3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-20 02:00:22 +00:00

working on upper bound optimziation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-11-03 14:54:42 -08:00
parent e5698119d7
commit c0de1e34ac
17 changed files with 343 additions and 125 deletions

View file

@ -159,6 +159,7 @@ public:
insert_timeout(p);
insert_max_memory(p);
p.insert("print_statistics", CPK_BOOL, "(default: false) print statistics.");
opt::context::collect_param_descrs(p);
}
virtual char const * get_main_descr() const { return "check sat modulo objective function";}

View file

@ -17,9 +17,6 @@ Notes:
TODO:
- there are race conditions for cancelation.
- it would also be a good idea to maintain a volatile bool to track
cancelation and then bail out of loops inside optimize() and derived
functions.
--*/
@ -30,6 +27,7 @@ Notes:
#include "opt_solver.h"
#include "arith_decl_plugin.h"
#include "th_rewriter.h"
#include "opt_params.hpp"
namespace opt {
@ -154,12 +152,17 @@ namespace opt {
}
}
void context::collect_param_descrs(param_descrs & r) {
opt_params::collect_param_descrs(r);
}
void context::updt_params(params_ref& p) {
m_params.append(p);
if (m_solver) {
m_solver->updt_params(m_params);
}
opt_params _p(m_params);
m_opt_objectives.set_engine(_p.engine());
}

View file

@ -68,6 +68,8 @@ namespace opt {
void collect_statistics(statistics& stats);
static void collect_param_descrs(param_descrs & r);
void updt_params(params_ref& p);
private:

View file

@ -101,13 +101,7 @@ namespace opt {
smt::theory_opt& opt = get_optimizer();
for (unsigned i = 0; i < m_objective_vars.size(); ++i) {
smt::theory_var v = m_objective_vars[i];
bool is_bounded = opt.maximize(v);
if (is_bounded) {
m_objective_values.push_back(opt.get_objective_value(v));
} else {
inf_eps r(rational(1), inf_rational(0));
m_objective_values.push_back(r);
}
m_objective_values.push_back(opt.maximize(v));
}
}
return r;

View file

@ -62,26 +62,18 @@ namespace opt {
}
}
/*
Enumerate locally optimal assignments until fixedpoint.
*/
lbool optimize_objectives::basic_opt(app_ref_vector& objectives) {
arith_util autil(m);
opt_solver::scoped_push _push(*s);
for (unsigned i = 0; i < objectives.size(); ++i) {
m_vars.push_back(s->add_objective(objectives[i].get()));
}
lbool optimize_objectives::basic_opt() {
opt_solver::toggle_objective _t(*s, true);
lbool is_sat = l_true;
// Disabled while testing and tuning:
// is_sat = update_upper();
opt_solver::toggle_objective _t(*s, true);
while (is_sat == l_true && !m_cancel) {
is_sat = update_lower();
is_sat = s->check_sat(0, 0);
if (is_sat == l_true) {
update_lower();
}
}
if (m_cancel || is_sat == l_undef) {
@ -90,73 +82,117 @@ namespace opt {
return l_true;
}
lbool optimize_objectives::update_lower() {
lbool is_sat = s->check_sat(0, 0);
if (is_sat == l_true) {
model_ref md;
s->get_model(md);
set_max(m_lower, s->get_objective_values());
IF_VERBOSE(1,
for (unsigned i = 0; i < m_lower.size(); ++i) {
verbose_stream() << m_lower[i] << " ";
}
verbose_stream() << "\n";
// model_pp(verbose_stream(), *md);
);
expr_ref_vector disj(m);
expr_ref constraint(m);
for (unsigned i = 0; i < m_lower.size(); ++i) {
inf_eps const& v = m_lower[i];
disj.push_back(s->block_lower_bound(i, v));
}
constraint = m.mk_or(disj.size(), disj.c_ptr());
s->assert_expr(constraint);
/*
Enumerate locally optimal assignments until fixedpoint.
*/
lbool optimize_objectives::farkas_opt() {
smt::theory_opt& opt = s->get_optimizer();
IF_VERBOSE(1, verbose_stream() << typeid(opt).name() << "\n";);
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
return l_undef;
}
return is_sat;
opt_solver::toggle_objective _t(*s, true);
lbool is_sat= l_true;
while (is_sat == l_true && !m_cancel) {
is_sat = update_upper();
}
if (m_cancel || is_sat == l_undef) {
return l_undef;
}
return l_true;
}
void optimize_objectives::update_lower() {
model_ref md;
s->get_model(md);
set_max(m_lower, s->get_objective_values());
IF_VERBOSE(1,
for (unsigned i = 0; i < m_lower.size(); ++i) {
verbose_stream() << m_lower[i] << " ";
}
verbose_stream() << "\n";
// model_pp(verbose_stream(), *md);
);
expr_ref_vector disj(m);
expr_ref constraint(m);
for (unsigned i = 0; i < m_lower.size(); ++i) {
inf_eps const& v = m_lower[i];
disj.push_back(s->block_lower_bound(i, v));
}
constraint = m.mk_or(disj.size(), disj.c_ptr());
s->assert_expr(constraint);
}
lbool optimize_objectives::update_upper() {
smt::theory_opt& opt = s->get_optimizer();
IF_VERBOSE(1, verbose_stream() << typeid(opt).name() << "\n";);
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
return l_true;
}
SASSERT(typeid(smt::theory_inf_arith) == typeid(opt));
smt::theory_inf_arith& th = dynamic_cast<smt::theory_inf_arith&>(opt);
expr_ref bound(m);
expr_ref_vector bounds(m);
opt_solver::scoped_push _push(*s);
//
// NB: we have to create all bound expressions before calling check_sat
// because the state after check_sat is not at base level.
//
vector<inf_eps> mid;
for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) {
if (m_lower[i] < m_upper[i]) {
SASSERT(m_upper[i].get_infinity().is_pos());
smt::theory_var v = m_vars[i];
bound = th.block_upper_bound(v, m_upper[i]);
mid.push_back((m_upper[i]+m_lower[i])/rational(2));
bound = th.block_upper_bound(v, mid[i]);
bounds.push_back(bound);
}
else {
bounds.push_back(0);
mid.push_back(inf_eps());
}
}
bool progress = false;
for (unsigned i = 0; i < m_lower.size() && !m_cancel; ++i) {
if (m_lower[i] < m_upper[i]) {
if (m_lower[i] <= mid[i] && mid[i] <= m_upper[i] && m_lower[i] < m_upper[i]) {
th.enable_record_conflict(bounds[i].get());
lbool is_sat = s->check_sat(1, bounds.c_ptr() + i);
if (is_sat == l_true) {
th.enable_record_conflict(0);
switch(is_sat) {
case l_true:
IF_VERBOSE(2, verbose_stream() << "Setting lower bound for v" << m_vars[i] << " to " << m_upper[i] << "\n";);
m_lower[i] = m_upper[i];
}
else if (is_sat == l_false) {
// else: TBD extract Farkas coefficients.
m_lower[i] = mid[i];
update_lower();
break;
case l_false:
if (!th.conflict_minimize().get_infinity().is_zero()) {
// bounds is not in the core. The context is unsat.
m_upper[i] = m_lower[i];
return l_false;
}
else {
m_upper[i] = std::min(m_upper[i], th.conflict_minimize());
}
break;
default:
return l_undef;
}
progress = true;
}
}
if (m_cancel) {
return l_undef;
}
if (!progress) {
return l_false;
}
return l_true;
}
@ -177,7 +213,24 @@ namespace opt {
// First check_sat call to initialize theories
lbool is_sat = s->check_sat(0, 0);
if (is_sat == l_true) {
is_sat = basic_opt(objectives);
opt_solver::scoped_push _push(*s);
for (unsigned i = 0; i < objectives.size(); ++i) {
m_vars.push_back(s->add_objective(objectives[i].get()));
}
if (m_engine == symbol("basic")) {
is_sat = basic_opt();
}
else if (m_engine == symbol("farkas")) {
is_sat = farkas_opt();
}
else {
// TODO: implement symba engine
// report error on bad configuration.
NOT_IMPLEMENTED_YET();
UNREACHABLE();
}
values.reset();
values.append(m_lower);
}

View file

@ -34,6 +34,7 @@ namespace opt {
vector<inf_eps> m_lower;
vector<inf_eps> m_upper;
svector<smt::theory_var> m_vars;
symbol m_engine;
public:
optimize_objectives(ast_manager& m): m(m), s(0), m_cancel(false) {}
@ -41,13 +42,17 @@ namespace opt {
void set_cancel(bool f);
void set_engine(symbol const& e) { m_engine = e; }
private:
lbool basic_opt(app_ref_vector& objectives);
lbool basic_opt();
lbool farkas_opt();
void set_max(vector<inf_eps>& dst, vector<inf_eps> const& src);
lbool update_lower();
void update_lower();
lbool update_upper();