3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-11 16:43:26 +00:00

working on upper bound optimziation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-11-03 14:54:42 -08:00
parent e5698119d7
commit c0de1e34ac
17 changed files with 343 additions and 125 deletions

View file

@ -1110,6 +1110,15 @@ std::ostream& operator<<(std::ostream& out, mk_ismt2_pp const & p) {
return out; return out;
} }
std::ostream& operator<<(std::ostream& out, expr_ref const& e) {
return out << mk_ismt2_pp(e.get(), e.get_manager());
}
std::ostream& operator<<(std::ostream& out, app_ref const& e) {
return out << mk_ismt2_pp(e.get(), e.get_manager());
}
#ifdef Z3DEBUG #ifdef Z3DEBUG
void pp(expr const * n, ast_manager & m) { void pp(expr const * n, ast_manager & m) {
std::cout << mk_ismt2_pp(const_cast<expr*>(n), m) << std::endl; std::cout << mk_ismt2_pp(const_cast<expr*>(n), m) << std::endl;

View file

@ -110,4 +110,7 @@ struct mk_ismt2_pp {
std::ostream& operator<<(std::ostream& out, mk_ismt2_pp const & p); std::ostream& operator<<(std::ostream& out, mk_ismt2_pp const & p);
std::ostream& operator<<(std::ostream& out, expr_ref const& e);
std::ostream& operator<<(std::ostream& out, app_ref const& e);
#endif #endif

View file

@ -34,8 +34,6 @@ Revision History:
#include "proof_utils.h" #include "proof_utils.h"
#include "reg_decl_plugins.h" #include "reg_decl_plugins.h"
#define PROOF_MODE PGM_FINE
//#define PROOF_MODE PGM_COARSE
namespace pdr { namespace pdr {
@ -374,7 +372,7 @@ namespace pdr {
farkas_learner::farkas_learner(smt_params& params, ast_manager& outer_mgr) farkas_learner::farkas_learner(smt_params& params, ast_manager& outer_mgr)
: m_proof_params(get_proof_params(params)), : m_proof_params(get_proof_params(params)),
m_pr(PROOF_MODE), m_pr(PGM_FINE),
m_constr(0), m_constr(0),
m_combine_farkas_coefficients(true), m_combine_farkas_coefficients(true),
p2o(m_pr, outer_mgr), p2o(m_pr, outer_mgr),

View file

@ -159,6 +159,7 @@ public:
insert_timeout(p); insert_timeout(p);
insert_max_memory(p); insert_max_memory(p);
p.insert("print_statistics", CPK_BOOL, "(default: false) print statistics."); p.insert("print_statistics", CPK_BOOL, "(default: false) print statistics.");
opt::context::collect_param_descrs(p);
} }
virtual char const * get_main_descr() const { return "check sat modulo objective function";} virtual char const * get_main_descr() const { return "check sat modulo objective function";}

View file

@ -17,9 +17,6 @@ Notes:
TODO: TODO:
- there are race conditions for cancelation. - there are race conditions for cancelation.
- it would also be a good idea to maintain a volatile bool to track
cancelation and then bail out of loops inside optimize() and derived
functions.
--*/ --*/
@ -30,6 +27,7 @@ Notes:
#include "opt_solver.h" #include "opt_solver.h"
#include "arith_decl_plugin.h" #include "arith_decl_plugin.h"
#include "th_rewriter.h" #include "th_rewriter.h"
#include "opt_params.hpp"
namespace opt { namespace opt {
@ -154,12 +152,17 @@ namespace opt {
} }
} }
void context::collect_param_descrs(param_descrs & r) {
opt_params::collect_param_descrs(r);
}
void context::updt_params(params_ref& p) { void context::updt_params(params_ref& p) {
m_params.append(p); m_params.append(p);
if (m_solver) { if (m_solver) {
m_solver->updt_params(m_params); m_solver->updt_params(m_params);
} }
opt_params _p(m_params);
m_opt_objectives.set_engine(_p.engine());
} }

View file

@ -68,6 +68,8 @@ namespace opt {
void collect_statistics(statistics& stats); void collect_statistics(statistics& stats);
static void collect_param_descrs(param_descrs & r);
void updt_params(params_ref& p); void updt_params(params_ref& p);
private: private:

View file

@ -101,13 +101,7 @@ namespace opt {
smt::theory_opt& opt = get_optimizer(); smt::theory_opt& opt = get_optimizer();
for (unsigned i = 0; i < m_objective_vars.size(); ++i) { for (unsigned i = 0; i < m_objective_vars.size(); ++i) {
smt::theory_var v = m_objective_vars[i]; smt::theory_var v = m_objective_vars[i];
bool is_bounded = opt.maximize(v); m_objective_values.push_back(opt.maximize(v));
if (is_bounded) {
m_objective_values.push_back(opt.get_objective_value(v));
} else {
inf_eps r(rational(1), inf_rational(0));
m_objective_values.push_back(r);
}
} }
} }
return r; return r;

View file

@ -62,26 +62,18 @@ namespace opt {
} }
} }
/* /*
Enumerate locally optimal assignments until fixedpoint. Enumerate locally optimal assignments until fixedpoint.
*/ */
lbool optimize_objectives::basic_opt(app_ref_vector& objectives) { lbool optimize_objectives::basic_opt() {
arith_util autil(m);
opt_solver::scoped_push _push(*s);
for (unsigned i = 0; i < objectives.size(); ++i) {
m_vars.push_back(s->add_objective(objectives[i].get()));
}
lbool is_sat = l_true;
// Disabled while testing and tuning:
// is_sat = update_upper();
opt_solver::toggle_objective _t(*s, true); opt_solver::toggle_objective _t(*s, true);
lbool is_sat = l_true;
while (is_sat == l_true && !m_cancel) { while (is_sat == l_true && !m_cancel) {
is_sat = update_lower(); is_sat = s->check_sat(0, 0);
if (is_sat == l_true) {
update_lower();
}
} }
if (m_cancel || is_sat == l_undef) { if (m_cancel || is_sat == l_undef) {
@ -90,9 +82,31 @@ namespace opt {
return l_true; return l_true;
} }
lbool optimize_objectives::update_lower() { /*
lbool is_sat = s->check_sat(0, 0); Enumerate locally optimal assignments until fixedpoint.
if (is_sat == l_true) { */
lbool optimize_objectives::farkas_opt() {
smt::theory_opt& opt = s->get_optimizer();
IF_VERBOSE(1, verbose_stream() << typeid(opt).name() << "\n";);
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
return l_undef;
}
opt_solver::toggle_objective _t(*s, true);
lbool is_sat= l_true;
while (is_sat == l_true && !m_cancel) {
is_sat = update_upper();
}
if (m_cancel || is_sat == l_undef) {
return l_undef;
}
return l_true;
}
void optimize_objectives::update_lower() {
model_ref md; model_ref md;
s->get_model(md); s->get_model(md);
set_max(m_lower, s->get_objective_values()); set_max(m_lower, s->get_objective_values());
@ -113,49 +127,71 @@ namespace opt {
constraint = m.mk_or(disj.size(), disj.c_ptr()); constraint = m.mk_or(disj.size(), disj.c_ptr());
s->assert_expr(constraint); s->assert_expr(constraint);
} }
return is_sat;
}
lbool optimize_objectives::update_upper() { lbool optimize_objectives::update_upper() {
smt::theory_opt& opt = s->get_optimizer(); smt::theory_opt& opt = s->get_optimizer();
IF_VERBOSE(1, verbose_stream() << typeid(opt).name() << "\n";); SASSERT(typeid(smt::theory_inf_arith) == typeid(opt));
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
return l_true;
}
smt::theory_inf_arith& th = dynamic_cast<smt::theory_inf_arith&>(opt); smt::theory_inf_arith& th = dynamic_cast<smt::theory_inf_arith&>(opt);
expr_ref bound(m); expr_ref bound(m);
expr_ref_vector bounds(m); expr_ref_vector bounds(m);
opt_solver::scoped_push _push(*s); opt_solver::scoped_push _push(*s);
// //
// NB: we have to create all bound expressions before calling check_sat // NB: we have to create all bound expressions before calling check_sat
// because the state after check_sat is not at base level. // because the state after check_sat is not at base level.
// //
vector<inf_eps> mid;
for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) { for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) {
if (m_lower[i] < m_upper[i]) { if (m_lower[i] < m_upper[i]) {
SASSERT(m_upper[i].get_infinity().is_pos());
smt::theory_var v = m_vars[i]; smt::theory_var v = m_vars[i];
bound = th.block_upper_bound(v, m_upper[i]); mid.push_back((m_upper[i]+m_lower[i])/rational(2));
bound = th.block_upper_bound(v, mid[i]);
bounds.push_back(bound); bounds.push_back(bound);
} }
else { else {
bounds.push_back(0); bounds.push_back(0);
mid.push_back(inf_eps());
} }
} }
bool progress = false;
for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) { for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) {
if (m_lower[i] < m_upper[i]) { if (m_lower[i] <= mid[i] && mid[i] <= m_upper[i] && m_lower[i] < m_upper[i]) {
th.enable_record_conflict(bounds[i].get());
lbool is_sat = s->check_sat(1, bounds.c_ptr() + i); lbool is_sat = s->check_sat(1, bounds.c_ptr() + i);
if (is_sat == l_true) { th.enable_record_conflict(0);
switch(is_sat) {
case l_true:
IF_VERBOSE(2, verbose_stream() << "Setting lower bound for v" << m_vars[i] << " to " << m_upper[i] << "\n";); IF_VERBOSE(2, verbose_stream() << "Setting lower bound for v" << m_vars[i] << " to " << m_upper[i] << "\n";);
m_lower[i] = m_upper[i]; m_lower[i] = mid[i];
update_lower();
break;
case l_false:
if (!th.conflict_minimize().get_infinity().is_zero()) {
// bounds is not in the core. The context is unsat.
m_upper[i] = m_lower[i];
return l_false;
} }
else if (is_sat == l_false) { else {
// else: TBD extract Farkas coefficients. m_upper[i] = std::min(m_upper[i], th.conflict_minimize());
}
break;
default:
return l_undef;
}
progress = true;
} }
} }
if (m_cancel) {
return l_undef;
}
if (!progress) {
return l_false;
} }
return l_true; return l_true;
} }
@ -177,7 +213,24 @@ namespace opt {
// First check_sat call to initialize theories // First check_sat call to initialize theories
lbool is_sat = s->check_sat(0, 0); lbool is_sat = s->check_sat(0, 0);
if (is_sat == l_true) { if (is_sat == l_true) {
is_sat = basic_opt(objectives); opt_solver::scoped_push _push(*s);
for (unsigned i = 0; i < objectives.size(); ++i) {
m_vars.push_back(s->add_objective(objectives[i].get()));
}
if (m_engine == symbol("basic")) {
is_sat = basic_opt();
}
else if (m_engine == symbol("farkas")) {
is_sat = farkas_opt();
}
else {
// TODO: implement symba engine
// report error on bad configuration.
NOT_IMPLEMENTED_YET();
UNREACHABLE();
}
values.reset(); values.reset();
values.append(m_lower); values.append(m_lower);
} }

View file

@ -34,6 +34,7 @@ namespace opt {
vector<inf_eps> m_lower; vector<inf_eps> m_lower;
vector<inf_eps> m_upper; vector<inf_eps> m_upper;
svector<smt::theory_var> m_vars; svector<smt::theory_var> m_vars;
symbol m_engine;
public: public:
optimize_objectives(ast_manager& m): m(m), s(0), m_cancel(false) {} optimize_objectives(ast_manager& m): m(m), s(0), m_cancel(false) {}
@ -41,13 +42,17 @@ namespace opt {
void set_cancel(bool f); void set_cancel(bool f);
void set_engine(symbol const& e) { m_engine = e; }
private: private:
lbool basic_opt(app_ref_vector& objectives); lbool basic_opt();
lbool farkas_opt();
void set_max(vector<inf_eps>& dst, vector<inf_eps> const& src); void set_max(vector<inf_eps>& dst, vector<inf_eps> const& src);
lbool update_lower(); void update_lower();
lbool update_upper(); lbool update_upper();

View file

@ -90,6 +90,7 @@ namespace smt {
static const int dead_row_id = -1; static const int dead_row_id = -1;
protected: protected:
bool proofs_enabled() const { return get_manager().proofs_enabled(); } bool proofs_enabled() const { return get_manager().proofs_enabled(); }
bool coeffs_enabled() const { return proofs_enabled() || m_bound_watch != null_bool_var; }
struct linear_monomial { struct linear_monomial {
numeral m_coeff; numeral m_coeff;
@ -995,11 +996,19 @@ namespace smt {
// Optimization // Optimization
// //
// ----------------------------------- // -----------------------------------
virtual bool maximize(theory_var v); virtual inf_eps_rational<inf_rational> maximize(theory_var v);
virtual theory_var add_objective(app* term); virtual theory_var add_objective(app* term);
virtual inf_eps_rational<inf_rational> get_objective_value(theory_var v);
virtual expr* block_lower_bound(theory_var v, inf_rational const& val); virtual expr* block_lower_bound(theory_var v, inf_rational const& val);
virtual expr* block_upper_bound(theory_var v, inf_numeral const& val); expr* block_upper_bound(theory_var v, inf_numeral const& val);
void enable_record_conflict(expr* bound);
void record_conflict(unsigned num_lits, literal const * lits,
unsigned num_eqs, enode_pair const * eqs,
unsigned num_params, parameter* params);
inf_eps_rational<inf_rational> conflict_minimize();
private:
bool_var m_bound_watch;
inf_eps_rational<inf_rational> m_upper_bound;
public:
// ----------------------------------- // -----------------------------------
// //
// Pretty Printing // Pretty Printing

View file

@ -21,6 +21,8 @@ Revision History:
#include"inf_eps_rational.h" #include"inf_eps_rational.h"
#include"theory_arith.h" #include"theory_arith.h"
#include"smt_farkas_util.h"
#include"th_rewriter.h"
namespace smt { namespace smt {
@ -977,14 +979,20 @@ namespace smt {
} }
template<typename Ext> template<typename Ext>
bool theory_arith<Ext>::maximize(theory_var v) { inf_eps_rational<inf_rational> theory_arith<Ext>::maximize(theory_var v) {
bool r = max_min(v, true); bool r = max_min(v, true);
if (!r && at_upper(v)) { if (at_upper(v)) {
m_objective_value = get_value(v); m_objective_value = get_value(v);
} }
return r || at_upper(v); else if (!r) {
m_objective_value = inf_eps_rational<inf_rational>::infinity();
}
return m_objective_value;
} }
/**
\brief: assert val < v
*/
template<typename Ext> template<typename Ext>
expr* theory_arith<Ext>::block_lower_bound(theory_var v, inf_rational const& val) { expr* theory_arith<Ext>::block_lower_bound(theory_var v, inf_rational const& val) {
ast_manager& m = get_manager(); ast_manager& m = get_manager();
@ -1000,6 +1008,9 @@ namespace smt {
} }
} }
/**
\brief assert val <= v
*/
template<typename Ext> template<typename Ext>
expr* theory_arith<Ext>::block_upper_bound(theory_var v, inf_numeral const& val) { expr* theory_arith<Ext>::block_upper_bound(theory_var v, inf_numeral const& val) {
ast_manager& m = get_manager(); ast_manager& m = get_manager();
@ -1007,28 +1018,153 @@ namespace smt {
std::ostringstream strm; std::ostringstream strm;
strm << val << " <= v" << v; strm << val << " <= v" << v;
expr* b = m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort()); expr* b = m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort());
if (!ctx.b_internalized(b)) {
bool_var bv = ctx.mk_bool_var(b); bool_var bv = ctx.mk_bool_var(b);
ctx.set_var_theory(bv, get_id()); ctx.set_var_theory(bv, get_id());
// ctx.set_enode_flag(bv, true); // ctx.set_enode_flag(bv, true);
inf_numeral val1 = val; atom* a = alloc(atom, bv, v, val, A_LOWER);
if (!Ext::is_infinite(val)) {
val1 += Ext::m_real_epsilon;
}
atom* a = alloc(atom, bv, v, val1, A_LOWER);
m_unassigned_atoms[v]++; m_unassigned_atoms[v]++;
m_var_occs[v].push_back(a); m_var_occs[v].push_back(a);
m_atoms.push_back(a); m_atoms.push_back(a);
insert_bv2a(bv, a); insert_bv2a(bv, a);
TRACE("arith", tout << mk_pp(b, m) << "\n"; TRACE("arith", tout << mk_pp(b, m) << "\n";
display_atom(tout, a, false); display_atom(tout, a, false););
display_atoms(tout);); }
return b; return b;
} }
/**
\brief enable watching bound atom.
*/
template<typename Ext> template<typename Ext>
inf_eps_rational<inf_rational> theory_arith<Ext>::get_objective_value(theory_var v) { void theory_arith<Ext>::enable_record_conflict(expr* bound) {
return m_objective_value; m_params.m_arith_bound_prop = BP_NONE;
SASSERT(propagation_mode() == BP_NONE); // bound propagtion rules are not (yet) handled.
if (bound) {
context& ctx = get_context();
m_bound_watch = ctx.get_bool_var(bound);
} }
else {
m_bound_watch = null_bool_var;
}
m_upper_bound = -inf_eps_rational<inf_rational>::infinity();
}
/**
\brief
pos < 0
==
r(Ax <= b) + q(v <= val)
==
val' <= q*v & q*v <= q*val
q*v - val' >= 0
=>
(q*v - val' - q*v)/q >= -v
==
val/q <= v
*/
template<typename Ext>
void theory_arith<Ext>::record_conflict(
unsigned num_lits, literal const * lits,
unsigned num_eqs, enode_pair const * eqs,
unsigned num_params, parameter* params) {
ast_manager& m = get_manager();
context& ctx = get_context();
if (null_bool_var == m_bound_watch) {
return;
}
unsigned idx = num_lits;
for (unsigned i = 0; i < num_lits; ++i) {
if (m_bound_watch == lits[i].var()) {
//SASSERT(!lits[i].sign());
idx = i;
break;
}
}
if (idx == num_lits) {
return;
}
SASSERT(num_params == 1 + num_lits + num_eqs);
SASSERT(params[0].is_symbol());
SASSERT(params[0].get_symbol() == symbol("farkas")); // for now, just handle this rule.
farkas_util farkas(m);
expr_ref tmp(m), vq(m);
expr* x, *y, *e;
rational q;
for (unsigned i = 0; i < num_lits; ++i) {
parameter const& pa = params[i+1];
SASSERT(pa.is_rational());
if (idx == i) {
q = abs(pa.get_rational());
continue;
}
ctx.literal2expr(~lits[i], tmp);
farkas.add(abs(pa.get_rational()), to_app(tmp));
}
for (unsigned i = 0; i < num_eqs; ++i) {
enode_pair const& p = eqs[i];
x = p.first->get_owner();
y = p.second->get_owner();
tmp = m.mk_not(m.mk_eq(x,y));
parameter const& pa = params[1 + num_lits + i];
SASSERT(pa.is_rational());
farkas.add(abs(pa.get_rational()), to_app(tmp));
}
tmp = farkas.get();
std::cout << tmp << "\n";
atom* a = get_bv2a(m_bound_watch);
SASSERT(a);
expr_ref_vector terms(m);
vector<rational> mults;
bool strict = false;
if (m_util.is_le(tmp, x, y) || m_util.is_ge(tmp, y, x)) {
}
else if (m_util.is_lt(tmp, x, y) || m_util.is_gt(tmp, y, x)) {
strict = true;
}
else if (m.is_eq(tmp, x, y)) {
}
else {
UNREACHABLE();
}
e = var2expr(a->get_var());
q = -q*farkas.get_normalize_factor();
SASSERT(!m_util.is_int(e) || q.is_int()); // TBD: not fully handled.
if (q.is_one()) {
vq = e;
}
else {
vq = m_util.mk_mul(m_util.mk_numeral(q, q.is_int()), e);
}
vq = m_util.mk_add(m_util.mk_sub(x, y), vq);
if (!q.is_one()) {
vq = m_util.mk_div(vq, m_util.mk_numeral(q, q.is_int()));
}
th_rewriter rw(m);
rw(vq, tmp);
IF_VERBOSE(1, verbose_stream() << tmp << "\n";);
VERIFY(m_util.is_numeral(tmp, q));
if (m_upper_bound < q) {
m_upper_bound = q;
if (strict) {
m_upper_bound -= get_epsilon(a->get_var());
}
}
}
/**
\brief find the minimal upper bound on the variable that was last enabled
for conflict recording.
*/
template<typename Ext>
inf_eps_rational<inf_rational> theory_arith<Ext>::conflict_minimize() {
return m_upper_bound;
}
/** /**
\brief Maximize (Minimize) the given temporary row. \brief Maximize (Minimize) the given temporary row.

View file

@ -879,7 +879,7 @@ namespace smt {
bool_var bv = ctx.mk_bool_var(n); bool_var bv = ctx.mk_bool_var(n);
ctx.set_var_theory(bv, get_id()); ctx.set_var_theory(bv, get_id());
rational _k; rational _k;
m_util.is_numeral(rhs, _k); VERIFY(m_util.is_numeral(rhs, _k));
inf_numeral k(_k); inf_numeral k(_k);
atom * a = alloc(atom, bv, v, k, kind); atom * a = alloc(atom, bv, v, k, kind);
mk_bound_axioms(a); mk_bound_axioms(a);
@ -1315,7 +1315,8 @@ namespace smt {
m_assume_eq_head(0), m_assume_eq_head(0),
m_nl_rounds(0), m_nl_rounds(0),
m_nl_gb_exhausted(false), m_nl_gb_exhausted(false),
m_nl_new_exprs(m) { m_nl_new_exprs(m),
m_bound_watch(null_bool_var) {
} }
template<typename Ext> template<typename Ext>
@ -1980,7 +1981,7 @@ namespace smt {
tout << "is_below_lower: " << below_lower(x_i) << ", is_above_upper: " << above_upper(x_i) << "\n";); tout << "is_below_lower: " << below_lower(x_i) << ", is_above_upper: " << above_upper(x_i) << "\n";);
antecedents& ante = get_antecedents(); antecedents& ante = get_antecedents();
explain_bound(r, idx, !is_below, delta, ante); explain_bound(r, idx, !is_below, delta, ante);
b->push_justification(ante, numeral(1), proofs_enabled()); b->push_justification(ante, numeral(1), coeffs_enabled());
set_conflict(ante.lits().size(), ante.lits().c_ptr(), set_conflict(ante.lits().size(), ante.lits().c_ptr(),
@ -2123,8 +2124,8 @@ namespace smt {
void theory_arith<Ext>::sign_bound_conflict(bound * b1, bound * b2) { void theory_arith<Ext>::sign_bound_conflict(bound * b1, bound * b2) {
SASSERT(b1->get_var() == b2->get_var()); SASSERT(b1->get_var() == b2->get_var());
antecedents& ante = get_antecedents(); antecedents& ante = get_antecedents();
b1->push_justification(ante, numeral(1), proofs_enabled()); b1->push_justification(ante, numeral(1), coeffs_enabled());
b2->push_justification(ante, numeral(1), proofs_enabled()); b2->push_justification(ante, numeral(1), coeffs_enabled());
set_conflict(ante.lits().size(), ante.lits().c_ptr(), ante.eqs().size(), ante.eqs().c_ptr(), ante, is_int(b1->get_var()), "farkas"); set_conflict(ante.lits().size(), ante.lits().c_ptr(), ante.eqs().size(), ante.eqs().c_ptr(), ante, is_int(b1->get_var()), "farkas");
TRACE("arith_conflict", tout << "bound conflict\n";); TRACE("arith_conflict", tout << "bound conflict\n";);
@ -2383,7 +2384,7 @@ namespace smt {
if (!b->has_justification()) if (!b->has_justification())
continue; continue;
if (!relax_bounds() || delta.is_zero()) { if (!relax_bounds() || delta.is_zero()) {
b->push_justification(ante, it->m_coeff, proofs_enabled()); b->push_justification(ante, it->m_coeff, coeffs_enabled());
continue; continue;
} }
numeral coeff = it->m_coeff; numeral coeff = it->m_coeff;
@ -2445,7 +2446,7 @@ namespace smt {
SASSERT(!is_b_lower || k_2 <= k_1); SASSERT(!is_b_lower || k_2 <= k_1);
SASSERT(is_b_lower || k_2 >= k_1); SASSERT(is_b_lower || k_2 >= k_1);
if (new_atom == 0) { if (new_atom == 0) {
b->push_justification(ante, coeff, proofs_enabled()); b->push_justification(ante, coeff, coeffs_enabled());
continue; continue;
} }
SASSERT(!is_b_lower || k_2 < k_1); SASSERT(!is_b_lower || k_2 < k_1);
@ -2459,7 +2460,7 @@ namespace smt {
delta -= coeff*(k_2 - k_1); delta -= coeff*(k_2 - k_1);
} }
TRACE("propagate_bounds", tout << "delta (after replace): " << delta << "\n";); TRACE("propagate_bounds", tout << "delta (after replace): " << delta << "\n";);
new_atom->push_justification(ante, coeff, proofs_enabled()); new_atom->push_justification(ante, coeff, coeffs_enabled());
SASSERT(delta >= inf_numeral::zero()); SASSERT(delta >= inf_numeral::zero());
} }
} }
@ -2659,13 +2660,13 @@ namespace smt {
for (unsigned i = 0; i < num_literals; i++) { for (unsigned i = 0; i < num_literals; i++) {
ctx.display_detailed_literal(tout, lits[i]); ctx.display_detailed_literal(tout, lits[i]);
tout << " "; tout << " ";
if (proofs_enabled()) { if (coeffs_enabled()) {
tout << "bound: " << bounds.lit_coeffs()[i] << "\n"; tout << "bound: " << bounds.lit_coeffs()[i] << "\n";
} }
} }
for (unsigned i = 0; i < num_eqs; i++) { for (unsigned i = 0; i < num_eqs; i++) {
tout << "#" << eqs[i].first->get_owner_id() << "=#" << eqs[i].second->get_owner_id() << " "; tout << "#" << eqs[i].first->get_owner_id() << "=#" << eqs[i].second->get_owner_id() << " ";
if (proofs_enabled()) { if (coeffs_enabled()) {
tout << "bound: " << bounds.eq_coeffs()[i] << "\n"; tout << "bound: " << bounds.eq_coeffs()[i] << "\n";
} }
} }
@ -2673,6 +2674,7 @@ namespace smt {
tout << bounds.params(proof_rule)[i] << "\n"; tout << bounds.params(proof_rule)[i] << "\n";
} }
tout << "\n";); tout << "\n";);
record_conflict(num_literals, lits, num_eqs, eqs, bounds.num_params(), bounds.params(proof_rule));
ctx.set_conflict( ctx.set_conflict(
ctx.mk_justification( ctx.mk_justification(
ext_theory_conflict_justification(get_id(), r, num_literals, lits, num_eqs, eqs, ext_theory_conflict_justification(get_id(), r, num_literals, lits, num_eqs, eqs,
@ -2689,8 +2691,8 @@ namespace smt {
typename vector<row_entry>::const_iterator end = r.end_entries(); typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) { for (; it != end; ++it) {
if (!it->is_dead() && is_fixed(it->m_var)) { if (!it->is_dead() && is_fixed(it->m_var)) {
lower(it->m_var)->push_justification(antecedents, it->m_coeff, proofs_enabled()); lower(it->m_var)->push_justification(antecedents, it->m_coeff, coeffs_enabled());
upper(it->m_var)->push_justification(antecedents, it->m_coeff, proofs_enabled()); upper(it->m_var)->push_justification(antecedents, it->m_coeff, coeffs_enabled());
} }
} }
} }

View file

@ -525,7 +525,7 @@ namespace smt {
} }
// k += new_a_ij * lower_bound(x_j).get_rational(); // k += new_a_ij * lower_bound(x_j).get_rational();
k.addmul(new_a_ij, lower_bound(x_j).get_rational()); k.addmul(new_a_ij, lower_bound(x_j).get_rational());
lower(x_j)->push_justification(ante, numeral::zero(), proofs_enabled()); lower(x_j)->push_justification(ante, numeral::zero(), coeffs_enabled());
} }
else { else {
SASSERT(at_upper(x_j)); SASSERT(at_upper(x_j));
@ -541,7 +541,7 @@ namespace smt {
} }
// k += new_a_ij * upper_bound(x_j).get_rational(); // k += new_a_ij * upper_bound(x_j).get_rational();
k.addmul(new_a_ij, upper_bound(x_j).get_rational()); k.addmul(new_a_ij, upper_bound(x_j).get_rational());
upper(x_j)->push_justification(ante, numeral::zero(), proofs_enabled()); upper(x_j)->push_justification(ante, numeral::zero(), coeffs_enabled());
} }
pol.push_back(row_entry(new_a_ij, x_j)); pol.push_back(row_entry(new_a_ij, x_j));
} }
@ -566,7 +566,7 @@ namespace smt {
} }
// k += new_a_ij * lower_bound(x_j).get_rational(); // k += new_a_ij * lower_bound(x_j).get_rational();
k.addmul(new_a_ij, lower_bound(x_j).get_rational()); k.addmul(new_a_ij, lower_bound(x_j).get_rational());
lower(x_j)->push_justification(ante, numeral::zero(), proofs_enabled()); lower(x_j)->push_justification(ante, numeral::zero(), coeffs_enabled());
} }
else { else {
SASSERT(at_upper(x_j)); SASSERT(at_upper(x_j));
@ -579,7 +579,7 @@ namespace smt {
new_a_ij.neg(); // the upper terms are inverted new_a_ij.neg(); // the upper terms are inverted
// k += new_a_ij * upper_bound(x_j).get_rational(); // k += new_a_ij * upper_bound(x_j).get_rational();
k.addmul(new_a_ij, upper_bound(x_j).get_rational()); k.addmul(new_a_ij, upper_bound(x_j).get_rational());
upper(x_j)->push_justification(ante, numeral::zero(), proofs_enabled()); upper(x_j)->push_justification(ante, numeral::zero(), coeffs_enabled());
} }
TRACE("gomory_cut_detail", tout << "new_a_ij: " << new_a_ij << "\n";); TRACE("gomory_cut_detail", tout << "new_a_ij: " << new_a_ij << "\n";);
pol.push_back(row_entry(new_a_ij, x_j)); pol.push_back(row_entry(new_a_ij, x_j));
@ -772,8 +772,8 @@ namespace smt {
// u += ncoeff * lower_bound(v).get_rational(); // u += ncoeff * lower_bound(v).get_rational();
u.addmul(ncoeff, lower_bound(v).get_rational()); u.addmul(ncoeff, lower_bound(v).get_rational());
} }
lower(v)->push_justification(ante, numeral::zero(), proofs_enabled()); lower(v)->push_justification(ante, numeral::zero(), coeffs_enabled());
upper(v)->push_justification(ante, numeral::zero(), proofs_enabled()); upper(v)->push_justification(ante, numeral::zero(), coeffs_enabled());
} }
else if (gcds.is_zero()) { else if (gcds.is_zero()) {
gcds = abs_ncoeff; gcds = abs_ncoeff;

View file

@ -311,9 +311,8 @@ namespace smt {
// //
// ----------------------------------- // -----------------------------------
virtual bool maximize(theory_var v); virtual inf_eps_rational<inf_rational> maximize(theory_var v);
virtual theory_var add_objective(app* term); virtual theory_var add_objective(app* term);
virtual inf_eps_rational<inf_rational> get_objective_value(theory_var v);
virtual expr* block_lower_bound(theory_var v, inf_rational const& val); virtual expr* block_lower_bound(theory_var v, inf_rational const& val);
bool internalize_objective(expr * n, rational const& m, rational& r, objective_term & objective); bool internalize_objective(expr * n, rational const& m, rational& r, objective_term & objective);

View file

@ -1001,7 +1001,7 @@ void theory_diff_logic<Ext>::get_implied_bound_antecedents(edge_id bridge_edge,
} }
template<typename Ext> template<typename Ext>
bool theory_diff_logic<Ext>::maximize(theory_var v) { inf_eps_rational<inf_rational> theory_diff_logic<Ext>::maximize(theory_var v) {
objective_term const& objective = m_objectives[v]; objective_term const& objective = m_objectives[v];
IF_VERBOSE(1, IF_VERBOSE(1,
@ -1029,12 +1029,14 @@ bool theory_diff_logic<Ext>::maximize(theory_var v) {
for (unsigned i = 0; i < potentials.size(); ++i) { for (unsigned i = 0; i < potentials.size(); ++i) {
tout << "v" << i << " -> " << potentials[i] << "\n"; tout << "v" << i << " -> " << potentials[i] << "\n";
}); });
rational r = m_objective_value.get_rational().to_rational();
rational i = m_objective_value.get_infinitesimal().to_rational();
return inf_eps_rational<inf_rational>(inf_rational(r, i));
} }
else { else {
std::cout << "Unbounded objective" << std::endl; std::cout << "Unbounded objective" << std::endl;
return inf_eps_rational<inf_rational>::infinity();
} }
return is_optimal;
} }
template<typename Ext> template<typename Ext>
@ -1054,13 +1056,6 @@ theory_var theory_diff_logic<Ext>::add_objective(app* term) {
return result; return result;
} }
template<typename Ext>
inf_eps_rational<inf_rational> theory_diff_logic<Ext>::get_objective_value(theory_var v) {
rational r = m_objective_value.get_rational().to_rational();
rational i = m_objective_value.get_infinitesimal().to_rational();
return inf_eps_rational<inf_rational>(inf_rational(r, i));
}
template<typename Ext> template<typename Ext>
expr* theory_diff_logic<Ext>::block_lower_bound(theory_var v, inf_rational const& val) { expr* theory_diff_logic<Ext>::block_lower_bound(theory_var v, inf_rational const& val) {
ast_manager& m = get_manager(); ast_manager& m = get_manager();

View file

@ -28,15 +28,9 @@ namespace smt {
class theory_opt { class theory_opt {
public: public:
typedef inf_eps_rational<inf_rational> inf_eps; typedef inf_eps_rational<inf_rational> inf_eps;
virtual bool maximize(theory_var v) { UNREACHABLE(); return false; }; virtual inf_eps_rational<inf_rational> maximize(theory_var v) { UNREACHABLE(); return inf_eps::infinity(); }
virtual theory_var add_objective(app* term) { UNREACHABLE(); return null_theory_var; } virtual theory_var add_objective(app* term) { UNREACHABLE(); return null_theory_var; }
virtual inf_eps get_objective_value(theory_var v) {
UNREACHABLE();
return inf_eps(rational(1), inf_rational(0));
}
virtual expr* block_lower_bound(theory_var v, inf_rational const& val) { return 0; } virtual expr* block_lower_bound(theory_var v, inf_rational const& val) { return 0; }
}; };
} }

View file

@ -155,6 +155,11 @@ class inf_eps_rational {
return inf_eps_rational(Numeral::minus_one()); return inf_eps_rational(Numeral::minus_one());
} }
static inf_eps_rational infinity() {
return inf_eps_rational(rational::one(), Numeral::zero());
}
inf_eps_rational & operator=(const inf_eps_rational & r) { inf_eps_rational & operator=(const inf_eps_rational & r) {
m_infty = r.m_infty; m_infty = r.m_infty;
m_r = r.m_r; m_r = r.m_r;
@ -179,6 +184,16 @@ class inf_eps_rational {
return *this; return *this;
} }
inf_eps_rational & operator-=(const inf_rational & r) {
m_r -= r;
return *this;
}
inf_eps_rational & operator+=(const inf_rational & r) {
m_r += r;
return *this;
}
inf_eps_rational & operator+=(const rational & r) { inf_eps_rational & operator+=(const rational & r) {
m_r += r; m_r += r;
return *this; return *this;