|
||||
range range_glb(const range &rng1, const range &rng2);
|
||||
|
||||
/** is this range empty? */
|
||||
bool range_is_empty(const range &rng);
|
||||
|
||||
/** return an empty range */
|
||||
range range_empty();
|
||||
|
||||
/** return a full range */
|
||||
range range_full();
|
||||
|
||||
/** return the maximal element of a range */
|
||||
int range_max(const range &rng);
|
||||
|
||||
/** return a minimal (not necessarily unique) element of a range */
|
||||
int range_min(const range &rng);
|
||||
|
||||
/** return range consisting of downward closure of a point */
|
||||
range range_downward(int _hi);
|
||||
|
||||
/** add an element to a range */
|
||||
void range_add(int i, range &n);
|
||||
|
||||
/** Choose an element of rng1 that is near to rng2 */
|
||||
int range_near(const range &rng1, const range &rng2);
|
||||
|
||||
range_lo *find_range_lo(int lo, range_lo *next);
|
||||
range_lo *range_lub_lo(range_lo *rng1, range_lo *rng2);
|
||||
range_lo *range_glb_lo(range_lo *rng1, range_lo *rng2, int lim);
|
||||
|
||||
#endif
|
||||
|
||||
/** test whether a tree node is contained in a range */
|
||||
bool in_range(int n, const range &rng);
|
||||
|
||||
/** test whether two ranges of tree nodes intersect */
|
||||
bool ranges_intersect(const range &rng1, const range &rng2);
|
||||
|
||||
/** test whether range rng1 contained in range rng2 */
|
||||
bool range_contained(const range &rng1, const range &rng2);
|
||||
|
||||
private:
|
||||
int tree_lca(int n1, int n2);
|
||||
int tree_gcd(int n1, int n2);
|
||||
bool tree_mode(){return parents.size() != 0;}
|
||||
|
||||
|
||||
|
||||
};
|
||||
#endif
|
||||
|
|
|
@ -464,7 +464,7 @@ public:
|
|||
for(int i = 0; i < 2; i++){ // try the second equality both ways
|
||||
if(match_op(eq_ops_r[0],Select,sel_ops,2))
|
||||
if(match_op(sel_ops[0],Store,sto_ops,3))
|
||||
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
|
||||
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
|
||||
for(int j = 0; j < 2; j++){ // try the first equality both ways
|
||||
if(eq_ops_l[0] == sto_ops[1]
|
||||
&& eq_ops_l[1] == sel_ops[1]
|
||||
|
@ -482,8 +482,8 @@ public:
|
|||
// int frame = range_min(ast_scope(res)); TODO
|
||||
// antes.push_back(std::pair<ast,int>(res,frame));
|
||||
return;
|
||||
}
|
||||
std::swap(eq_ops_l[0],eq_ops_l[1]);
|
||||
}
|
||||
std::swap(eq_ops_l[0],eq_ops_l[1]);
|
||||
}
|
||||
std::swap(eq_ops_r[0],eq_ops_r[1]);
|
||||
}
|
||||
|
|
|
@ -484,7 +484,7 @@ public:
|
|||
for(int i = 0; i < 2; i++){ // try the second equality both ways
|
||||
if(match_op(eq_ops_r[0],Select,sel_ops,2))
|
||||
if(match_op(sel_ops[0],Store,sto_ops,3))
|
||||
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
|
||||
if(match_op(eq_ops_r[1],Select,sel_ops2,2))
|
||||
for(int j = 0; j < 2; j++){ // try the first equality both ways
|
||||
if(eq_ops_l[0] == sto_ops[1]
|
||||
&& eq_ops_l[1] == sel_ops[1]
|
||||
|
@ -502,8 +502,8 @@ public:
|
|||
int frame = range_min(ast_scope(res));
|
||||
antes.push_back(std::pair<ast,int>(res,frame));
|
||||
return;
|
||||
}
|
||||
std::swap(eq_ops_l[0],eq_ops_l[1]);
|
||||
}
|
||||
std::swap(eq_ops_l[0],eq_ops_l[1]);
|
||||
}
|
||||
std::swap(eq_ops_r[0],eq_ops_r[1]);
|
||||
}
|
||||
|
|
|
@ -530,7 +530,7 @@ bool check_hansel_lift(z_manager & upm, numeral_vector const & C,
|
|||
upm.mul(A_lifted.size(), A_lifted.c_ptr(), B_lifted.size(), B_lifted.c_ptr(), test1);
|
||||
upm.sub(C.size(), C.c_ptr(), test1.size(), test1.c_ptr(), test1);
|
||||
to_zp_manager(br_upm, test1);
|
||||
if (!test1.size() == 0) {
|
||||
if (test1.size() != 0) {
|
||||
TRACE("polynomial::factorization::bughunt",
|
||||
tout << "sage: R.<x> = ZZ['x']" << endl;
|
||||
tout << "sage: A = "; upm.display(tout, A); tout << endl;
|
||||
|
|
46
src/smt/theory_fpa.cpp
Normal file
46
src/smt/theory_fpa.cpp
Normal file
|
@ -0,0 +1,46 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_fpa.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Floating-Point Theory Plugin
|
||||
|
||||
Author:
|
||||
|
||||
Christoph (cwinter) 2014-04-23
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#include"ast_smt2_pp.h"
|
||||
#include"theory_fpa.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
bool theory_fpa::internalize_atom(app * atom, bool gate_ctx) {
|
||||
TRACE("bv", tout << "internalizing atom: " << mk_ismt2_pp(atom, get_manager()) << "\n";);
|
||||
SASSERT(atom->get_family_id() == get_family_id());
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return true;
|
||||
}
|
||||
|
||||
void theory_fpa::new_eq_eh(theory_var, theory_var) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
void theory_fpa::new_diseq_eh(theory_var, theory_var) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
void theory_fpa::push_scope_eh() {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
void theory_fpa::pop_scope_eh(unsigned num_scopes) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
};
|
45
src/smt/theory_fpa.h
Normal file
45
src/smt/theory_fpa.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_fpa.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Floating-Point Theory Plugin
|
||||
|
||||
Author:
|
||||
|
||||
Christoph (cwinter) 2014-04-23
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _THEORY_FPA_H_
|
||||
#define _THEORY_FPA_H_
|
||||
|
||||
#include"smt_theory.h"
|
||||
#include"fpa2bv_converter.h"
|
||||
|
||||
namespace smt {
|
||||
class theory_fpa : public theory {
|
||||
fpa2bv_converter m_converter;
|
||||
|
||||
virtual final_check_status final_check_eh() { return FC_DONE; }
|
||||
virtual bool internalize_atom(app*, bool);
|
||||
virtual bool internalize_term(app*) { return internalize_atom(0, false); }
|
||||
virtual void new_eq_eh(theory_var, theory_var);
|
||||
virtual void new_diseq_eh(theory_var, theory_var);
|
||||
virtual void push_scope_eh();
|
||||
virtual void pop_scope_eh(unsigned num_scopes);
|
||||
virtual theory* mk_fresh(context*) { return alloc(theory_fpa, get_manager()); }
|
||||
virtual char const * get_name() const { return "fpa"; }
|
||||
public:
|
||||
theory_fpa(ast_manager& m) : theory(m.mk_family_id("fpa")), m_converter(m) {}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif /* _THEORY_FPA_H_ */
|
||||
|
232
src/tactic/fpa/fpa2bv_model_converter.cpp
Normal file
232
src/tactic/fpa/fpa2bv_model_converter.cpp
Normal file
|
@ -0,0 +1,232 @@
|
|||
/*++
|
||||
Copyright (c) 2012 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
fpa2bv_model_converter.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Model conversion for fpa2bv_converter
|
||||
|
||||
Author:
|
||||
|
||||
Christoph (cwinter) 2012-02-09
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include"ast_smt2_pp.h"
|
||||
#include"fpa2bv_model_converter.h"
|
||||
|
||||
void fpa2bv_model_converter::display(std::ostream & out) {
|
||||
out << "(fpa2bv-model-converter";
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = m_uf2bvuf.begin();
|
||||
it != m_uf2bvuf.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value, m, indent) << ")";
|
||||
}
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = m_uf23bvuf.begin();
|
||||
it != m_uf23bvuf.end();
|
||||
it++) {
|
||||
const symbol & n = it->m_key->get_name();
|
||||
out << "\n (" << n << " ";
|
||||
unsigned indent = n.size() + 4;
|
||||
out << mk_ismt2_pp(it->m_value.f_sgn, m, indent) << " ; " <<
|
||||
mk_ismt2_pp(it->m_value.f_sig, m, indent) << " ; " <<
|
||||
mk_ismt2_pp(it->m_value.f_exp, m, indent) << " ; " <<
|
||||
")";
|
||||
}
|
||||
out << ")" << std::endl;
|
||||
}
|
||||
|
||||
model_converter * fpa2bv_model_converter::translate(ast_translation & translator) {
|
||||
fpa2bv_model_converter * res = alloc(fpa2bv_model_converter, translator.to());
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * k = translator(it->m_key);
|
||||
expr * v = translator(it->m_value);
|
||||
res->m_const2bv.insert(k, v);
|
||||
translator.to().inc_ref(k);
|
||||
translator.to().inc_ref(v);
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * k = translator(it->m_key);
|
||||
expr * v = translator(it->m_value);
|
||||
res->m_rm_const2bv.insert(k, v);
|
||||
translator.to().inc_ref(k);
|
||||
translator.to().inc_ref(v);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void fpa2bv_model_converter::convert(model * bv_mdl, model * float_mdl) {
|
||||
float_util fu(m);
|
||||
bv_util bu(m);
|
||||
mpf fp_val;
|
||||
unsynch_mpz_manager & mpzm = fu.fm().mpz_manager();
|
||||
unsynch_mpq_manager & mpqm = fu.fm().mpq_manager();
|
||||
|
||||
TRACE("fpa2bv_mc", tout << "BV Model: " << std::endl;
|
||||
for (unsigned i = 0; i < bv_mdl->get_num_constants(); i++)
|
||||
tout << bv_mdl->get_constant(i)->get_name() << " --> " <<
|
||||
mk_ismt2_pp(bv_mdl->get_const_interp(bv_mdl->get_constant(i)), m) << std::endl;
|
||||
);
|
||||
|
||||
obj_hashtable<func_decl> seen;
|
||||
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_const2bv.begin();
|
||||
it != m_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * var = it->m_key;
|
||||
app * a = to_app(it->m_value);
|
||||
SASSERT(fu.is_float(var->get_range()));
|
||||
SASSERT(var->get_range()->get_num_parameters() == 2);
|
||||
|
||||
unsigned ebits = fu.get_ebits(var->get_range());
|
||||
unsigned sbits = fu.get_sbits(var->get_range());
|
||||
|
||||
expr_ref sgn(m), sig(m), exp(m);
|
||||
sgn = bv_mdl->get_const_interp(to_app(a->get_arg(0))->get_decl());
|
||||
sig = bv_mdl->get_const_interp(to_app(a->get_arg(1))->get_decl());
|
||||
exp = bv_mdl->get_const_interp(to_app(a->get_arg(2))->get_decl());
|
||||
|
||||
seen.insert(to_app(a->get_arg(0))->get_decl());
|
||||
seen.insert(to_app(a->get_arg(1))->get_decl());
|
||||
seen.insert(to_app(a->get_arg(2))->get_decl());
|
||||
|
||||
if (!sgn && !sig && !exp)
|
||||
continue;
|
||||
|
||||
unsigned sgn_sz = bu.get_bv_size(m.get_sort(a->get_arg(0)));
|
||||
unsigned sig_sz = bu.get_bv_size(m.get_sort(a->get_arg(1))) - 1;
|
||||
unsigned exp_sz = bu.get_bv_size(m.get_sort(a->get_arg(2)));
|
||||
|
||||
rational sgn_q(0), sig_q(0), exp_q(0);
|
||||
|
||||
if (sgn) bu.is_numeral(sgn, sgn_q, sgn_sz);
|
||||
if (sig) bu.is_numeral(sig, sig_q, sig_sz);
|
||||
if (exp) bu.is_numeral(exp, exp_q, exp_sz);
|
||||
|
||||
// un-bias exponent
|
||||
rational exp_unbiased_q;
|
||||
exp_unbiased_q = exp_q - fu.fm().m_powers2.m1(ebits - 1);
|
||||
|
||||
mpz sig_z; mpf_exp_t exp_z;
|
||||
mpzm.set(sig_z, sig_q.to_mpq().numerator());
|
||||
exp_z = mpzm.get_int64(exp_unbiased_q.to_mpq().numerator());
|
||||
|
||||
TRACE("fpa2bv_mc", tout << var->get_name() << " == [" << sgn_q.to_string() << " " <<
|
||||
mpzm.to_string(sig_z) << " " << exp_z << "(" << exp_q.to_string() << ")]" << std::endl;);
|
||||
|
||||
fu.fm().set(fp_val, ebits, sbits, !mpqm.is_zero(sgn_q.to_mpq()), sig_z, exp_z);
|
||||
|
||||
float_mdl->register_decl(var, fu.mk_value(fp_val));
|
||||
|
||||
mpzm.del(sig_z);
|
||||
}
|
||||
|
||||
for (obj_map<func_decl, expr*>::iterator it = m_rm_const2bv.begin();
|
||||
it != m_rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
func_decl * var = it->m_key;
|
||||
app * a = to_app(it->m_value);
|
||||
SASSERT(fu.is_rm(var->get_range()));
|
||||
rational val(0);
|
||||
unsigned sz = 0;
|
||||
if (a && bu.is_numeral(a, val, sz)) {
|
||||
TRACE("fpa2bv_mc", tout << var->get_name() << " == " << val.to_string() << std::endl;);
|
||||
SASSERT(val.is_uint64());
|
||||
switch (val.get_uint64())
|
||||
{
|
||||
case BV_RM_TIES_TO_AWAY: float_mdl->register_decl(var, fu.mk_round_nearest_ties_to_away()); break;
|
||||
case BV_RM_TIES_TO_EVEN: float_mdl->register_decl(var, fu.mk_round_nearest_ties_to_even()); break;
|
||||
case BV_RM_TO_NEGATIVE: float_mdl->register_decl(var, fu.mk_round_toward_negative()); break;
|
||||
case BV_RM_TO_POSITIVE: float_mdl->register_decl(var, fu.mk_round_toward_positive()); break;
|
||||
case BV_RM_TO_ZERO:
|
||||
default: float_mdl->register_decl(var, fu.mk_round_toward_zero());
|
||||
}
|
||||
seen.insert(var);
|
||||
}
|
||||
}
|
||||
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = m_uf2bvuf.begin();
|
||||
it != m_uf2bvuf.end();
|
||||
it++)
|
||||
seen.insert(it->m_value);
|
||||
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = m_uf23bvuf.begin();
|
||||
it != m_uf23bvuf.end();
|
||||
it++)
|
||||
{
|
||||
seen.insert(it->m_value.f_sgn);
|
||||
seen.insert(it->m_value.f_sig);
|
||||
seen.insert(it->m_value.f_exp);
|
||||
}
|
||||
|
||||
fu.fm().del(fp_val);
|
||||
|
||||
// Keep all the non-float constants.
|
||||
unsigned sz = bv_mdl->get_num_constants();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
func_decl * c = bv_mdl->get_constant(i);
|
||||
if (!seen.contains(c))
|
||||
float_mdl->register_decl(c, bv_mdl->get_const_interp(c));
|
||||
}
|
||||
|
||||
// And keep everything else
|
||||
sz = bv_mdl->get_num_functions();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
func_decl * f = bv_mdl->get_function(i);
|
||||
if (!seen.contains(f))
|
||||
{
|
||||
TRACE("fpa2bv_mc", tout << "Keeping: " << mk_ismt2_pp(f, m) << std::endl;);
|
||||
func_interp * val = bv_mdl->get_func_interp(f);
|
||||
float_mdl->register_decl(f, val);
|
||||
}
|
||||
}
|
||||
|
||||
sz = bv_mdl->get_num_uninterpreted_sorts();
|
||||
for (unsigned i = 0; i < sz; i++)
|
||||
{
|
||||
sort * s = bv_mdl->get_uninterpreted_sort(i);
|
||||
ptr_vector<expr> u = bv_mdl->get_universe(s);
|
||||
float_mdl->register_usort(s, u.size(), u.c_ptr());
|
||||
}
|
||||
}
|
||||
|
||||
model_converter * mk_fpa2bv_model_converter(ast_manager & m,
|
||||
obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf) {
|
||||
return alloc(fpa2bv_model_converter, m, const2bv, rm_const2bv, uf2bvuf, uf23bvuf);
|
||||
}
|
106
src/tactic/fpa/fpa2bv_model_converter.h
Normal file
106
src/tactic/fpa/fpa2bv_model_converter.h
Normal file
|
@ -0,0 +1,106 @@
|
|||
/*++
|
||||
Copyright (c) 2012 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
fpa2bv_model_converter.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Model conversion for fpa2bv_converter
|
||||
|
||||
Author:
|
||||
|
||||
Christoph (cwinter) 2012-02-09
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef _FPA2BV_MODEL_CONVERTER_H_
|
||||
#define _FPA2BV_MODEL_CONVERTER_H_
|
||||
|
||||
#include"fpa2bv_converter.h"
|
||||
#include"model_converter.h"
|
||||
|
||||
class fpa2bv_model_converter : public model_converter {
|
||||
ast_manager & m;
|
||||
obj_map<func_decl, expr*> m_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
obj_map<func_decl, func_decl*> m_uf2bvuf;
|
||||
obj_map<func_decl, func_decl_triple> m_uf23bvuf;
|
||||
|
||||
public:
|
||||
fpa2bv_model_converter(ast_manager & m, obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf) :
|
||||
m(m) {
|
||||
// Just create a copy?
|
||||
for (obj_map<func_decl, expr*>::iterator it = const2bv.begin();
|
||||
it != const2bv.end();
|
||||
it++)
|
||||
{
|
||||
m_const2bv.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = rm_const2bv.begin();
|
||||
it != rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
m_rm_const2bv.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, func_decl*>::iterator it = uf2bvuf.begin();
|
||||
it != uf2bvuf.end();
|
||||
it++)
|
||||
{
|
||||
m_uf2bvuf.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, func_decl_triple>::iterator it = uf23bvuf.begin();
|
||||
it != uf23bvuf.end();
|
||||
it++)
|
||||
{
|
||||
m_uf23bvuf.insert(it->m_key, it->m_value);
|
||||
m.inc_ref(it->m_key);
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~fpa2bv_model_converter() {
|
||||
dec_ref_map_key_values(m, m_const2bv);
|
||||
dec_ref_map_key_values(m, m_rm_const2bv);
|
||||
}
|
||||
|
||||
virtual void operator()(model_ref & md, unsigned goal_idx) {
|
||||
SASSERT(goal_idx == 0);
|
||||
model * new_model = alloc(model, m);
|
||||
obj_hashtable<func_decl> bits;
|
||||
convert(md.get(), new_model);
|
||||
md = new_model;
|
||||
}
|
||||
|
||||
virtual void operator()(model_ref & md) {
|
||||
operator()(md, 0);
|
||||
}
|
||||
|
||||
void display(std::ostream & out);
|
||||
|
||||
virtual model_converter * translate(ast_translation & translator);
|
||||
|
||||
protected:
|
||||
fpa2bv_model_converter(ast_manager & m) : m(m) { }
|
||||
|
||||
void convert(model * bv_mdl, model * float_mdl);
|
||||
};
|
||||
|
||||
|
||||
model_converter * mk_fpa2bv_model_converter(ast_manager & m,
|
||||
obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv,
|
||||
obj_map<func_decl, func_decl*> const & uf2bvuf,
|
||||
obj_map<func_decl, func_decl_triple> const & uf23bvuf);
|
||||
|
||||
#endif
|
|
@ -20,6 +20,7 @@ Notes:
|
|||
#include"fpa2bv_rewriter.h"
|
||||
#include"simplify_tactic.h"
|
||||
#include"fpa2bv_tactic.h"
|
||||
#include"fpa2bv_model_converter.h"
|
||||
|
||||
class fpa2bv_tactic : public tactic {
|
||||
struct imp {
|
||||
|
|
Loading…
Reference in a new issue