3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

port Grobner

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-10-23 16:47:26 -07:00
parent f505e76bfc
commit c329263d63
3 changed files with 33 additions and 86 deletions

View file

@ -65,6 +65,17 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
}
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
if (p.e()->is_mul()) {
const nex_mul *m = to_mul(p.e());
if (m->size() == 0) {
const rational& coeff = m->coeff();
if (coeff.is_one())
return true;
r *= coeff.expt(p.pow() * pow);
return true;
}
return false;
}
if (!p.e()->is_scalar())
return false;
const nex_scalar *pe = to_scalar(p.e());

View file

@ -130,45 +130,6 @@ void nla_grobner::process_var(nex_mul* m, lpvar j, ci_dependency* & dep, rationa
}
}
/**
\brief Create a new monomial using the given coeff and m. Fixed
variables in m are substituted by their values. The arg dep is
updated to store these dependencies. The set already_found is
updated with the fixed variables in m. A variable is only
added to dep if it is not already in already_found.
Return null if the monomial was simplified to 0.
*/
nex * nla_grobner::mk_monomial_in_row(rational coeff, lpvar j, ci_dependency * & dep) {
NOT_IMPLEMENTED_YET();
return nullptr;
/*
ptr_buffer<expr> vars;
rational r;
if (c().is_monic_var(j)) {
coeff *= get_monomial_coeff(m);
m = get_monomial_body(m);
if (m_util.is_mul(m)) {
SASSERT(is_pure_monomial(m));
for (unsigned i = 0; i < to_app(m)->get_num_args(); i++) {
expr * arg = to_app(m)->get_arg(i);
process_var(arg);
}
}
else {
process_var(m);
}
}
else {
process_var(m);
}
if (!coeff.is_zero())
return gb.mk_monomial(coeff, vars.size(), vars.c_ptr());
else
return nullptr;
*/
}
common::ci_dependency* nla_grobner::dep_from_vector(svector<lp::constraint_index> & cs) {
ci_dependency * d = nullptr;
@ -319,8 +280,8 @@ bool nla_grobner::simplify_target_monomials_sum_check_only(nex_sum* targ_sum,
}
bool nla_grobner::simplify_target_monomials_sum(equation const * source,
equation *target, nex_sum* targ_sum,
bool nla_grobner::simplify_target_monomials_sum(equation * source,
equation * target, nex_sum* targ_sum,
const nex_mul* high_mon) {
if (!simplify_target_monomials_sum_check_only(targ_sum, high_mon))
return false;
@ -328,6 +289,8 @@ bool nla_grobner::simplify_target_monomials_sum(equation const * source,
for (unsigned j = 0; j < targ_orig_size; j++) {
simplify_target_monomials_sum_j(source, target, targ_sum, high_mon, j);
}
target->exp() = m_nex_creator.simplify(targ_sum);
TRACE("grobner", tout << "target = "; display_equation(tout, *target););
return true;
}
@ -388,48 +351,22 @@ nex_mul * nla_grobner::divide_ignore_coeffs_perform(nex_mul* t, const nex_mul* h
return r;
}
bool nla_grobner::simplify_target_monomials_sum_j(equation const * source, equation *target, nex_sum* targ_sum, const nex_mul* high_mon, unsigned j) {
// if targ_sum->children()[j] = c*high_mon*p,
// and b*high_mon + e = 0, so high_mon = -e/b
// then targ_sum->children()[j] = - (c/b) * e*p
void nla_grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex_mul* high_mon, unsigned j) {
nex * ej = (*targ_sum)[j];
nex * ej_over_high_mon = divide_ignore_coeffs(ej, high_mon);
if (ej_over_high_mon == nullptr)
return false;
NOT_IMPLEMENTED_YET();
return false;
/*
unsigned i = 0;
unsigned new_target_sz = 0;
unsigned target_sz = target->m_monomials.size();
monomial const * LT = source->get_monomial(0);
m_tmp_monomials.reset();
for (; i < target_sz; i++) {
monomial * targ_i = target->m_monomials[i];
if (divide_ignore_coeffs(targ_i, LT)) {
if (i == 0)
m_changed_leading_term = true;
if (!m_tmp_vars1.empty())
target->m_lc = false;
mul_append_skip_first(source, - targ_i->m_coeff / (LT->m_coeff), m_tmp_vars1);
del_monomial(targ_i);
}
else {
if (i != new_target_sz) {
target->m_monomials[new_target_sz] = targ_i;
}
new_target_sz++;
}
nex_mul * ej_over_high_mon = divide_ignore_coeffs(ej, high_mon);
if (ej_over_high_mon == nullptr) {
return;
}
if (new_target_sz < target_sz) {
target->m_monomials.shrink(new_target_sz);
target->m_monomials.append(m_tmp_monomials.size(), m_tmp_monomials.c_ptr());
simplify_eq(target);
TRACE("grobner", tout << "result: "; display_equation(tout, *target););
return true;
}
return false;
*/
return false;
rational c = ej->is_mul()? to_mul(ej)->coeff() : rational(1);
nex_sum * ej_sum = m_nex_creator.mk_sum();
(*targ_sum)[j] = ej_sum;
add_mul_skip_first(ej_sum ,-c/high_mon->coeff(), source->exp(), ej_over_high_mon);
TRACE("grobner", tout << "targ_sum = " << *targ_sum << "\n";);
}
@ -441,6 +378,7 @@ nla_grobner::equation * nla_grobner::simplify_source_target(equation * source, e
bool result = false;
do {
if (simplify_target_monomials(source, target)) {
TRACE("grobner", tout << "simplified target = ";display_equation(tout, *target) << "\n";);
result = true;
} else {
break;
@ -527,7 +465,8 @@ void nla_grobner::simplify_to_process(equation* eq) {
// if e is the sum adds to r all children of e multiplied by beta, except the first one
// which corresponds to the highest monomial
void nla_grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c) {
if (e->is_sum()) {
SASSERT(e->is_sum());
if (e->is_sum()) {
nex_sum *es = to_sum(e);
for (unsigned j = 1; j < es->size(); j++) {
r->add_child(m_nex_creator.mk_mul(beta, (*es)[j], c));

View file

@ -141,9 +141,6 @@ bool simplify_processed_with_eq(equation*);
void assert_eq_0(nex*, ci_dependency * dep);
void process_var(nex_mul*, lpvar j, ci_dependency *& dep, rational&);
nex* mk_monomial_in_row(rational, lpvar, ci_dependency*&);
void init_equation(equation* eq, nex*, ci_dependency* d);
std::ostream& display_dependency(std::ostream& out, ci_dependency*);
@ -152,9 +149,9 @@ bool simplify_processed_with_eq(equation*);
void simplify_equations_to_process();
nex_mul * get_highest_monomial(nex * e) const;
ci_dependency* dep_from_vector( svector<lp::constraint_index> & fixed_vars_constraints);
bool simplify_target_monomials_sum(equation const *, equation *, nex_sum*, const nex_mul*);
bool simplify_target_monomials_sum(equation *, equation *, nex_sum*, const nex_mul*);
bool simplify_target_monomials_sum_check_only(nex_sum*, const nex_mul*);
bool simplify_target_monomials_sum_j(equation const *, equation *, nex_sum*, const nex_mul*, unsigned);
void simplify_target_monomials_sum_j(equation *, equation *, nex_sum*, const nex_mul*, unsigned);
nex_mul * divide_ignore_coeffs(nex* ej, const nex_mul*);
bool divide_ignore_coeffs_check_only(nex_mul* , const nex_mul*);
nex_mul * divide_ignore_coeffs_perform(nex_mul* , const nex_mul*);