3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-28 08:58:44 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-04-03 17:26:54 -07:00
parent 31baab49c8
commit c2b213c049
3 changed files with 130 additions and 66 deletions

View file

@ -45,6 +45,18 @@ namespace polysat {
return !b.is_false(); return !b.is_false();
} }
void solver::add_non_viable(unsigned var, rational const& val) {
bdd value = m_bdd.mk_true();
for (unsigned k = size(var); k-- > 0; )
value &= val.get_bit(k) ? m_bdd.mk_var(k) : m_bdd.mk_nvar(k);
m_viable[var] &= !value;
}
lbool solver::find_viable(unsigned var, rational & val) {
return l_false;
}
struct solver::t_del_var : public trail { struct solver::t_del_var : public trail {
solver& s; solver& s;
t_del_var(solver& s): s(s) {} t_del_var(solver& s): s(s) {}
@ -55,6 +67,8 @@ namespace polysat {
solver::solver(trail_stack& s): solver::solver(trail_stack& s):
m_trail(s), m_trail(s),
m_bdd(1000), m_bdd(1000),
m_dep_manager(m_value_manager, m_alloc),
m_lemma_dep(nullptr, m_dep_manager),
m_free_vars(m_activity) { m_free_vars(m_activity) {
} }
@ -102,7 +116,8 @@ namespace polysat {
} }
void solver::add_eq(pdd const& p, unsigned dep) { void solver::add_eq(pdd const& p, unsigned dep) {
constraint* c = constraint::eq(m_level, p, m_dep_manager.mk_leaf(dep)); p_dependency_ref d(m_dep_manager.mk_leaf(dep), m_dep_manager);
constraint* c = constraint::eq(m_level, p, d);
m_constraints.push_back(c); m_constraints.push_back(c);
add_watch(*c); add_watch(*c);
} }
@ -135,7 +150,7 @@ namespace polysat {
void solver::assign(unsigned var, unsigned index, bool value, unsigned dep) { void solver::assign(unsigned var, unsigned index, bool value, unsigned dep) {
m_viable[var] &= value ? m_bdd.mk_var(index) : m_bdd.mk_nvar(index); m_viable[var] &= value ? m_bdd.mk_var(index) : m_bdd.mk_nvar(index);
m_trail.push(vector_value_trail<u_dependency*, false>(m_vdeps, var)); m_trail.push(vector_value_trail<p_dependency*, false>(m_vdeps, var));
m_vdeps[var] = m_dep_manager.mk_join(m_vdeps[var], m_dep_manager.mk_leaf(dep)); m_vdeps[var] = m_dep_manager.mk_join(m_vdeps[var], m_dep_manager.mk_leaf(dep));
if (m_viable[var].is_false()) { if (m_viable[var].is_false()) {
// TBD: set conflict // TBD: set conflict
@ -357,8 +372,7 @@ namespace polysat {
m_conflict = nullptr; m_conflict = nullptr;
pdd p = c.p(); pdd p = c.p();
m_lemma_level = c.level(); m_lemma_level = c.level();
m_lemma_deps.reset(); m_lemma_dep = c.dep();
m_lemma_deps.push_back(c.dep());
unsigned new_lemma_level = 0; unsigned new_lemma_level = 0;
reset_marks(); reset_marks();
for (auto v : c.vars()) for (auto v : c.vars())
@ -442,27 +456,32 @@ namespace polysat {
auto v = m_search[i]; auto v = m_search[i];
SASSERT(m_justification[v].is_decision()); SASSERT(m_justification[v].is_decision());
SASSERT(m_lemma_level <= m_justification[v].level()); SASSERT(m_lemma_level <= m_justification[v].level());
// constraint* c = constraint::eq(m_lemma_level, p, m_lemma_dep);
// TBD: convert m_lemma_deps into deps.
// the scope of the new constraint should be confined to
// m_lemma_level so could be below the current user scope.
// What to do in this case is TBD.
//
unsigned level = m_lemma_level;
u_dependency* deps = nullptr;
constraint* c = constraint::eq(level, p, deps);
m_cjust[v].push_back(c); m_cjust[v].push_back(c);
add_lemma(c); add_lemma(c);
add_non_viable(v, m_value[v]);
// TBD conditions for when backjumping applies to be clarified.
unsigned new_level = m_justification[v].level();
backjump(new_level);
// //
// TBD: remove current value from viable // find a new decision if there is one,
// m_values[v] // propagate if decision is singular,
// // otherwise if there are no viable decisions, backjump
// 1. undo levels until i // and set a new conflict.
// 2. find a new decision if there is one,
// propagate if decision is singular,
// otherwise if there are no viable decisions, backjump
// and set a new conflict.
// //
rational value;
switch (find_viable(v, value)) {
case l_true:
// unit propagation
break;
case l_undef:
// branch
break;
case l_false:
// no viable.
break;
}
} }
void solver::backjump(unsigned new_level) { void solver::backjump(unsigned new_level) {
@ -490,10 +509,6 @@ namespace polysat {
/** /**
* Return residue of superposing p and q with respect to v. * Return residue of superposing p and q with respect to v.
*
* TBD: should also collect dependencies (deps)
* and maximal level of constraints so learned lemma
* is given the appropriate level.
*/ */
pdd solver::resolve(unsigned v, pdd const& p, unsigned& resolve_level) { pdd solver::resolve(unsigned v, pdd const& p, unsigned& resolve_level) {
resolve_level = 0; resolve_level = 0;
@ -507,7 +522,7 @@ namespace polysat {
// add parity condition to presere falsification // add parity condition to presere falsification
degree = r.degree(v); degree = r.degree(v);
resolve_level = std::max(resolve_level, c->level()); resolve_level = std::max(resolve_level, c->level());
m_lemma_deps.push_back(c->dep()); m_lemma_dep = m_dep_manager.mk_join(m_lemma_dep.get(), c->dep());
} }
} }
} }
@ -538,14 +553,12 @@ namespace polysat {
void solver::push() { void solver::push() {
push_level(); push_level();
m_dep_manager.push_scope();
m_scopes.push_back(m_level); m_scopes.push_back(m_level);
} }
void solver::pop(unsigned num_scopes) { void solver::pop(unsigned num_scopes) {
unsigned base_level = m_scopes[m_scopes.size() - num_scopes]; unsigned base_level = m_scopes[m_scopes.size() - num_scopes];
pop_levels(m_level - base_level - 1); pop_levels(m_level - base_level - 1);
m_dep_manager.pop_scope(num_scopes);
} }
bool solver::at_base_level() const { bool solver::at_base_level() const {

View file

@ -30,6 +30,23 @@ namespace polysat {
typedef dd::pdd pdd; typedef dd::pdd pdd;
typedef dd::bdd bdd; typedef dd::bdd bdd;
struct dep_value_manager {
void inc_ref(unsigned) {}
void dec_ref(unsigned) {}
};
struct dep_config {
typedef dep_value_manager value_manager;
typedef unsigned value;
typedef small_object_allocator allocator;
static const bool ref_count = false;
};
typedef dependency_manager<dep_config> poly_dep_manager;
typedef poly_dep_manager::dependency p_dependency;
typedef obj_ref<p_dependency, poly_dep_manager> p_dependency_ref;
enum ckind_t { eq_t, ule_t, sle_t }; enum ckind_t { eq_t, ule_t, sle_t };
class constraint { class constraint {
@ -37,20 +54,20 @@ namespace polysat {
ckind_t m_kind; ckind_t m_kind;
pdd m_poly; pdd m_poly;
pdd m_other; pdd m_other;
u_dependency* m_dep; p_dependency_ref m_dep;
unsigned_vector m_vars; unsigned_vector m_vars;
constraint(unsigned lvl, pdd const& p, pdd const& q, u_dependency* dep, ckind_t k): constraint(unsigned lvl, pdd const& p, pdd const& q, p_dependency_ref& dep, ckind_t k):
m_level(lvl), m_kind(k), m_poly(p), m_other(q), m_dep(dep) { m_level(lvl), m_kind(k), m_poly(p), m_other(q), m_dep(dep) {
m_vars.append(p.free_vars()); m_vars.append(p.free_vars());
if (q != p) if (q != p)
for (auto v : q.free_vars()) for (auto v : q.free_vars())
m_vars.insert(v); m_vars.insert(v);
} }
public: public:
static constraint* eq(unsigned lvl, pdd const& p, u_dependency* d) { static constraint* eq(unsigned lvl, pdd const& p, p_dependency_ref& d) {
return alloc(constraint, lvl, p, p, d, ckind_t::eq_t); return alloc(constraint, lvl, p, p, d, ckind_t::eq_t);
} }
static constraint* ule(unsigned lvl, pdd const& p, pdd const& q, u_dependency* d) { static constraint* ule(unsigned lvl, pdd const& p, pdd const& q, p_dependency_ref& d) {
return alloc(constraint, lvl, p, q, d, ckind_t::ule_t); return alloc(constraint, lvl, p, q, d, ckind_t::ule_t);
} }
ckind_t kind() const { return m_kind; } ckind_t kind() const { return m_kind; }
@ -58,7 +75,7 @@ namespace polysat {
pdd const & lhs() const { return m_poly; } pdd const & lhs() const { return m_poly; }
pdd const & rhs() const { return m_other; } pdd const & rhs() const { return m_other; }
std::ostream& display(std::ostream& out) const; std::ostream& display(std::ostream& out) const;
u_dependency* dep() const { return m_dep; } p_dependency* dep() const { return m_dep; }
unsigned_vector& vars() { return m_vars; } unsigned_vector& vars() { return m_vars; }
unsigned level() const { return m_level; } unsigned level() const { return m_level; }
}; };
@ -97,7 +114,10 @@ namespace polysat {
trail_stack& m_trail; trail_stack& m_trail;
scoped_ptr_vector<dd::pdd_manager> m_pdd; scoped_ptr_vector<dd::pdd_manager> m_pdd;
dd::bdd_manager m_bdd; dd::bdd_manager m_bdd;
u_dependency_manager m_dep_manager; dep_value_manager m_value_manager;
small_object_allocator m_alloc;
poly_dep_manager m_dep_manager;
p_dependency_ref m_lemma_dep;
var_queue m_free_vars; var_queue m_free_vars;
// Per constraint state // Per constraint state
@ -106,7 +126,7 @@ namespace polysat {
// Per variable information // Per variable information
vector<bdd> m_viable; // set of viable values. vector<bdd> m_viable; // set of viable values.
ptr_vector<u_dependency> m_vdeps; // dependencies for viable values ptr_vector<p_dependency> m_vdeps; // dependencies for viable values
vector<rational> m_value; // assigned value vector<rational> m_value; // assigned value
vector<justification> m_justification; // justification for variable assignment vector<justification> m_justification; // justification for variable assignment
vector<constraints> m_cjust; // constraints used for justification vector<constraints> m_cjust; // constraints used for justification
@ -132,6 +152,20 @@ namespace polysat {
*/ */
bool is_viable(unsigned var, rational const& val); bool is_viable(unsigned var, rational const& val);
/**
* register that val is non-viable for var.
*/
void add_non_viable(unsigned var, rational const& val);
/**
* Find a next viable value for varible.
* l_false - there are no viable values.
* l_true - there is only one viable value left.
* l_undef - there are multiple viable values, return a guess
*/
lbool find_viable(unsigned var, rational & val);
/** /**
* undo trail operations for backtracking. * undo trail operations for backtracking.
* Each struct is a subclass of trail and implements undo(). * Each struct is a subclass of trail and implements undo().
@ -169,7 +203,6 @@ namespace polysat {
void set_mark(unsigned v) { m_marks[v] = m_clock; } void set_mark(unsigned v) { m_marks[v] = m_clock; }
unsigned m_lemma_level { 0 }; unsigned m_lemma_level { 0 };
ptr_vector<u_dependency> m_lemma_deps;
pdd isolate(unsigned v); pdd isolate(unsigned v);
pdd resolve(unsigned v, pdd const& p, unsigned& resolve_level); pdd resolve(unsigned v, pdd const& p, unsigned& resolve_level);

View file

@ -107,11 +107,8 @@ private:
} }
void unmark_todo() { void unmark_todo() {
typename ptr_vector<dependency>::iterator it = m_todo.begin(); for (auto* d : m_todo)
typename ptr_vector<dependency>::iterator end = m_todo.end(); d->unmark();
for (; it != end; ++it) {
(*it)->unmark();
}
m_todo.reset(); m_todo.reset();
} }
@ -193,30 +190,47 @@ public:
return false; return false;
} }
void linearize(dependency * d, vector<value, false> & vs) { void linearize(vector<value, false>& vs) {
if (d) { unsigned qhead = 0;
m_todo.reset(); while (qhead < m_todo.size()) {
d->mark(); dependency * d = m_todo[qhead];
m_todo.push_back(d); qhead++;
unsigned qhead = 0; if (d->is_leaf()) {
while (qhead < m_todo.size()) { vs.push_back(to_leaf(d)->m_value);
d = m_todo[qhead]; }
qhead++; else {
if (d->is_leaf()) { for (unsigned i = 0; i < 2; i++) {
vs.push_back(to_leaf(d)->m_value); dependency * child = to_join(d)->m_children[i];
} if (!child->is_marked()) {
else { m_todo.push_back(child);
for (unsigned i = 0; i < 2; i++) { child->mark();
dependency * child = to_join(d)->m_children[i];
if (!child->is_marked()) {
m_todo.push_back(child);
child->mark();
}
} }
} }
} }
unmark_todo();
} }
unmark_todo();
}
void linearize(dependency * d, vector<value, false> & vs) {
if (!d)
return;
m_todo.reset();
d->mark();
m_todo.push_back(d);
linearize(vs);
}
void linearize(ptr_vector<dependency>& deps, vector<value, false> & vs) {
if (deps.empty())
return;
m_todo.reset();
for (auto* d : deps) {
if (d && !d->is_marked()) {
d->mark();
m_todo.push_back(d);
}
}
linearize(vs);
} }
}; };
@ -304,6 +318,10 @@ public:
return m_dep_manager.linearize(d, vs); return m_dep_manager.linearize(d, vs);
} }
void linearize(ptr_vector<dependency>& d, vector<value, false> & vs) {
return m_dep_manager.linearize(d, vs);
}
void reset() { void reset() {
m_allocator.reset(); m_allocator.reset();
} }